Window on new physics via the scaling of SM effective operators

David Marzocca SISSA

J.Elias-Mirò, S. Gupta, C. Grojean, D.M. Scaling and tuning of EW and Higgs observables JHEP 1405 (2014) 019 arXiv: **1312.2928** (also arXiv: **1405.3841**)

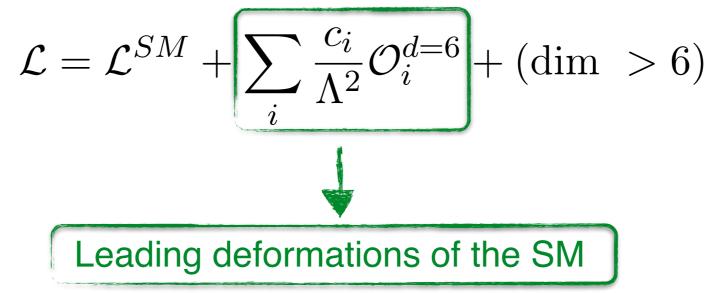
Orsay, 21/07/2014

SM effective theory

We assume $\Lambda_{NP} \gg m_h$

In this case it is possible to describe experiments at the electroweak scale using an effective field theory framework:

We assume L and B conservation



59 independent dim-6 operators for 1 family of fermions.

Grzadkowski et al. 1008.4884

SM effective theory

- (fairly) model-independent
- link EW observables (oblique param, TGC) and Higgs observables

SM effective theory

- (fairly) model-independent
- link EW observables (oblique param, TGC) and Higgs observables

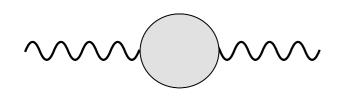
We fix a particular set of observables we are interested in, and then study only the operators which give the most relevant contribution to these observables

Technical detail 1:

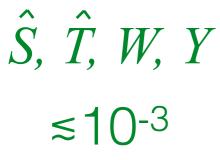
In order to have a consistent computation it is however important to specify a complete basis and carefully treat the redundant operators (e.g. those generated at one-loop need to be redefined back into the basis).

$U^{(2)_V \times U(1)_B}$ EW and Higgs observables

We focus on the following 10 (pseudo-)observables:

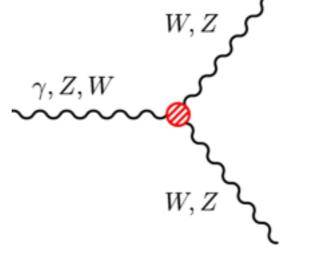


 π



Barbieri, Pomarol, Rattazzi, Strumia hep-ph/0405040

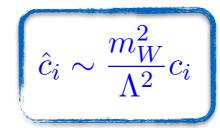
Gfitter 1209.2716



 g_I^Z , k_γ , λ_γ

≲10-2

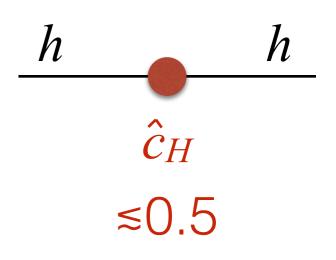
LEP EW Working Group 1302.3415



 $BR(h \rightarrow \gamma \gamma / \gamma Z)$ $\hat{c}_{\gamma\gamma}$ $\hat{c}_{\gamma Z}$ ≲10-3 ≤10-2

Pomarol, Riva 1308.2803

(bounds so strong because these are loop-generated in the SM)



David Marzocca

EW and Higgs observables

After constructing a complete basis, the relevant 10 operators contributing to those observables are:

current-current (CC) operators

(tree-level in renormalizable, minimally-coupled theories)

$$\mathcal{O}_{H} = \frac{1}{2} (\partial^{\mu} |H|^{2})^{2}$$

$$\mathcal{O}_{T} = \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^{2}$$

$$\mathcal{O}_{W} = ig \left(H^{\dagger} \tau^{a} \overset{\leftrightarrow}{D}^{\mu} H \right) D^{\nu} W^{a}_{\mu\nu}$$

$$\mathcal{O}_{B} = ig' Y_{H} \left(H^{\dagger} \overset{\leftrightarrow}{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu}$$

$$\mathcal{O}_{2W} = -\frac{1}{2} (D^{\mu} W^{a}_{\mu\nu})^{2}$$

$$\mathcal{O}_{2B} = -\frac{1}{2} (\partial^{\mu} B_{\mu\nu})^{2}$$

Non-CC operators (usually generated at loop level)

