Evidence of the SM Higgs Boson in CMS in the Decay Channel into Tau Leptons

Higgs Hunting Workshop July 21, 2014

Armin Burgmeier (DESY) for the CMS collaboration

Karlsruhe Institute of Technology

Motivation

A Higgs boson has been found at a mass of ~125 GeV

- Signals have been seen in $H \rightarrow \gamma \gamma$ (5.6 σ), $H \rightarrow ZZ$ (6.5 σ),
 - $H \rightarrow WW (4.7\sigma)$
- Coupling to **Fermions**?
 - Fundamentally different than coupling to bosons
 - Only indirect evidence from bosonic channels
 - **Down-type** fermion couplings can be probed with $H \rightarrow \tau\tau$

CMS-PAS-HIG-14-009

Overview

High **backgrounds**, dominated by:

<u>Z</u> → ee/μμ: Shape and Normalization from fit to data in 0-jet category

<u>W + Jets:</u>

Normalized to data in high m_{T} sideband, **Shape** from Simulation

QCD Multijet:

Shape and Normalization from Same Sign data

Armin Burgmeier (DESY): SM H $\rightarrow \tau\tau$ in CMS

•

Background Estimation

W + Jets:

$$m_{\rm T} = \sqrt{2p_{\rm T}} E_{\rm T}^{\rm miss} (1 - \cos \Delta \phi)$$

pure W + Jets sideband

<u>Z → ττ:</u>

IEKP-KA/2014-09

Armin Burgmeier (DESY): SM H $\rightarrow \tau\tau$ in CMS

July 21, 2014

Event Categorization

VBF:

- Low event statistics
- High S/B

μτ_h channel

 Exploit boost of the Higgs system: Improved mass resolution

<u>0 Jets:</u>

JHEP 05 (2014) 104

- Low S/B
- Important for Constraining Nuisance Parameters

July 21, 2014

VH Associated Production

- More than 2 leptons in the event
- Easy to trigger
- Low SM Background
- But: Low cross section
- WZ/ZZ is irreducible background
 - From simulation
- Other background have misidentified leptons
 - estimated from data

 $m_{\tau\tau}$ [GeV]

Channels analyzed: Z(ee, μμ)Η(μτ_h, eτ_h, τ_hτ_h, eμ) W(ev, μν)Η(μτ_h, eτ_h, τ_hτ_h)

VH Categorization

WH semi-leptonic:

WH hadronic:

- 3 Leptons
- Dominated by WZ pair production

- 3 Leptons
- Dominated by misidentified jets

• 4 Leptons

VH Background Estimation

- Major background from misidentified leptons
- Select background-enriched region by inverting lepton ID or isolation
- Weighting with "Fake Rate" gives estimation in signal region
- Works also in 2D for backgrounds with different misidentified leptons
 - e.g. e+ μ in e μ t_h channel

Fake Rate Measurements

Fake Rate measured in well-known control regions

- For example, $Z \rightarrow \mu \mu$ events
- Fake Rate depends on many parameters
 - $p_{_{T}}$ and η of the lepton
 - Jet multiplicity
 - Hard physics process
- Major source of systematic uncertainty
 - 20-30% in most channels

VH Result

- No signal observed in VH channels
- Sensitivity dominated by statistical precision
- High sensitivity at low mass

Full Combination

Signal builds up slowly in various channels and categories

- Visualized in S/(S+B) weighted mass distribution
- CMS sees 3.2 σ evidence for the H $\rightarrow \tau\tau$ decay

Armin Burgmeier (DESY): SM H $\rightarrow \tau\tau$ in CMS

11

Conclusions

SM Higgs Results in the ττ channel have been presented

- Analysis is complex due to high backgrounds and the combination of many channels and categories
- Different analysis strategy in VH channels
- CMS sees an **excess around 125 GeV** at **3.2σ** significance!
- Evidence for coupling of Higgs boson to tau leptons!
- More on $H \rightarrow \tau \tau$ and other fermionic channels in Mauro's talk

•

Backup

July 21, 2014

Di-tau mass reconstruction

- Use di-tau mass as discriminating variable
- Undetected neutrinos lead to underestimation of the di-τ mass
- Likelihood-based method to find mass which is most compatible with:
 - Tau decay kinematics
 - Visible decay products
 - E_{T}^{miss} + uncertainty
- Mass resolution:
 - 10% to 20% (depending on final state)

