

Bounding the Higgs boson width from

 off-shell production and decay to $Z Z \rightarrow 4 \ell$$$
\text { and } Z Z \rightarrow 2 \ell 2 \nu
$$

Mykhailo Dalchenko
on behalf of the CMS Collaboration
LLR, Ecole Polytechnique

21 July, 2014

The Higgs boson width

The total decay width is a fundamental parameter

- Relates to the couplings to all massive particles \Rightarrow sensitive to the BSM physics
- Hard to measure: $\Gamma_{H} \simeq 4 \mathrm{MeV}$ @ $m_{H} \simeq 126 \mathrm{GeV}$

LHCXSWG

PRD 89 (2014) 092007

Direct constraints

- Current (excellent) experimental resolution is too large for direct measurements: $\sigma_{m} \sim \mathcal{O}(1) \mathrm{GeV}$
- Constraint from the resonance width in $H \rightarrow Z Z \rightarrow 4 \ell: \Gamma_{H}<3.4 \mathrm{GeV}$ @ $95 \% \mathrm{CL}$
- Constraint from the resonance width in $H \rightarrow \gamma \gamma$: $\Gamma_{H}<2.4 \mathrm{GeV}$ @ 95\% CL
(see S. Chhibra and C. Martin talks)

Width constraints from off-shell Higgs

- Off-shell Higgs boson production is small but the $B R$ to 2 real Z is large above $2 m_{Z}$
- Under change of width, peak yield remains constant if we scale the couplings in appropriate way

$$
\sigma_{p p \rightarrow H \rightarrow Z z} \sim \frac{g_{H g g}^{2} g_{H z Z}^{2}}{\Gamma}
$$

- Off-shell Higgs yield is proportional to this scale

$$
\sigma_{p p \rightarrow H \rightarrow z Z} \sim g_{H g g}^{2} g_{H z Z}^{2}
$$

- Interference between the signal and background is sizeable and must be accounted for

> (see D. de Florian talk)

CMS Analysis overview

■ Use $g g \rightarrow 4 \ell$ (GG2VV and MCFM for $Z Z \rightarrow 4 \ell, G G 2 V V$ only for $Z Z \rightarrow 2 \ell 2 \nu$) and $V V \rightarrow 4 \ell, 2 \ell 2 \nu$ (Phantom) MC samples

- Build probability templates for signal, background and interference using $m_{4 \ell}$ and a kinematic discriminant $D_{g g}$ in case of $Z Z \rightarrow 4 \ell$
$P_{\text {total }}=\mu r P_{g g \rightarrow H \rightarrow 4 \ell}+\sqrt{\mu r} P_{\text {interference }}+P_{g g \rightarrow 4 \ell}$
$r=\Gamma / \Gamma_{S M}, \mu$ - signal strength
- Build similar probability templates for VBF
- Build similar probability templates for signal, background and interference using $m_{/ /}^{T}$ in case of $Z Z \rightarrow 2 \ell 2 \nu$
- Perform a combined fit of the off-shell and on-shell regions

CMS 4ℓ analysis

Selection settings and reconstruction are identical to PRD 89 (2014) 092007

- Two pairs of OS/SF leptons. Z_{1} closest to the Z mass, Z_{2} the remaining with highest sum of p_{t}
- $40<m_{Z_{1}}<120 \mathrm{GeV} 12<m_{Z_{2}}<120 \mathrm{GeV}$
- One lepton with $p_{t}>20 \mathrm{GeV} / \mathrm{c}$, another with $p_{t}>10 \mathrm{GeV} / \mathrm{c}$.
- $m_{4 \ell}>100 \mathrm{GeV}, m_{\text {l+ }}>4 \mathrm{GeV}$

PLB 736 (2014) 64

- Reducible background (" $Z+X$ ") estimated from data in control regions with $Z_{1}+$ at least 1 loose lepton.
- Irreducible bkg calculated from MC, $q \bar{q}$ annihilation from POWHEG
- Phenomenological model for the $\mathrm{qq} \rightarrow Z Z$ shape

cms ggMELA

- ggMELA discriminant was developed in the context of the PRD 89 (2014) 092007
- High performances for separating $\mathrm{gg} \rightarrow \mathrm{ZZ}$ from $q q \rightarrow Z Z$ where $g g \rightarrow Z Z$ includes signal, continuum and their interference for any relative signal strength a.
Built from signal and background probabilities: $D_{g g, a}=\frac{P_{g g, a}}{P_{g g, a}+P_{q \bar{q}, a}}$, where $P_{g g, a}=a \times P_{\mathrm{sig}}^{g g}+\sqrt{a} \times P_{\mathrm{int}}^{g g}+P_{\mathrm{bkg}}^{g g}$ and $P_{q \bar{q}, a}=P_{\mathrm{bkg}}^{q \bar{q}}$
- Signal strength a must be chosen when building the discriminant.
- From preliminary studies we expected sensitivity for run 1 data to be around $10 \times \mathrm{SM}$, so we chose $D_{g g, 10}$.