$$\mathcal{O}_{BB} = g'^2 |H|^2 B_{\mu\nu} B^{\mu\nu}$$

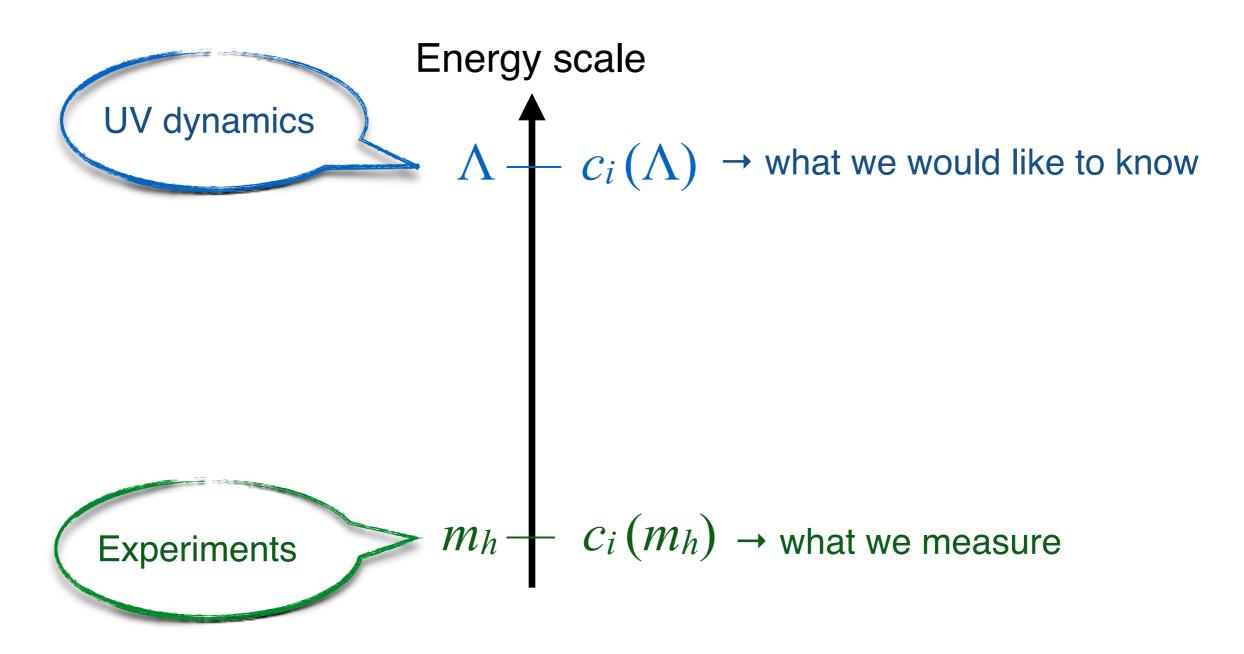
$$\mathcal{O}_{WB} = gg' H^{\dagger} \sigma^a H W^a_{\mu\nu} B^{\mu\nu}$$

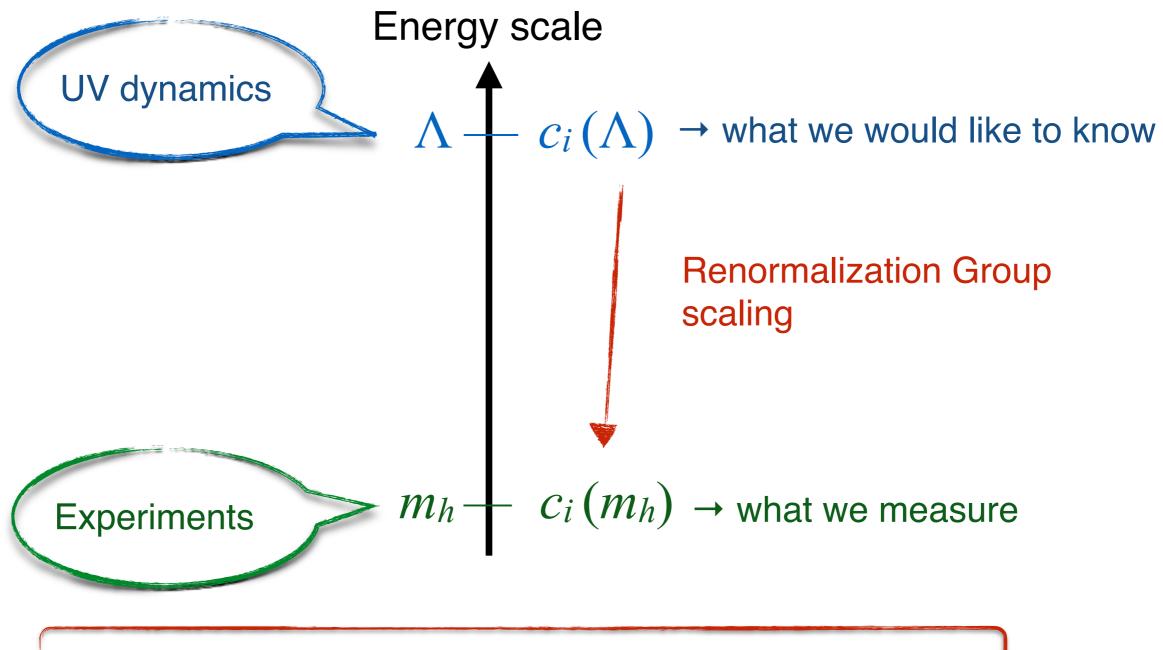
$$\mathcal{O}_{WW} = g^2 |H|^2 W^a_{\mu\nu} W^{a\mu\nu}$$

$$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a\nu}_{\mu} W^b_{\nu\rho} W^{c\,\rho\mu}$$

We "rotate" the coefficients to the "observable basis" in which

1 coefficient **4 1** observable





The coefficients mix among themselves along this RG flow.