14

Best Fit Signal Strength

By category:

By channel:

 Important nuisance parameters shared between channels and categories (constrained by high statistics categories in global fit)

Best fit µ = 0.79 ± 0.27

July 21, 2014

Expected Exclusion Limits

Background only:

<u>1x SM + Background:</u>

 Excess is compatible with SM Higgs boson hypothesis over wide mass range

July 21, 2014

p-value and Mass Scan

Largest observed significance (3.3σ) at m₁ = 120 GeV

Mass scan: m₁ = 122 ± 7 GeV

Armin Burgmeier (DESY): SM H $\rightarrow \tau\tau$ in CMS

17

Event Categorization

- Use full event kinematics to categorize events, based on
 - jet multiplicity
 - $\mathbf{p}_{\mathsf{T}}^{\ \mathsf{t}\mathsf{t}} = |\vec{p}_{T}(L) + \vec{p}_{T}(L') + E_{T}^{miss}|$
 - $p_{T}(\tau_{h}^{\prime} / \tau_{l}^{\prime})$
- Optimizes overall sensitivity
- Less categories in the 7 TeV data
- 58 categories in total
 - Fit for signal in all of them

		0-jet	1-jet		2-jet	
				p _T π > 100 GeV	m _{jj} > 500 GeV Δη _{jj} > 3.5	$p_T^{\pi} > 100 \; \text{GeV} \ m_{jj} > 700 \; \text{GeV} \ \Delta\eta_{jj} > 4.0$
	$p_T^{\text{th}} > 45 \text{ GeV}$	$high-p_{T}{}^{\tau h}$	$high-p_{T}^{\tau h}$	high-p _T ^{τh} boosted	loose	tight VBE tag
$\mu \tau_h$	baseline	$\text{low-}p_{T}^{\text{th}}$	low-	-p _T ^{τh}	VBF tag	(2012 only)
	p _T ^{τh} > 45 GeV	$high-p_T{}^{\tau h}$	-high-p ₁ ^{τh} -	high-p _T ^{πh} boosted	loose	tight
eτ _h	baseline	$\text{low-}p_{T}^{\text{th}}$	low-	-p _T ^{τh}	VBF tag	(2012 only)
			$E_{\mathrm{T}}^{\mathrm{miss}}$ > 30	GeV		
	р _т ^µ > 35 GeV	high-p _T µ	high-p _T µ		loose	tight VBE tog
eµ	baseline	$\text{low-}p_{\text{T}}^{\mu}$	low-p _T ^µ		VBF tag	(2012 only)
	_p _T l > 35 GeV	high-p _T I	high-p _T		2-jet	
ee, µµ	baseline	low-p _T ^I	low-p _T I			
T _h T _h 3 TeV only)	baseline		boosted	highly boosted	VBF tag	
			p _T ^{ττ} > 100 GeV	p _T ^π > 170 GeV	$p_T^{TT} > 100 \text{ GeV}$ $m_{jj} > 500 \text{ GeV}$ $ \Delta n_{ij} > 3.5$	

Categories in 8 TeV

July 21, 2014

Event Categorization at 7 TeV

		0-jet	1-jet		2-jet	
				p _T ^{ττ} > 100 GeV	m _i > 500 Ge\ Δη _i > 3.5	/
μτ _h	$p_T(\tau_h) > 45 \text{ GeV}$	$highp_T(\tau_h)$	high $p_T(\tau_h)$	high p _t (t _h) boost		/RE too
	baseline	$\text{low } p_{T}(\tau_{h})$	low $p_T(\tau_h)$		VDF tag	
eτ _h	$p_T(\tau_h) > 45 \text{ GeV}$	$high p_T(\tau_h)$	high $p_{T}(\tau_{h})$		VBF tag	
	baseline	low $p_T(\tau_h)$	low $p_T(\tau_h)$			
			$E_{\mathrm{T}}^{\mathrm{miss}}$ > 30 (GeV		
eµ	р _т (µ) > 35 GeV	high p _t (µ)	high p _T (µ)		VBF tag	
	baseline	low p _T (µ)	low p _T (µ)			
ee, µµ	p _T (l) > 35 GeV	high p _T (l)	high p _T (l)		2-iot	
	baseline	low p _T (l)	low p _T (l)			2 /01

