

BSM Higgs Searches in ATLAS and CMS (part 2)

Livia Soffi

"Sapienza" Università di Roma - INFN Sez. di Roma

On Behalf of the ATLAS and CMS Collaborations

Overview

 Vital question: Is it in fact the discovered Higgs boson from the SM or part of an extended sector?

Space to probe any non-SM property

 Additional Higgs bosons still a possibility

• Indirect searches from observed Higgs couplings measurement (not in this talk)

Livia Soffi

BSM Searches - Higgs Hunting 2014

• Talk focuses on results from **ATLAS and CMS**

Many new results from ICHEP and after:

Non-SM property

- Rare Higgs Decays
- Invisible Higgs Decays
- Higgs Decays to Long-Lived
- Lepton Flavour Violation

Additional Higgs bosons

- Additional Higgs in multilepton and photons channels
- MultiHiggs in cascade
- Di-Higgs production in diphoton and di b-jets channels
- NEW

New diphoton resonances

Rare decays

CMS: Phys. Lett. B 726(2013) 587 ATLAS: arXiv:1402.3051 CMS PAS HIG-14-003

Livia Soffi

BSM Searches - Higgs Hunting 2014

lunedì 21 luglio 2014

Search for $H \to \gamma^* \gamma \to \mu \mu \gamma$

- Rare Higgs decays as probes of new couplings and SM extensions
- Loop and tree level processes contribute to $\mu\mu\gamma$ final state

- First CMS search for Dalitz decays with γ^* internal conversion in $\mu\mu$
- $m_{\mu\mu}$ < 20 GeV to separate $\gamma^* \gamma$ and Z γ

@125 GeV	CMS	ATLAS	
Ζγ	9.5X SM	11X SM	
γ* γ	10X SM		

Livia Soffi

lunedì 21 luglio 2014

Invisible decays

ATLAS-CONF-2014-011 CMS PAPER HIG-13-030

Livia Soffi

BSM Searches - Higgs Hunting 2014

lunedì 21 luglio 2014

6

Higgs decay to invisible particles

- What if Higgs couples to something invisible?
- One possibility: Higgs portal of DM interaction
 - Higgs mediator between SM and DM particles

INFN

Large cross-section Large SM background reduced by VBF jet topology Lower cross-section Clear topology Sensitivity increase by the leptons an bs

Results

• No evidence for signal observed in any of the three searches

- 95% CL Upper Limits on $\sigma \cdot B(H \rightarrow inv)$
- CMS combination paper just accepted for publication.

@125 GeV	CMS	ATLAS	
Z(→II)H	0.75XSM	0.75X SM	
Z(→bb)H	1.82X SM	_	
VBF	0.69X SM	_	
СОМВ	0.58X SM	_	

- Results interpreted in the
 Higgs portal of DM interaction model
- Upper limit on BR(H → inv) : constrain the DM mass and its elastic cross section on nucleons

Livia Soffi

BSM Searches - Higgs Hunting 2014

Decays to longlived particles

ATLAS-CONF-2014-041 NEW

Livia Soffi

BSM Searches - Higgs Hunting 2014

lunedì 21 luglio 2014

electromagnetic calorimeter

Livia Soffi

BSM Searches - Higgs Hunting 2014

At least one narrow jet with no charged tracks associated

Requirement on the E_H/E_{EM}

Average probability to fire the trigger ~ 20% in EB and 6% in EE

• Non collision background: Timing of the jet used to discard out-of-time background

• 95% CL Upper Limits on cross-section times BR vs π_v proper decay length

excluded range	excluded range
$30\% \text{ BR } \Phi_{\text{HS}} \rightarrow \pi_{\text{v}} \pi_{\text{v}}$	10% BR $\Phi_{\rm HS} \rightarrow \pi_{\rm v} \pi_{\rm v}$
[m]	[m]
0.10 - 4.38	0.13 - 2.30
0.27 - 10.01	0.37 - 5.12
0.54 - 12.11	0.86 - 5.62
	$\begin{array}{c} \text{excluded range} \\ 30\% \ \text{BR} \ \Phi_{\text{HS}} \rightarrow \pi_{\text{v}} \pi_{\text{v}} \\ \hline [m] \\ \hline 0.10 - 4.38 \\ \hline 0.27 - 10.01 \\ \hline 0.54 - 12.11 \end{array}$

BSM Searches - Higgs Hunting 2014

0.35

0.3

Livia Soffi

m 126 GeV - m 10 GeV

Lepton Flavor Violation

CMS PAS HIG-14-005

Livia Soffi

BSM Searches - Higgs Hunting 2014

lunedì 21 luglio 2014

12

LFV at LHC

• What if we observe an **unexpected decay** of the new boson? $H \rightarrow \mu \tau$