About 30% improvement when including it in the fit procedure

Distributions of selected events
 $H \rightarrow Z Z \rightarrow 4 \ell$

PLB 736 (2014) 64

PLB 736 (2014) 64

		4ℓ	$2 \ell 2 v$
(a)	total $\mathrm{gg}\left(\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\text {SM }}\right.$)	1.8 ± 0.3	9.6 ± 1.5
	gg signal component ($\mathrm{\Gamma}_{\mathrm{H}}=\mathrm{I}_{\mathrm{H}}^{\text {SM }}$)	1.3 ± 0.2	4.7 ± 0.6
	gg background component	2.3 ± 0.4	10.8 ± 1.7
(b)	total $\mathrm{gg}\left(\mathrm{\Gamma}_{\mathrm{H}}=10 \times \mathrm{I}_{\mathrm{H}}^{\mathrm{SM}}\right)$	9.9 ± 1.2	39.8 ± 5.2
(c)	total VBF ($\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\text {SM }}$)	0.23 ± 0.01	0.90 ± 0.05
	VBF signal component ($\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\text {SM }}$)	0.11 ± 0.01	0.32 ± 0.02
	VBF background component	0.35 ± 0.02	1.22 ± 0.07
(d)	total VBF ($\mathrm{I}_{\mathrm{H}}=10 \times \Gamma_{\mathrm{H}}^{\text {SM }}$)	0.77 ± 0.04	2.40 ± 0.14
(e)	q \bar{q} background	9.3 ± 0.7	47.6 ± 4.0
(f)	other backgrounds	0.05 ± 0.02	35.1 ± 4.2
(a+c+e+f)	total expected ($\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\text {SM }}$)	11.4 ± 0.8	93.2 ± 6.0
(b+d+e+f)	total expected ($\Gamma_{\mathrm{H}}=10 \times \mathrm{I}_{\mathrm{H}}^{\text {SM }}$)	20.1 ± 1.4	124.9 ± 7.8
	observed	11	91

CMS $2 \ell 2 \nu$ analysis

- 6 times higher branching ratio w.r.t. 4ℓ final state
- Use 4ℓ results in the on-shell region
- High $Z+j e t s$ background (fake $E_{T}^{\text {miss }}$ from hadronic energy mismeasurement)
- Other backgrounds:
- Irreducible: ZZ, WZ (from MC)
- Non-resonant: top, WW
- Analysis variable: transverse mass

$$
M_{T}^{2}=\left[\sqrt{p_{T, \ell \ell}^{2}+m_{\ell \ell}^{2}}+\sqrt{E_{m i s s, T}^{2}+m_{\ell \ell}^{2}}\right]^{2}-\left[\vec{p}_{T, \ell \ell}+\vec{E}_{m i s s, T}\right]^{2}
$$