Energy scale

$$\Lambda - C_i(\Lambda)$$
RG
scaling
$$m_h - C_i(m_h)$$

$$\delta(\text{obs})_i|_{m_h} = \hat{c}_i(m_h) = \hat{c}_i(\Lambda) \left[-\frac{1}{16\pi^2} \hat{\gamma}_{ij} \hat{c}_j(\Lambda) \log\left(\frac{\Lambda}{m_h}\right) \right]$$

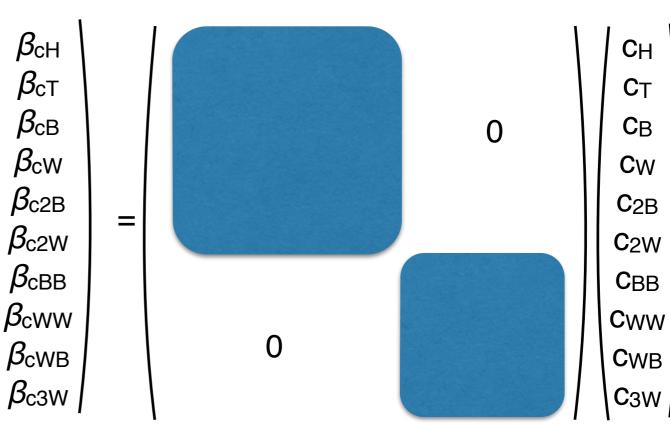
We computed the relevant anomalous dimension matrix

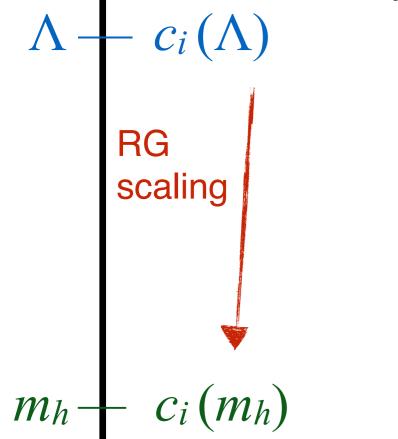
Energy scale

$$\delta(\text{obs})_i|_{m_h} = \hat{c}_i(m_h) = \hat{c}_i(\Lambda) \left[-\frac{1}{16\pi^2} \hat{\gamma}_{ij} \hat{c}_j(\Lambda) \log\left(\frac{\Lambda}{m_h}\right) \right]$$

We computed the relevant anomalous dimension matrix

Our basis is well-suited for this purpose because the relevant anomalous dimension matrix is block-diagonal:





Technical detail 2:

Energy scale

$$\delta(\text{obs})_i|_{m_h} = \hat{c}_i(m_h) = \hat{c}_i(\Lambda) \left[-\frac{1}{16\pi^2} \hat{\gamma}_{ij} \hat{c}_j(\Lambda) \log\left(\frac{\Lambda}{m_h}\right) \right]$$

We computed the relevant anomalous dimension matrix

A well known example: $\hat{S} = \hat{c}_S(m_Z) = \hat{c}_S(\Lambda) + \frac{g^2}{16\pi^2} \frac{1}{6} \hat{c}_H \log \frac{\Lambda}{m_Z} + \dots$ $\hat{T} = \hat{c}_T(m_Z) = \hat{c}_T(\Lambda) - \frac{g'^2}{16\pi^2} \frac{3}{2} \hat{c}_H \log \frac{\Lambda}{m_Z} + \dots$

```
m_h - c_i(m_h)
```