• LFV decays occur naturally in 2HDM, composite Higgs, models with flavor symmetries and Randall-Sundrum

- Constraints from **indirect searches:** $B(H \rightarrow \mu\tau) < O(0.1)$, $B(H \rightarrow e\tau) < O(0.1)$
- First dedicated search for $H \to \mu \tau_e$ and $H \to \mu \tau_{had}$ at LHC
- W.r. t. $H \rightarrow \tau_{\mu}\tau_{had}$ and $H \rightarrow \tau_{\mu}\tau_{e}$:

Results

- expected upper limit: $B(H \rightarrow \mu \tau) < (0.75 \pm 0.38)\%$
- observed upper limit: $B(H \rightarrow \mu \tau) < 1.57\%$

 slight excess of observed number of events

Best fit: $B(H \rightarrow \mu \tau) = (0.89 + 0.40)\%$

INFN

Constraint on $B(H \rightarrow \mu \tau)$ interpreted in terms of LFV Higgs Yukawa couplings

lunedì 21 luglio 2014

Summary of Higgs decay modes

@125 GeV		CMS		ATLAS			
	Dataset	Status	Results	Dataset	Status	Results	
Favoured decay modes							
H(ZZ)							
H(WW)			μ= 1.00			μ= 1.30	
Η(γ γ)	5.1 + 19.7	HIG-14-009	+/- 0.09 (stat)	4.8 + 20.3 fb ⁻¹	AILAS-CONF-2014-009	+/- 0.12 (stat) +0.14-0.11(svst)	
H(tau tau)	fb⁻¹		+/-0.07(syst)				
V-H(bb)							
ttH(bb)				20.3 fb ⁻¹	ATLAS-CONF-2014-011	μ< 4.1(3.4)	
VBF-H(bb)	19.0 fb ⁻¹	HIG-13-011	μ< 3.6(3.0)	4.7 + 13.0 fb ⁻¹	ATLAS-CONF-2012-161	μ< 1.8(1.9)	
			Rare decay mo	odes			
H(mu mu)	5.0+ 19.7 fb ⁻¹	HIG-13-007	μ< 7.4	24.8 fb ⁻¹	<u>arXiv:1406.7663</u>	μ< 7.2	
Η(Ζ γ)	5.0+ 19.6 fb ⁻¹	<u>arXiv:1307.5515</u>	< 10	4.5 + 20.3 fb ⁻¹	<u>arXiv:1402.3051</u>	μ< 10	
Η(γ* γ)	19.7 fb ⁻¹	HIG-14-003	μ< 10	-	-	-	
			Invisible decay i	nodes			
Z(ll)-H(inv)				4.5 + 20.3 fb ⁻¹	<u>arXiv:1402.3244</u>	BR< 75(62)%	
Z(bb)-H(inv)	4.9 + 19.7 fb ⁻¹	<u>arXiv:1404.1344</u>	BR< 58(46)%	-	_	-	
VBF-H(inv)				-	-	-	
Exotic decay modes							
H(tau mu)	19.7 fb ⁻¹	HIG-14-005	BR<1.57%	_	_	_	
H(long-lived)	-	_	-	20.3 fb ⁻¹	ATLAS-CONF-2014-041	UL vs ctau	
Livia Soffi = published BSM Searches - Higgs Hunting 2014 = preliminary							

lunedì 21 luglio 2014

Extended Higgs Sector Introduction

		CMS	ATLAS
EWK Singlet Model		Future	V
MSSM H(tau tau)		V	V
	MSSM H(bb)	V	_
	H+(tau nu)	V	V
	H+(tau iet)	-	V
2HDM	H+(csbar)	V	
	H(hh),A(Zh)	V	V
	H(multi _Y)		Future
	H(ttbar)	Future	
	Heavy H cascade		V
	h1->a1->2mu	V	Future
	h1->a1a1->4mu	V	-
	h2->h1h1->4tau	Future	-
	h2->h1h1->2tau2mu	-	Future
	h2->h1h1->2tau2b	Future	-
	H+(Wal)		Future
	Low Mass H(γ γ)		V
	HighMass Η(γ γ)	V	V
Resonant	HighMass H(γ γbb)	V	V
searches	HighMass H(bbbb)		V
	HighMass WW	V	V
	HighMass ZZ	V	V

Livia Soffi

BSM Searches - Higgs Hunting 2014

Heavy Higgs decays to h

CMS PAS HIG-13-025 ATLAS: CERN-PH-EP-2013-173

Livia Soffi

BSM Searches - Higgs Hunting 2014

lunedì 21 luglio 2014

17

Livia Soffi

2HDM Overview

 Five physical Higgs sector particles survive EWSB with masses < TeV and accessible at LHC (h, H,A, H⁺⁻)

• If m_H and $m_A > 2m_h$ H \rightarrow hh and A \rightarrow Zh promising avenues for discovery even when the couplings of the light Higgs within a few percent of SM predictions.