Distributions of selected events

$H \rightarrow Z Z \rightarrow 2 \ell 2 \nu$

PLB 736 (2014) 64

signal-enriched region

- $m_{T}>350 \mathrm{GeV}$
 - $E_{T}^{\text {miss }}>100 \mathrm{GeV}$

		4ℓ	$2 \ell 2 v$
(a)	total $\mathrm{gg}\left(\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\mathrm{SM}}\right)$	1.8 ± 0.3	9.6 ± 1.5
	gg signal component ($\left.\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\mathrm{SM}}\right)$	1.3 ± 0.2	4.7 ± 0.6
	gg background component	2.3 ± 0.4	10.8 ± 1.7
(b)	total $\mathrm{gg}\left(\Gamma_{\mathrm{H}}=10 \times \Gamma_{\mathrm{H}}^{\mathrm{SM}}\right)$	9.9 ± 1.2	39.8 ± 5.2
(c)	total VBF ($\left.\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\mathrm{SM}}\right)$	0.23 ± 0.01	0.90 ± 0.05
	VBF signal component ($\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\mathrm{SM}}$)	0.11 ± 0.01	0.32 ± 0.02
	VBF background component	0.35 ± 0.02	1.22 ± 0.07
(d)	total VBF ($\left.\Gamma_{\mathrm{H}}=10 \times \Gamma_{\mathrm{H}}^{\mathrm{SM}}\right)$	0.77 ± 0.04	2.40 ± 0.14
(e)	q \bar{q} background	9.3 ± 0.7	47.6 ± 4.0
(f)	other backgrounds	0.05 ± 0.02	35.1 ± 4.2
(a+c+e+f)	total expected ($\left.\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\mathrm{SM}}\right)$	11.4 ± 0.8	93.2 ± 6.0
(b+d+e+f)	total expected ($\left.\Gamma_{\mathrm{H}}=10 \times \Gamma_{\mathrm{H}}^{\mathrm{SM}}\right)$	20.1 ± 1.4	124.9 ± 7.8
	observed	11	91

Systematic uncertainties

- $\mathrm{gg} \rightarrow$ ZZ
- Part of cross section uncertainties cancel in the ratio between off-shell and on-shell
- Shape uncertainties obtained varying PDFs: CT10, MSTW and NNPDF
- Correlated shape-yield uncertainties produced varying the scales and applying corresponding K-factor
- $K_{\text {bkg }}=K_{\text {sig }} \times(1.0 \pm 0.1)$
- $q \bar{q} \rightarrow Z Z$
- QCD scale: correlate shape and yield uncertainties
- PDFs: constant 4\%
- $q \bar{q} \rightarrow$ ZZ EWK corrections (2-7\%)

■ Lepton efficiency for the trigger, reconstruction and selection

- Background estimation from data (mostly $2 \ell 2 \nu$, up to 25%)

All systematic uncertainties

correlated between the on-shell and off-shell regions affect μ but not Γ_{H} in the combined measurement

CMS
 Results

Joint unbinned likelyhood fit

- Perform fit simultaneously on-shell (4ℓ) and off-shell $(4 \ell+2 \ell 2 \nu)$
- Fitted parameters: $\mu_{F}, \mu_{V}, \Gamma_{H} / \Gamma_{H}^{S M}$ $\left(\Gamma_{H}^{S M}=4.15 \mathrm{MeV}\right)$

95\% CL exclusion limit

- Observed: 22 MeV
- Expected: 33 MeV

Best fit Γ_{H}

- Observed: $1.8_{-1.8}^{+7.7} \mathrm{MeV}$

- Expected: $4.2_{-4.2}^{+13.5} \mathrm{MeV}$

Conclusions

First experimental constraint on the Higgs width using $H^{*} \rightarrow Z Z$ events

- 「 ${ }_{H}<22 \mathrm{MeV}$ @95\% CL
- More than 2 order of magnitude improvement w.r.t. direct on-peak measurement

Mild model dependency

- Assume essentially no new particles in the gluon fusion loop
- Assume no contribution from BSM physics in the background

Perspectives

- The expected tail/peak cross-sections ratio is ~ 2 times higher @13 TeV than @ 8 TeV
- The measurement may become limited by systematic uncertainties
- Improved determination of theory cross sections, in particular for the gg background is needed

Cross sections and events generation

Eur. Phys. J. C74 (2014) 2866

Companison of $g g$ and VBF $2 \mathrm{e} 2 \mu+4 \mathrm{e}+4 \mu$ Rates (Pure H)

$$
H \rightarrow Z Z \rightarrow 4 \ell
$$

1D distributions in the full analysis range

$H \rightarrow Z Z \rightarrow 4 \ell$
ggMELA inputs, signal-enriched

CMs $H \rightarrow Z Z \rightarrow 4 \ell$ 2D templates

Signal-enriched

All analysis range

CMS
 $H \rightarrow Z Z \rightarrow 2 \ell 2 \nu$
 $m_{\ell \ell}^{T}$ and $E_{T}^{m i s s}$

≥ 1 jet

VBF-type

CMs $H \rightarrow Z Z \rightarrow 4 \ell$
 1D likelihood scans

$H \rightarrow Z Z \rightarrow 2 \ell 2 \nu$
1D likelihood scan, on-shell measurements from 4ℓ