 $\Lambda - c_i(\Lambda)$ RG scaling

```
Direct bound
(from experiment)
```

Energy scale

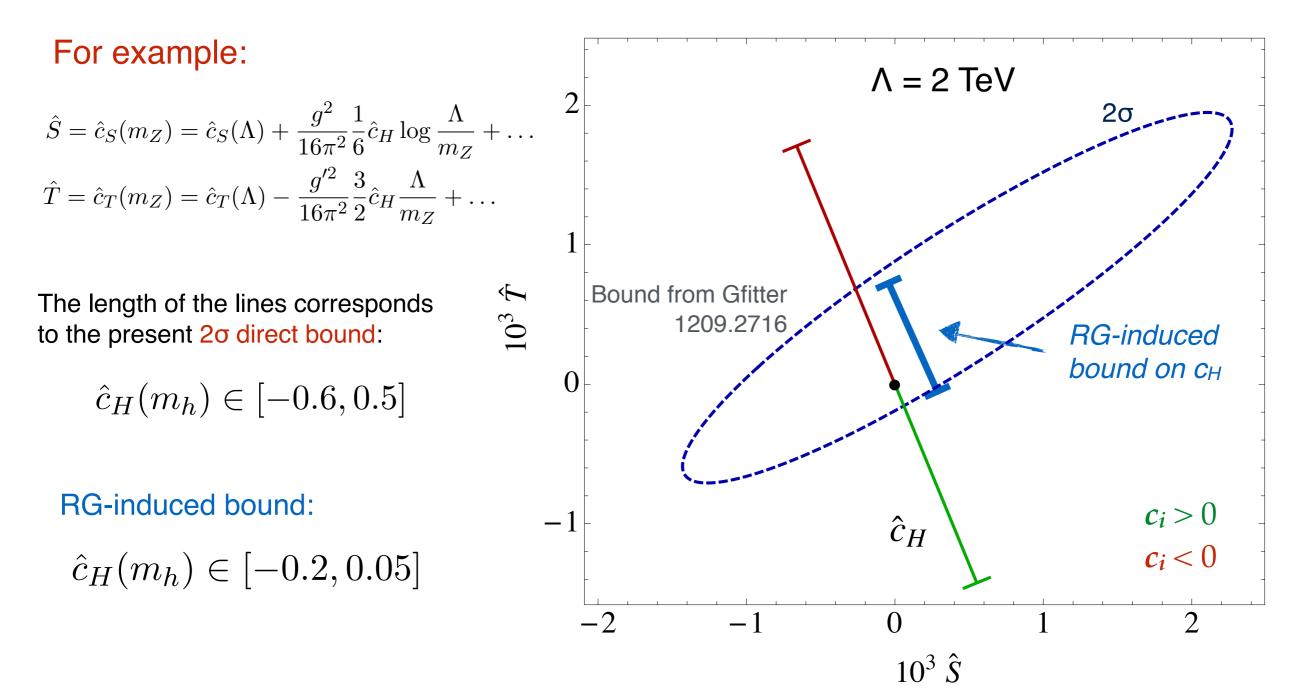
$$\delta(\text{obs})_i|_{m_h} = \hat{c}_i(m_h) = \hat{c}_i(\Lambda) \left| -\frac{1}{16\pi^2} \hat{\gamma}_{ij} \hat{c}_j(\Lambda) \log\left(\frac{\Lambda}{m_h}\right) \right|$$

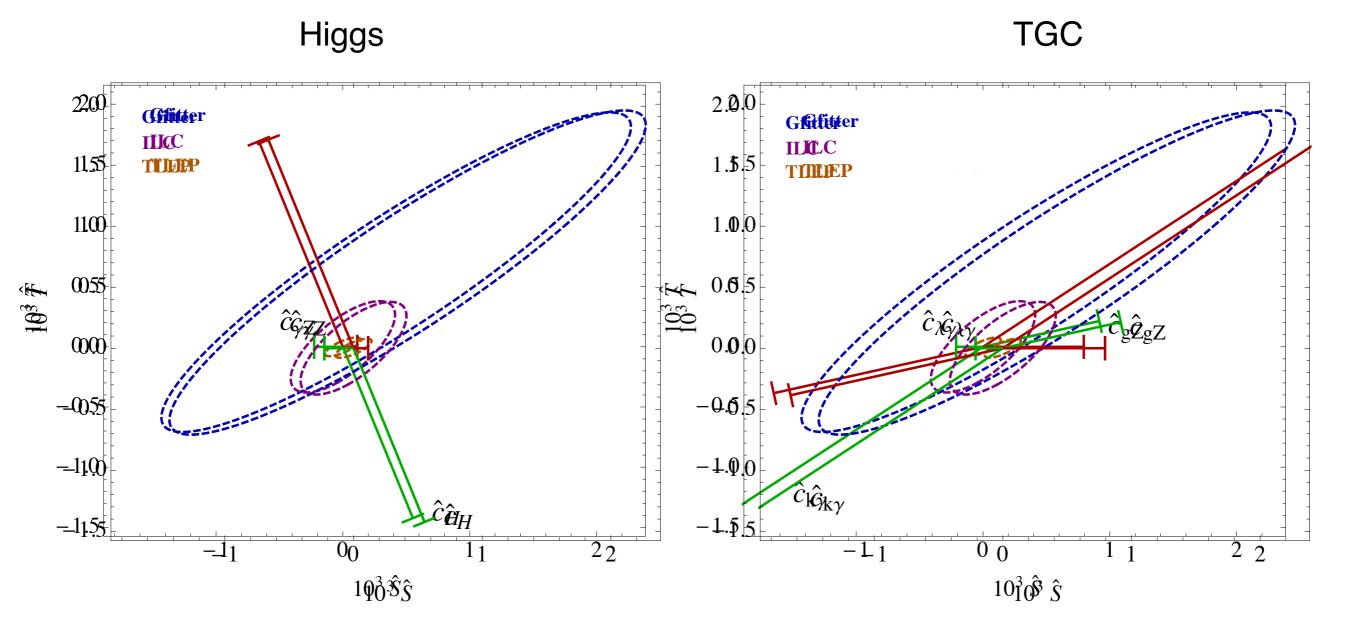
We computed the relevant anomalous dimension matrix

