

Bounding the Higgs boson width from off-shell production and decay to $ZZ \to 4\ell$ and $ZZ \to 2\ell 2\nu$

Mykhailo Dalchenko on behalf of the CMS Collaboration

LLR, Ecole Polytechnique

21 July, 2014

Width constraints from off-shell Higgs

- Off-shell Higgs boson production is small but the *BR* to 2 real *Z* is large above 2m_Z
- Under change of width, peak yield remains constant if we scale the couplings in appropriate way

$$\sigma_{pp \to H \to ZZ} \sim rac{g_{Hgg}^2 g_{HZZ}^2}{\Gamma}$$

Off-shell Higgs yield is proportional to this scale

$$\sigma_{pp \to H \to ZZ} \sim g_{Hgg}^2 g_{HZZ}^2$$

 Interference between the signal and background is sizeable and must be accounted for

(see D. de Florian talk)

- Use $gg \rightarrow 4\ell$ (GG2VV and MCFM for $ZZ \rightarrow 4\ell$, GG2VV only for $ZZ \rightarrow 2\ell 2\nu$) and $VV \rightarrow 4\ell$, $2\ell 2\nu$ (Phantom) MC samples
- Build probability templates for signal, background and interference using $m_{4\ell}$ and a kinematic discriminant D_{gg} in case of $ZZ \rightarrow 4\ell$ $P_{\text{total}} = \mu r P_{gg \rightarrow H \rightarrow 4\ell} + \sqrt{\mu r} P_{\text{interference}} + P_{gg \rightarrow 4\ell}$ $r = \Gamma/\Gamma_{\text{SM}}, \mu$ - signal strength
- Build similar probability templates for VBF
- Build similar probability templates for signal, background and interference using m_{ll}^T in case of $ZZ \rightarrow 2\ell 2\nu$
- Perform a combined fit of the off-shell and on-shell regions

Selection settings and reconstruction are identical to PRD 89 (2014) 092007

- Two pairs of OS/SF leptons. Z_1 closest to the Z mass, Z_2 the remaining with highest sum of p_t
- $40 < m_{Z_1} < 120 {\rm GeV} \ 12 < m_{Z_2} < 120 {\rm GeV}$
- One lepton with $p_t > 20 \text{ GeV/c}$, another with $p_t > 10 \text{ GeV/c}$.
- $m_{4\ell} > 100 \text{ GeV}, m_{l^+l^-} > 4 \text{ GeV}$

- Irreducible bkg calculated from MC, qq
 annihilation from POWHEG
- Phenomenological model for the qq→ZZ shape

PLB 736 (2014) 64

ggMELA

- ggMELA discriminant was developed in the context of the PRD 89 (2014) 092007
 - High performances for separating gg→ZZ from qq→ZZ where gg→ZZ includes signal, continuum and their interference for any relative signal strength a.

Built from signal and background probabilities: $D_{gg,a} = \frac{P_{gg,a}}{P_{gg,a} + P_{q\bar{q},a}}$, where $P_{gg,a} = a \times P_{sig}^{gg} + \sqrt{a} \times P_{int}^{gg} + P_{bkg}^{gg}$ and $P_{q\bar{q},a} = P_{bkg}^{q\bar{q}}$

- Signal strength *a* must be chosen when building the discriminant.
- From preliminary studies we expected sensitivity for run 1 data to be around 10×SM, so we chose $D_{gg,10}$.

About 30% improvement when including it in the fit procedure

$2\ell 2\nu$ analysis

- 6 times higher branching ratio w.r.t. 4ℓ final state
- Use 4ℓ results in the on-shell region
- High Z + jets background (fake *E*_T^{miss} from hadronic energy mismeasurement)
- Other backgrounds:
 - Irreducible: ZZ, WZ (from MC)
 - Non-resonant: top, $\ensuremath{\mathcal{W}}\xspace$
- Analysis variable: transverse mass

$$M_T^2 = \left[\sqrt{p_{T,\ell\ell}^2 + m_{\ell\ell}^2} + \sqrt{E_{miss,T}^2 + m_{\ell\ell}^2}\right]^2 - \left[\vec{p}_{T,\ell\ell} + \vec{E}_m\right]$$