Multilepton signature with unusual kinematics characteristics

h has a nominal mass of 126 GeV and Brs to WW, ZZ, $\tau\tau$, bb and $\gamma\gamma$ channels appropriate to SM

BSM Searches - Higgs Hunting 2014

$$H \to hh$$

	$h \to WW^*$	$h \to Z Z^*$	$h\to\tau\tau$	$h \rightarrow bb$	$h \rightarrow \gamma \gamma$
$h \to WW^*$	\checkmark	\checkmark	\checkmark	Х	\checkmark
$h \rightarrow ZZ^*$	-	\checkmark	\checkmark	\checkmark	√
$h \rightarrow \tau \tau$	-	-	\checkmark	Х	√
$h \rightarrow bb$	-	-	-	Х	X
$h ightarrow \gamma \gamma$	-	-	-	-	X

	$h \to WW^*$	$h \to ZZ^*$	$h \to \tau \tau$	$h \to \gamma \gamma$
$Z \rightarrow ll$	\checkmark	\checkmark	\checkmark	\checkmark
$Z \rightarrow qq$	X	\checkmark	Х	Х
$Z \rightarrow \nu \nu$	X	\checkmark	Х	Х

Resonant decay of the SM-Higgs h to two photons

18

 $A \to Zh$

• Search procedure in exclusive channels depending upon the number of flavor of leptons, hadronic taus, photons, jet flavors and missing energy.

- Observed and expected limits in the 2HDM for masses in the range [260-360] GeV
- α and β determine cross-section and BRs for H and A production and decays

 $\cos(\beta - \alpha) = 0$: Decoupling limit: h behaves exactly like in SM

ATLAS search for multi-Higgs sector

Single heavy neutral H decays to charged H⁺⁻ and a W.
 H⁺⁻ decaying to W and h and h to bbar pair.

One W assumed to decay
 hadronically and the other leptonically

• MultiHiggs Cascade relevant for $m_H > 800 \text{ GeV}$

• Main background contributions:

1. ttbar (~90%) 2. V+ jets

3. Multi-jets

Estimated from simulation and validated in control regions

Small. Estimated from data

Results

• **Multivariate analysis** to discriminate signal and main bkg ttbar

•**Counting experiment** with events passing the BDT output threshold

- Analysis performed for any combination of m_H and m_{H+-}
- Gain sensitivity for Very High Masses

Livia Soffi

BSM Searches - Higgs Hunting 2014

BSM Searches - Higgs Hunting 2014

Livia Soffi

lunedì 21 luglio 2014

Overview

 Heavy H resonant search performed in channels which allow full reconstruction of the decay chain

$$X \rightarrow hh \rightarrow ?$$

 Non Resonant SM Higgs pair production not expected to be observable at LHC 8 TeV

 Model independent analyses: Results interpreted in terms of Graviscalars or Radion production

- $\gamma \gamma bb$: Large BR of the H \rightarrow bbar and the low background and good resolution of the H $\rightarrow \gamma\gamma$ channel
- bbbb: More sensitive at high mass

• CMS[260-1100]GeV: Analysis performed in two ranges: $m_X < 400$ GeV and $m_X > 400$ GeV GeV

- Low mass: signal extracted from a fit to the m_{γγ} data spectrum
- <u>High mass</u>: similar procedure with a fit to the m_{γγjj}

Not possible to fit a bump in the m_{yyjj} below 400 GeV **m**yyjj has **kinematic peak ~300 GeV**

• ATLAS [260-550]GeV:

• Non resonant search:

Fit to the unbinned $m_{\gamma\gamma}$ spectrum

<u>Resonant production search:</u>
 Counting experiment due to small number of expected events

Livia Soffi

BSM Searches - Higgs Hunting 2014

- 4-tag selection: 4 b-tagged high energy jets
- Kinematics requirement on dijet system to veto ttbar events
- Elliptical cut in the plane of the leading and the $X_{HH} = \sqrt{\left(\frac{m_{jj}^1 \tilde{m}_{jj}^1}{\sigma_{m_{jj}^1}}\right)^2 + \left(\frac{m_{jj}^2 \tilde{m}_{jj}^2}{\sigma_{m_{jj}^2}}\right)^2}$ subleading dijet invariant mass
- >90% background in the signal region from multijet events + 10% ttbar