 $\Lambda - c_i(\Lambda)$ RG
scaling Barbieri et al. 0706.0432 A well known example: $\hat{S} = \hat{c}_S(m_Z) = \hat{c}_S(\Lambda) + \frac{g^2}{16\pi^2} \frac{1}{6} \hat{c}_H \log \frac{\Lambda}{m_Z} + \dots$ $\hat{T} = \hat{c}_T(m_Z) = \hat{c}_T(\Lambda) - \frac{g'^2}{16\pi^2} \frac{3}{2} \hat{c}_H \log \frac{\Lambda}{m_Z} + \dots$ $m_h - c_i(m_h)$ In absence of tuning or correlations **Direct bound** each term should be bounded (from experiment) approximately by the same value.

If a weakly constrained coefficient contributes to the RG of a strongly constrained one, we can put an RG-induced bound on it by assuming absence of tuning/correlations.

If a weakly constrained coefficient contributes to the RG of a strongly constrained one, we can put an RG-induced bound on it by assuming absence of tuning/correlations.



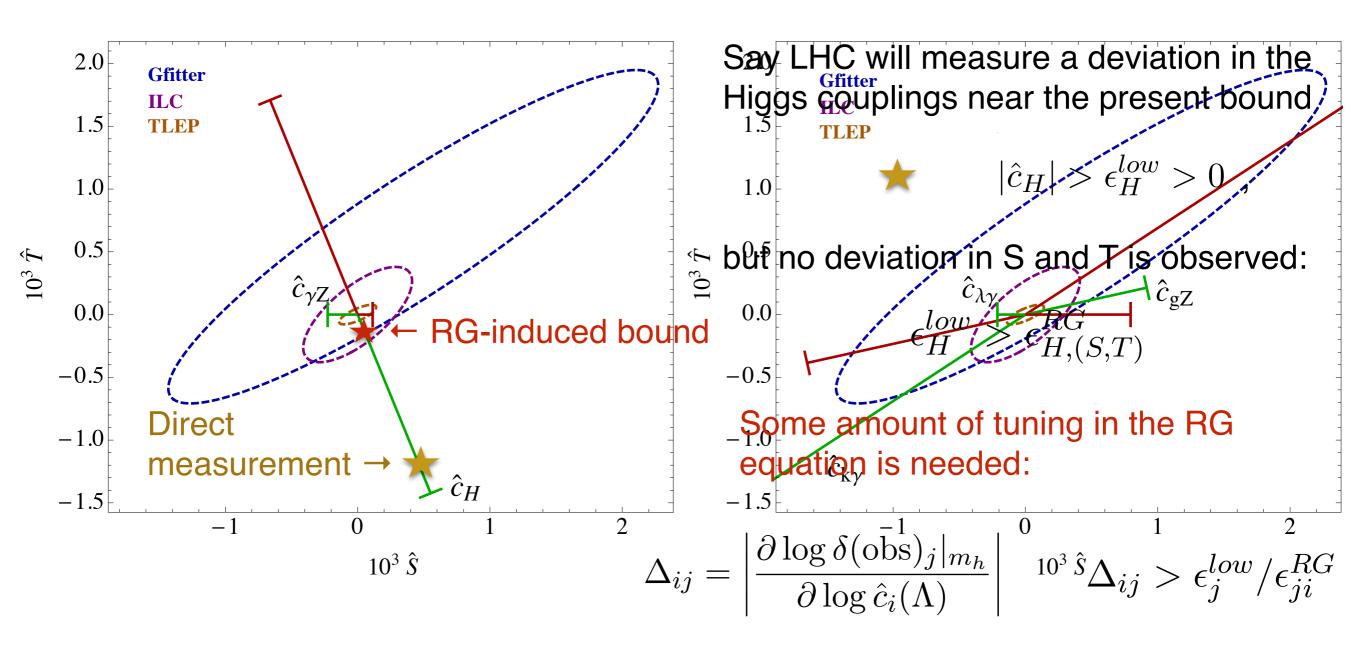


From the $h \rightarrow \gamma \gamma$ constraint:

 $\hat{c}_{\kappa\gamma} \in [-0.2, 0.3] ,$ $\hat{c}_{\lambda\gamma} \in [-0.05, 0.10]$