July 21, 2014

Analysis Strategy

- Goal: Measure **coupling** of $H \rightarrow \tau \tau$ ($H \rightarrow WW$ is background)
- Final states with 2 leptons: e, μ or τ_h (More than two leptons in VH)
- Light leptons from tau decays are soft
 - Need low p_{τ} thresholds (\rightarrow cross triggers)

Channel	Offline p _T Threshold
μτ _h	$p_{_{T}}(\mu) > 20 \text{ GeV}, p_{_{T}}(\tau_{_{h}}) > 30 \text{ GeV}$
eτ _h	$p_{T}(e) > 24 \text{ GeV}, p_{T}(\tau_{h}) > 30 \text{ GeV}$
$\tau_{h}^{}\tau_{h}^{}$	$p_{T}(\tau_{h}) > 45 \text{ GeV}$
ee, eµ, µµ	p _T (I ₁) > <mark>20</mark> GeV, p _T (I ₂) > 10 GeV

- Isolated leptons to suppress e.g. QCD multijet events with jets misidentified as leptons
- M_T(I, E_T^{miss}) < 30 GeV to suppress W+Jets events

Background Rejection

Very channel specific in general

- Differentiate between
 - Irreducible backgrounds (same final state)
 - Reducible backgrounds (one or more objects misidentified)

Main backgrounds:

- $Z \rightarrow \tau \tau$
- $Z \rightarrow ee/\mu\mu$
- W + Jets
- QCD Multijet
- $-t\bar{t}$

Same Flavor Dilepton Channels

- Different analysis strategy
- No τ_h reconstruction needed
- Additional direct Z → II background
- Train two BDTs
 - BDT1: Separate $Z \rightarrow II$ from $Z/H \rightarrow \tau \tau$
 - BDT2: Separate $Z \rightarrow \tau \tau$ from $H \rightarrow \tau \tau$

 $D_{\text{cat}} = \int_{0}^{\text{BDT}_{1}} \int_{0}^{\text{BDT}_{2}} f_{\text{cat}}^{\text{sig}}(\text{BDT}_{1}', \text{BDT}_{2}') \, d\text{BDT}_{1}' \, d\text{BDT}_{2}'$

Armin Burgmeier (DESY): SM H $\rightarrow \tau\tau$ in CMS

22

Di-Tau Mass Distributions (eτ_h)

VBF:

- Low event statisticsHigh S/B
- ет_ь channel

 Exploit boost of the Higgs system: Improved mass resolution

0 Jets:

- Low S/B
- Important for Constraining Nuisance Parameters

Di-Tau Mass Distributions (eµ)

VBF:

- Low event statistics
- High S/B

eµ channel

 Exploit boost of the Higgs system: Improved mass resolution

0 Jets:

- Low S/B
- Important for Constraining Nuisance Parameters

Di-Tau Mass Distributions $(\tau_{h}\tau_{h})$

VBF:

- Low event statistics
- High S/B

τ_h channel

 Exploit boost of the Higgs system: Improved mass resolution

0 Jets:

No 0-Jet category due to trigger requirements in this channel

- Low S/B
- Important for Constraining Nuisance Parameters

Comb. BDT Distributions (mm/ee)

ee VBF:

mm VBF:

July 21, 2014

Di-Tau Mass Distributions (VH)

WH semi-leptonic:

WH hadronic:

<u>ZH:</u>

300

27

Expected Limit by Channel

HIG-13-004

- Combine all channels and categories for statistical interpretation
- 95% C.L. Frequentist
 Exclusion Limits are set
 with the CLs method
- VH channels sensitive at low masses

Only combination of channels is sensitive to SM Higgs

July 21, 2014

Expected Limit By Category

Tight VBF Category

Armin Burgmeier (DESY): SM H $\rightarrow \tau\tau$ in CMS

30

Systematics

on one slide

July 21, 2014

S/(S+B) plot with all analysis bins

Armin Burgmeier (DESY): SM H $\rightarrow \tau\tau$ in CMS

July 21, 2014

cV-cF

July 21, 2014