<u>Multijet</u>: m_{4j} shape and normalization from data <u>ttbar:</u> m_{4j} shape from MC and normalization from data

BSM Searches - Higgs Hunting 2014

Results

- 95% CL Upper Limits set on the cross-section times BR of the process
- Non Resonant Search assuming SM BR(hh): Exp (Obs) 1.0 (2.2) pb

INFN

X->YY CMS PAS HIG-14-006

Livia Soffi

BSM Searches - Higgs Hunting 2014

lunedì 21 luglio 2014

27

Model Independent search for local excesses in the diphoton spectrum exploiting a fit technique

- $H \to \gamma \gamma$ interesting in 2HDM in the decoupling limit
- Method developed for the SM H $\rightarrow \gamma\gamma$ channel extended to search for diphoton resonances in a wider mass range

CMS Analysis

- **High Mass** analysis performed in **four classes** according to the two photons kinematics properties to increase the search sensitivity
- Parametrized signal model through analytic function with two free parameters: m_X and Γ_X

- Background estimated fitting directly data
 assuming negligible signal
 - Sliding window fit range
 - Bias Study to validate the fit technique

ATLAS Analysis

 Search split into a categorized low-mass [65-110] GeV and a inclusive high mass [110-600] GeV analysis

• <u>Low-mass:</u> Main background from Drell-Yan production estimated from data.

Events categorized according to the **number of converted photons**

 High-mass: Sliding window fit range using analytic function

SM-Higgs production as background

Parametrized narrow signal model with mx
 parameter

Results

• No excess observed over the full mass range. 95% CL limits set on the fiducial cross-section times BR

lunedì 21 luglio 2014

• Search for BMS physics in the Higgs sector:

Directly from decays of neutral and charged Higgses

Indirectly by interpreting measured properties of the light Higgs

• Many analyses completed at ATLAS + CMS on full 8 and 7 TeV data:

No significant excess observed and various cross-section limits and exclusion regions for the parameter space of several models have been provided.

• 2015 and sqrt(s)=13 TeV will greatly enhance our sensitivity

BSM Higgses might be just around the corner...

Invisible:Search in VBF and ZH channels

- VBF Signal topology:
 - 1. Two final state quarks separated by a large rapidity gap and with high invariant mass
 - 2. Large missing energy

- 1.Z(II)H(inv): Pair of isolated leptons and High MET - Limited jet activity
- 2.Z(bbar)H(inv): B-tagged jet pair and High MET (same as Z(vv)H(bbar))

Angular separation MET-Z system

INVISIBLE:Search in vector boson fusion channel

Signal topology:

1. Two final state quarks separated by a large rapidity gap and with high invariant mass

2. Large missing energy

- Main background from V+jets estimated from control regions in data
- Signal region defined: MET > 130 GeV && m_{jj} > 1100 GeV && $\Delta\eta{>}4.2$

• Signal topology:

1.Z(II)H(inv): Pair of isolated leptons and High MET - Limited jet activity

2.Z(bbar)H(inv): B-tagged jet pair and High MET

- Dominant background from boson and diboson production w/o jets estimated from control regions.
- Signal region 1: MET > 120 GeV, $\Delta \phi(II, MET)$ >2.7, |MET-p_{T,II}|/p_{T,II}

Signal extracted with a 2-dimensional fit of $\Delta \varphi$ and m_T of the dilepton-MET system

INFN

• For the Z(bb)H(inv) a BDT technique is used to select the signal.

Livia Soffi

BSM Searches - Higgs Hunting 2014

LFV: Analysis strategy

• Mcollinear between de decay products as estimator of the Higgs mass

Exploit the kinematics of the boosted τ from H decay

$$M_H = M_{collinear} = \frac{M_{vis}}{\sqrt{x_{\tau_{vis}}}}$$

 Events divided into categories according to the number of jets in the event

Z → ττ and misidentified
 leptons from W+jets and QCD
 multi-jet from data

INFN

LFV: Mass spectra

INFN

2HDM: Background estimation

• Multilepton searches allow probing regions of parameter space inaccessible to hadronic searches.