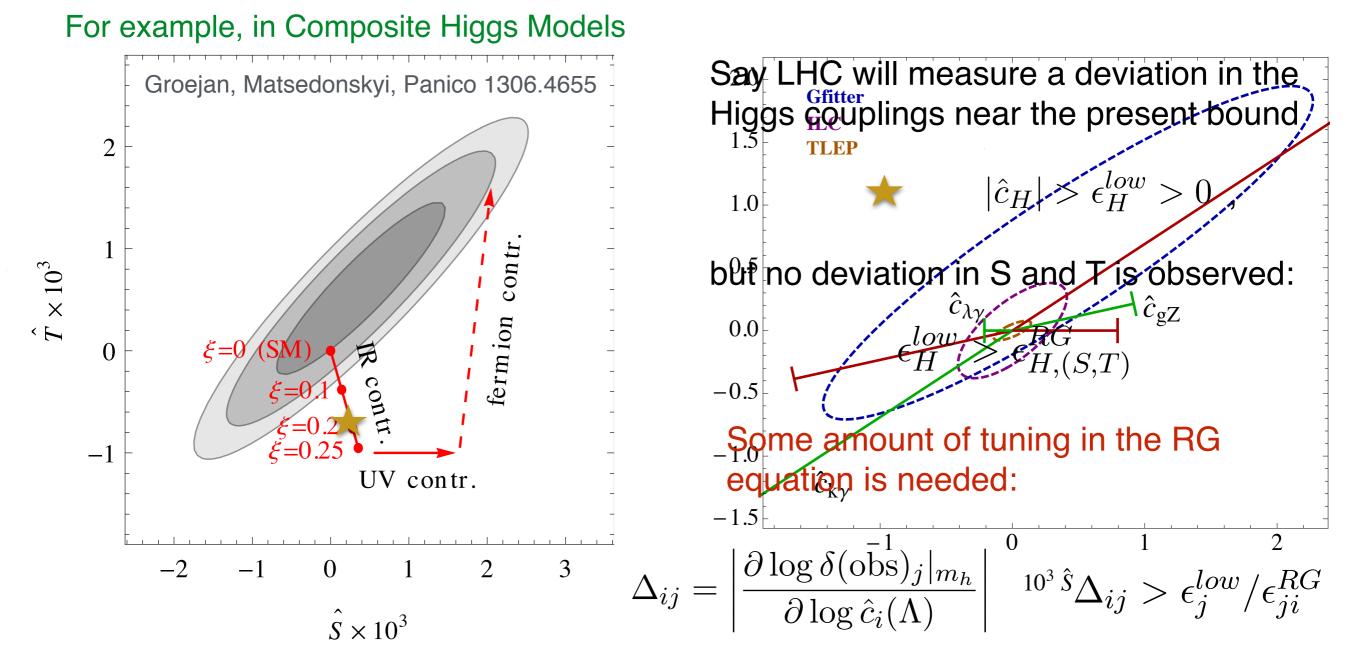
David Marzocca

Another window on NP



The necessity for such tunings (or correlations) could provide us useful information on the structure of the UV dynamics