Distributions of selected events $H \rightarrow ZZ \rightarrow 2\ell 2\nu$

PLB 736 (2014) 64

signal-enriched region

$$m_T > 350 \,\,{
m GeV}$$

$$\bullet E_T^{miss} > 100 \text{ GeV}$$

		4ℓ	$2\ell 2\nu$
(a)	total gg ($\Gamma_H = \Gamma_H^{SM}$)	1.8 ± 0.3	9.6 ± 1.5
	gg signal component ($\Gamma_H = \Gamma_H^{SM}$)	1.3 ± 0.2	4.7 ± 0.6
	gg background component		10.8 ± 1.7
(b)	total gg ($\Gamma_H = 10 \times \Gamma_H^{SM}$)	9.9 ± 1.2	39.8 ± 5.2
(c)	total VBF ($\Gamma_{\rm H} = \Gamma_{\rm H}^{\rm SM}$)	0.23 ± 0.01	0.90 ± 0.05
	VBF signal component ($\Gamma_{\rm H} = \Gamma_{\rm H}^{\rm SM}$)	0.11 ± 0.01	0.32 ± 0.02
	VBF background component	0.35 ± 0.02	1.22 ± 0.07
(d)	total VBF ($\Gamma_H = 10 \times \Gamma_H^{SM}$)	$0.77\pm\!0.04$	2.40 ± 0.14
(e)	qq background	9.3±0.7	47.6 ± 4.0
(f)	other backgrounds	0.05 ± 0.02	35.1 ±4.2
(a+c+e+f)	total expected ($\Gamma_{\rm H} = \Gamma_{\rm H}^{\rm SM}$)	11.4 ± 0.8	93.2 ±6.0
(b+d+e+f)	total expected ($\Gamma_{\rm H} = 10 \times \Gamma_{\rm H}^{\rm SM}$)	20.1 ± 1.4	124.9 ± 7.8
	observed	11	91
		$\langle \langle \rangle$	

Systematic uncertainties

- $gg \rightarrow ZZ$
 - Part of cross section uncertainties cancel in the ratio between off-shell and on-shell
 - Shape uncertainties obtained varying PDFs: CT10, MSTW and NNPDF
 - Correlated shape-yield uncertainties produced varying the scales and applying corresponding K-factor

-
$$K_{bkg} = K_{sig} imes (1.0 \pm 0.1)$$

- $q\bar{q} \rightarrow ZZ$
 - QCD scale: correlate shape and yield uncertainties
 - PDFs: constant 4%
 - q ar q
 ightarrow ZZ EWK corrections (2-7%)
- Lepton efficiency for the trigger, reconstruction and selection
- Background estimation from data (mostly $2\ell 2\nu$, up to 25%)

All systematic uncertainties

correlated between the on-shell and off-shell regions affect μ but not Γ_{H} in the combined measurement

Results

Joint unbinned likelyhood fit ■ Perform fit simultaneously on-shell (4ℓ) and off-shell (4ℓ + 2ℓ2ν)

Fitted parameters: $\mu_F, \mu_V, \Gamma_H/\Gamma_H^{SM}$ ($\Gamma_H^{SM} = 4.15 \text{ MeV}$)

95% CL exclusion limit

- Observed: 22 MeV
- Expected: 33 MeV

Best fit Γ_H

- Observed: 1.8^{+7.7}_{-1.8} MeV
- Expected: 4.2^{+13.5}_{-4.2} MeV

PLB 736 (2014) 64

Conclusions

First experimental constraint on the Higgs width using $H^* \rightarrow ZZ$ events

- Γ_H < 22 MeV @95% CL
- More than 2 order of magnitude improvement w.r.t. direct on-peak measurement

Mild model dependency

- Assume essentially no new particles in the gluon fusion loop
- Assume no contribution from BSM physics in the background

Perspectives

- \blacksquare The expected tail/peak cross-sections ratio is ~ 2 times higher @13 TeV than @8 TeV
- The measurement may become limited by systematic uncertainties
- Improved determination of theory cross sections, in particular for the gg background is needed

Cross sections and events generation

Gluon fusion, $\mathrm{GG2VV}$ and MCFM

- Latest versions of generators include signal, background and interference
- Assume $m_H = 125.6$ and $\Gamma_{SM} = 4.15 \ MeV$ for generations as in PRD 89 (2014) 092007
- Set factorization and renormalization running scale of $m_{4\ell}/2$
- Apply m_{4ℓ}-dependent K-factor (NNLO/LO) for signal from G. Passarino (Eur. Phys. J. C74 (2014) 2866)
- Use K_{background} = K_{signal} assigning a 10% uncertainty on this assumption following M. Bonvini et al. (Phys. Rev. D88 (2013) 034032)

Vector boson fusion, PHANTOM

- VBF production is 7% of the total at H(125.6) peak
- Fraction of VBF increases with *m*_{4ℓ}
- Same settings, similar lineshape except second enhancement due to $t\bar{t}$ in the $gg \rightarrow H$

Eur. Phys. J. C74 (2014) 2866

 $H \rightarrow ZZ \rightarrow 4\ell$

1D distributions in the full analysis range

12 / 12

1D $m_{4\ell}$

0

20 40 60 80 100

120

 $\Gamma_{\rm H}$ (MeV)