Main reducible contributions:

1. Z+jets, W+jets with bosons decay leptonically and additional *fake* lepton

2. ttbar with W's leptonically decays

• Irreducible contributions:

1.VV+jets with >=3 real leptons

2. Drell-Yan processes with internal asymmetric conversions

• Diphoton plus lepton searches:

Main background reduced by the diphoton _____ mass cut around the SM-Higgs observed value

Estimated from data

regions

Evaluated in control

Livia Soffi

39

2HDM:Results

 \sqrt{s} = 8 TeV, L_{int} = 19.5 fb⁻¹

tŦ

WZ

ZZ

tŧW

tīZ

SM Higgs

>100

E^{miss} (GeV)

Observed

A→Zh 300 GeV

Data-driven

Bkg Uncertainties

CMS Preliminary

4-leptons+OSSF2+(TwoZ)+on-Z+no taus+at least 1 b-jet

50-100

Events

10

1

0-30

30-50

Most sensitive search channels for a Heavy Higgs search

95% CL limits on cross-section times Br

lunedì 21 luglio 2014

MultiHiggs: Event Reconstruction

bbgg: Signal Reconstruction

- Di-Higgs system reconstructed from a pair of photons and a pair of jets originating from b-quarks
- <u>Resonant signal topology:</u>
 - 1. Peak around m_H (125 GeV) in diphoton and dijet spectra
 - 2. Peak around m_x (unknown) in the 4-body spectrum

- m_x mass range: ATLAS [260-500] GeV CMS [260-1100] GeV
- Narrow resonance signal hypothesis
- <u>Dominant Background</u>: non resonant production of photons and jets (QCD)
 SM-Higgs considered as resonant background

Livia Soffi

BSM Searches - Higgs Hunting 2014

Summary on decay modes

	CMS			ATLAS			
	Dataset	Status	Results	Dataset	Status	Results	
	Favoured decay modes						
H(ZZ)	5.1 + 19.6 fb ⁻¹	<u>arXiv:1312.5353</u>	μ= 0.93	4.8 + 20.3 fb ⁻¹	ATLAS-CONF-2014-009	μ= 1.44	
H(WW)	5.1 + 19.4 fb ⁻¹	<u>arXiv:1312.1129</u>	μ= 0.72	4.8 + 20.3 fb ⁻¹	ATLAS-CONF-2014-009	μ= 1.00	
Η(γ γ)	5.1 + 19.7 fb ⁻¹	<u>arXiv:1407.0558</u>	μ= 1.14	4.8 + 20.3 fb ⁻¹	ATLAS-CONF-2014-009	μ= 1.57	
H(tau tau)	4.9 + 19.7 fb ⁻¹	<u>arXiv:1401.5041</u>	μ= 0.78	4.8 + 20.3 fb ⁻¹	ATLAS-CONF-2014-009	μ= 1.44	
V-H(bb)	5.1 + 18.9 fb ⁻¹	<u>arXiv:1310.3687</u>	μ< 1.89(0.95)	4.7 + 20.3 fb ⁻¹	ATLAS-CONF-2013-079	μ< 1. 4(1.3)	
VBF-H(bb)	19.0 fb ⁻¹	HIG-13-011	μ< 3.6(3.0)	4.7 + 13.0 fb ⁻¹	ATLAS-CONF-2012-161	μ< 1.8(1.9)	
ttH(bb)	19.5 fb ⁻¹	HIG-14-010	<u>μ< 2.9(3.3)</u>	20.3 fb ⁻¹	ATLAS-CONF-2014-011	μ< 4.1(3.4)	
		٩	Rare decay mod	des			
H(mu mu)	5.0+ 19.7 fb ⁻¹	HIG-13-007	μ< 7. 4	24.8 fb ⁻¹	<u>arXiv:1406.7663</u>	μ< 7.2	
Η(Ζ γ)	5.0+ 19.6 fb ⁻¹	<u>arXiv:1307.5515</u>	uc 10	4.5 + 20.3 fb ⁻¹	<u>arXiv:1402.3051</u>	μ< 10	
Η(γ* γ)	19.7 fb ⁻¹	HIG-14-003	μ< 10	_	_	_	
Invisible decay modes							
Z(II)-H(inv)				4.5 + 20.3 fb ⁻¹	<u>arXiv:1402.3244</u>	BR< 75(62)%	
Z(bb)-H(inv)	4.9 + 19.7 fb ⁻¹	arXiv:1404.1344	BR< 58(46)%	_	_	_	
VBF-H(in∨)			Ī	_	-	_	
Exotic decay modes							
H(tau mu)	19.7 fb ⁻¹	HIG-14-005	BR<1.57%	_	-	-	
H(long-lived)	_	_	_	20.3 fb ⁻¹	ATLAS-CONF-2014-041	UL vs proper decay	

BSM Searches - Higgs Hunting 2014

AS

lunedì 21 luglio 2014