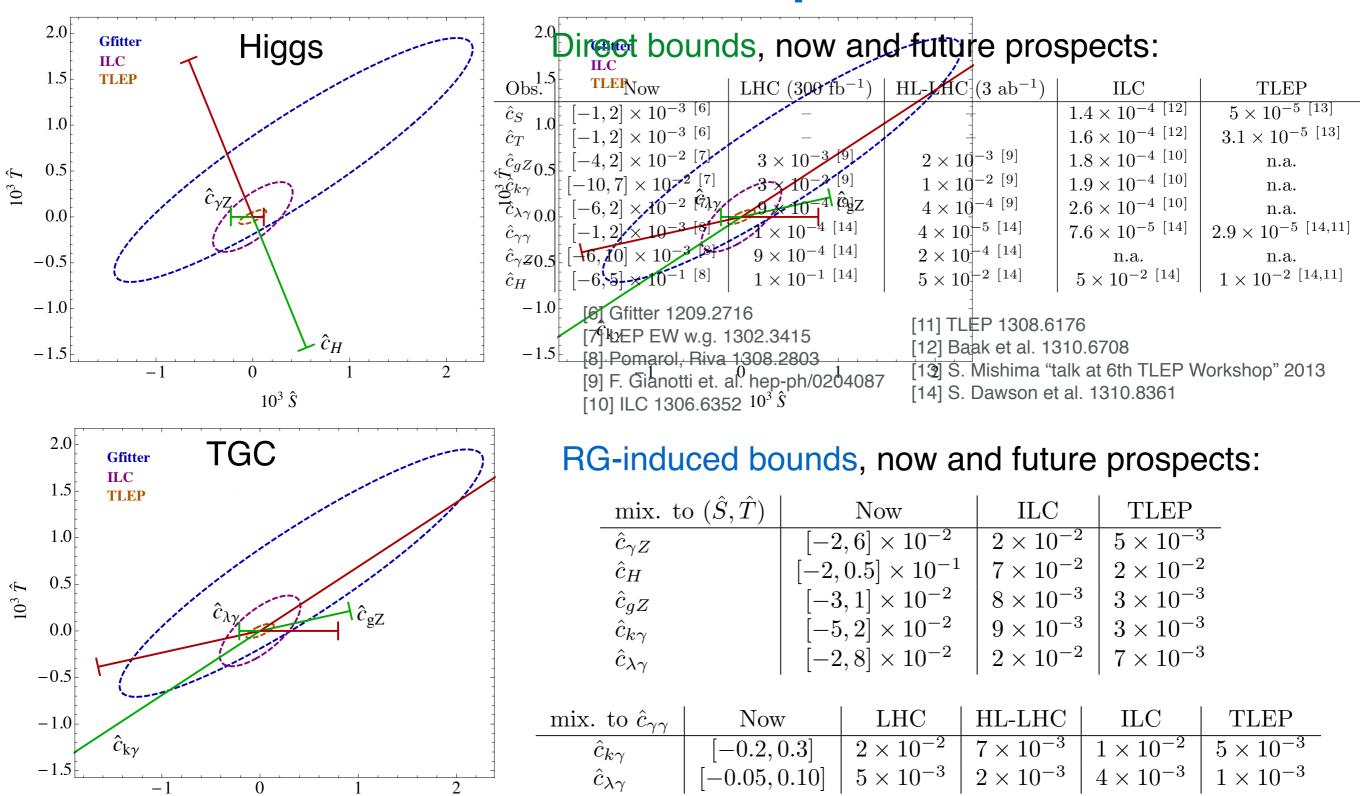
Another window on NP



The necessity for such tunings (or correlations) could provide us useful information on the structure of the UV dynamics

Future Prospects

D.M. 1405.3841



 $10^3 \hat{S}$

Summary

- Assuming that the scale of new physics $\Lambda \gg v$, we study the SM effective theory
- We focus on a set of 10 EW and Higgs observables and the most relevant operators and compute the relevant anomalous dimension matrix.
- We construct an "observable" basis, and express the RG equations in this basis.
- Assuming absence of tuning and/or correlations in the RG equations, we obtain RG-induced bounds for weakly constrained coefficients which mix to strongly constrained coefficients.
- These RG-induced bounds are already stronger or at the same order as the direct ones.
- Once a deviation from the SM is observed, a violation of the RG-induced bounds could offer a new window on the UV dynamics.

Thank you!

Scaling and tuning of EW and Higgs observables <u>1312.2928</u> J.Elias-Mirò, S. Gupta, C. Grojean, D. M. <u>1405.3841</u>

David Marzocca

Backup

"Observable" coefficients $\hat{c}_i \sim \frac{m_W^2}{\Lambda^2} c_i$

EW oblique parameters:

$$\hat{T} = \hat{c}_T(m_W) = \frac{v^2}{\Lambda^2} c_T(m_W) , \quad \hat{S} = \hat{c}_S(m_W) = \frac{m_W^2}{\Lambda^2} \left[c_W(m_W) + c_B(m_W) + 4c_{WB}(m_W) \right]$$
$$Y = \hat{c}_Y(m_W) = \frac{m_W^2}{\Lambda^2} c_{2B}(m_W) , \qquad W = \hat{c}_W(m_W) = \frac{m_W^2}{\Lambda^2} c_{2W}(m_W)$$

Anomalous triple gauge couplings:

$$\delta g_1^Z \equiv \hat{c}_{gZ}(m_W) = -\frac{m_W^2}{\Lambda^2} \frac{1}{c_{\theta_W}^2} c_W(m_W) , \qquad \delta \kappa_\gamma \equiv \hat{c}_{\kappa\gamma}(m_W) = \frac{m_W^2}{\Lambda^2} 4c_{WB}(m_W)$$
$$\lambda_Z \equiv \hat{c}_{\lambda\gamma}(m_W) = -\frac{m_W^2}{\Lambda^2} c_{3W}(m_W) ,$$

Higgs couplings:

s couplings:

$$\Delta \mathcal{L}_{H} \supset \frac{\hat{c}_{H}}{2} \frac{(\partial_{\mu}h)^{2}}{2} + \frac{\hat{c}_{\gamma\gamma}e^{2}}{m_{W}^{2}} \frac{h^{2}}{2} \hat{A}_{\mu\nu} \hat{A}^{\mu\nu} + \frac{\hat{c}_{\gamma Z}}{m_{W}^{2}} \frac{eg}{2} \hat{A}_{\mu\nu} \hat{Z}^{\mu\nu}$$

$$\hat{c}_{H}(m_{h}) = \frac{v^{2}}{\Lambda^{2}} c_{H}(m_{h}),$$

$$\hat{c}_{\gamma\gamma}(m_{h}) = \frac{m_{W}^{2}}{\Lambda^{2}} \left(c_{BB}(m_{h}) + c_{WW}(m_{h}) - c_{WB}(m_{h}) \right),$$

$$\hat{c}_{\gamma Z}(m_{h}) = \frac{m_{W}^{2}}{\Lambda^{2}} \left(2c_{\theta_{W}}^{2} c_{WW}(m_{h}) - 2s_{\theta_{W}}^{2} c_{BB}(m_{h}) - (c_{\theta_{W}}^{2} - s_{\theta_{W}}^{2})c_{WB}(m_{h}) \right)$$

David Marzocca

Beyond S, T, W, Y

To be completely general on the possible NP scenarios in electroweak precision observables from LEP1 and LEP2, in our basis one should consider two more operators:

$$\mathcal{O}_L = (iH^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H)(\bar{L}_L \gamma^{\mu} L_L) , \quad \mathcal{O}_{LL}^{1,2} = (\bar{L}_L^1 \sigma^a \gamma^{\mu} L_L^1)(\bar{L}_L^2 \sigma^a \gamma^{\mu} L_L^2)$$

The first one contributes to lepton couplings to the Z boson, the second one to the measurement of the Fermi constant.

Using observables from LEP1 (Z pole) and LEP2 it is possible to constrain the relevant 6 Wilson coefficients at the per mil level. This would require a complete fit of LEP observables, which was beyond the purpose of our work.

The order of magnitude of our RG-induced bound will not change.

Coupling	Direct Constraint	RG-induced Constraint	—> from S,T			
$\hat{c}_S(m_t)$	$[-1,2] \times 10^{-3}$	-				
$\hat{c}_T(m_t)$	$[-1,2] \times 10^{-3}$	-	Barbieri, Pomarol, Rattazzi, Strumia			
$\hat{c}_Y(m_t)$	$[-3,3] \times 10^{-3}$	-	hep-ph/0405040			
$\hat{c}_W(m_t)$	$[-2,2] \times 10^{-3}$	-	Gfitter 1209.2716			
$\hat{c}_{\gamma\gamma}(m_t)$	$[-1,2] \times 10^{-3}$	-	Pomarol, Riva 1308.2803			
$\hat{c}_{\gamma Z}(m_t)$	$[-0.6, 1] \times 10^{-2}$	$[-2, 6] \times 10^{-2}$	LED EW/ Working Group			
$\hat{c}_{\kappa\gamma}(m_t)$	$[-10,7] \times 10^{-2}$	$[-5,2] \times 10^{-2}$	LEP EW Working Group 1302.3415			
$\hat{c}_{gZ}(m_t)$	$[-4,2] \times 10^{-2}$	$[-3,1] \times 10^{-2}$				
$\hat{c}_{\lambda\gamma}(m_t)$	$[-6,2] \times 10^{-2}$	$[-2, 8] \times 10^{-2}$				
$\hat{c}_H(m_t)$	$[-6, 5] \times 10^{-1}$	$[-2, 0.5] \times 10^{-1}$				

RG mixing

In the observable basis:

 $\Lambda = 2 \text{ TeV}$

 $(\hat{c}_S, \hat{c}_T, \hat{c}_Y, \hat{c}_W, \hat{c}_{\gamma\gamma}, \hat{c}_{\gamma Z}, \hat{c}_{\kappa\gamma}, \hat{c}_{gz}, \hat{c}_{\lambda\gamma}, \hat{c}_H)^t (m_t) \simeq$

(0.9	0.003	-0.03	-0.08	-0.02	-0.02	-0.04	0.05	-0.01	0.001	$\langle \hat{c}_S(\Lambda) \rangle$
0.03	0.8	-0.02	-0.009	0	0	-0.03	0.01	0	-0.003	$\hat{c}_T(\Lambda)$
0.001	0	0.9	0	0	0	-0.001	0.001	0	0	$\hat{c}_Y(\Lambda)$
0	0	-0.001	0.8	0	0	0	-0.003	0	0	$\hat{c}_W(\Lambda)$
0	0	0	0	0.9	0	0.006	0	0.02	0	$\hat{c}_{\gamma\gamma}(\Lambda)$
0	0	0	0	0	0.9	0.007	0	0.03	0	$\hat{c}_{\gamma Z}(\Lambda)$
0	0	0	0	-0.02	-0.02	0.9	0	-0.01	0	$\hat{c}_{\kappa\gamma}(\Lambda)$
0.0004	-0.0007	-0.0004	0.1	0	0	-0.0004	0.9	0	-0.0007	$\hat{c}_{gz}(\Lambda)$
0	0	0	0	0	0	0	0	0.9	0	$\hat{c}_{\lambda\gamma}(\Lambda)$
-0.02	0.03	0.01	-0.4	0	0	0.02	-0.3	0	0.8	$\langle \hat{c}_H(\Lambda) /$