Search with CMS for the Higgs boson produced in association with top quarks

Francesco Micheli

INFN

on behalf of the CMS Collaboration

Why Top+Higgs?

- Direct measurement of top-Higgs coupling (Ct):
 - SM: Ct~1 special role of the top in EWSB mechanism? Why so heavy?
 - BSM: t+H present as final state of many new physics scenarios

Overview of CMS analysis

HIG-12-035 / HIG-13-	-019 7/8 TeV
< Element Method	High rate, large tt + bb background
HIG-13-020	8 TeV
	Low rate, bacgkround suppressed by leptons
CERN-PH-EP-2014-117 (HIG-13-015)	7/8 TeV
(1.1.0.1.0.0.0)	Low rate, H fully reconstructed
	HIG-12-035 / HIG-13- CERN-PH-EP-2014-117 (HIG-13-015)

- Different techniques for ttH analysis but common strategy:
 - Categorization depending on #Jets and #b-jets for best sensitivity (S/B increases requiring high number of (b-)jets)

• ttH channels combined to measure $\mu_{ttH} = \sigma_{ttH} / \sigma_{ttH}^{SM}$ HIG-14-009

ttH, H \rightarrow hadrons

H decay	tt decay	selection	#sig and sig/bkg
bb	semileptonic	1 e/µ, ≥4 jets (≥2b-jets)	#sig~90 sig/bkg~0.004
bb	dileptonic	2 e/µ, ≥3 jets (≥2b-jets)	#sig~30 sig/bkg~0.002
$ au_{ ext{h}} au_{ ext{h}}$	semileptonic	1 e/μ, 2τ, ≥4jets (1-2 b-jets)	#sig~2 sig/bkg~0.003

- MC (Madgraph) modeling of background:
 - tt+jets: reducible (tt+LF), irreducible (tt+HF)
- **BDT** to separate ttH from tt+jets:
 - Input variables related to objects kinematics and b-tag
 - Fit to BDT output to extract #sig and #bkg

ttH, $H \rightarrow bb$ with MEM

- Analytical Matrix Element Method for S/B separation:
- tt+ bb irreducible but:
 - Different diagrams means different kinematics
- Theoretical model + Experimental information = probability for ttH or ttbb hypothesis

ttH, $H \rightarrow$ leptons

2 same sign leptons ≥4 jets (≥1b-jet) <mark>3 leptons</mark> ≥2 jets (≥1b-jet)

4 leptons ≥2 jets (≥1b-jet)

• Targeting different H decays (WW, ZZ, $\tau\tau$) with >=1 lepton from tt decays

Results

2.5

ttH, H $\rightarrow \gamma\gamma$

- Limited by statistic BR(H $\rightarrow \gamma \gamma$)~2‰ BUT clear signature:
 - Two energetic photons
 - Narrow Higgs peak over continuum bkg spectrum
 → data driven background estimation
 - New: now using MVA $H \rightarrow \gamma \gamma$ photon ID
 - 2 event categories (only 1cat @7TeV):
 - Leptonic/Multijet targeting different tt decays (>=1 lepton or no leptons)

	Cuts
ttH leptonic	pT(γ 1)>m γγ /2 >=1lepton, 2jets(>=1btag)
ttH multijet	pT(γ 1)>m γγ /2 5jets(>=1btag)

•Event categories pure in ttH production:

<5% contamination from other production mechanisms

Events (window of 5 GeV around mH for 20 fb-1@8 TeV)
 Leptonic: sig (exp)~0.5 Bkg ~ 1 Data=2

Multijet: sig(exp)~0.6 Bkg ~ 3 Data =6

Combination of all ttH channels

Channel	μ ttH @ 125 GeV	[68% µttH interval]
H→bb	0.7	[-1.1,2.4]
H→thadthad	-1.3	[-4.9,7.4]
H→leptons	3.9	[2.5,5.6]
Н→үү	2.7	[1.0,5.1]
ttH combination	2.76	[1.84,3.81]

- Combining all channels:
 - Best fit value $\mu_{ttH} = \sigma/\sigma_{SM} = 2.76^{+1.05}_{-0.92}$
 - Excess above bkg-only expectations at $\sim 3 \sigma$ level
 - Compatible with SM expectation (μ =1) at 2σ level

tHq in diphoton decay channel

- → increase of $\sigma \times$ BR by a factor 34
- ttH rejection using likelihood discriminator (object kinematics)
- ZERO events observed (~1 expected for Ct=-1):
 - Can exclude 4.1 times xsec expected for Ct=-1
- New physics can play a different role in ttH and tH production

Conclusions

- µttH presents an excess:
 - $\mu_{\text{ttH}} = \sigma / \sigma_{\text{SM}} = 2.76^{+1.05}_{-0.92}$
- We can still get some information from Run1 data:
 - New result using Matrix Element for ttH, H \rightarrow bb
- No sign yet of exotic physics:
 - $tH(\rightarrow \gamma \gamma)q$ was studied, adding more decay channels
- Looking forward 13 TeV data:
 - Can achieve 10% precision on top-Higgs coupling with full Run2 data

ttH, $H \rightarrow bb$ distributions

Sapienza Università di Roma-INFN Roma I

ttH, H→bb yields

ttH semileptonic

Γ		\geq 6 jets	4 jets	5 jets	\geq 6 jets	4 jets	5 jets	\geq 6 jets
		2 b-tags	3 b-tags	3 b-tags	3 b-tags	4 b-tags	\geq 4 b-tags	\geq 4 b-tags
	ttH(125)	33.4 ± 8.1	14.0 ± 3.0	21.1 ± 4.5	23.1 ± 5.5	1.8 ± 0.5	5.2 ± 1.4	8.3 ± 2.3
	t t +lf	7650 ± 2000	4710 ± 820	2610 ± 530	1260 ± 340	74 ± 30	79 ± 34	71 ± 36
	t t +b	530 ± 300	350 ± 190	360 ± 200	280 ± 160	21 ± 12	29 ± 17	33 ± 20
	$t\overline{t} + b\overline{b}$	220 ± 120	99 ± 52	158 ± 85	200 ± 110	13.1 ± 7.3	38 ± 21	78 ± 47
	$t\bar{t} + c\bar{c}$	1710 ± 1110	440 ± 230	520 ± 290	470 ± 280	19 ± 11	32 ± 18	52 ± 31
	tīV	99 ± 27	16.2 ± 3.8	23.9 ± 5.7	28.8 ± 7.4	1.1 ± 0.4	2.5 ± 0.7	5.8 ± 1.8
	Single t	264 ± 54	235 ± 41	116 ± 22	55 ± 14	3.4 ± 1.6	10.3 ± 5.3	7.3 ± 3.1
	V+jets	160 ± 110	122 ± 95	44 ± 38	29 ± 27	2.1 ± 2.4	1.9 ± 1.7	1.2 ± 1.3
	Diboson	5.9 ± 1.6	6.3 ± 1.4	2.4 ± 0.7	1.0 ± 0.4	0.3 ± 0.2	0.1 ± 0.1	0.2 ± 0.1
	Total bkg	10630 ± 2790	5970 ± 1060	3830 ± 790	2310 ± 620	133 ± 44	193 ± 62	249 ± 90
	Data	10724	5667	3983	2426	122	219	260

ttH dileptonic

	3 jets + 2 b-tags	\geq 4 jets + 2 b-tags	\geq 3 b-tags
tt H(125)	7.7 ± 1.4	16.1 ± 3.1	11.2 ± 2.5
tt+lf	7460 ± 1060	3190 ± 680	289 ± 83
tt+b	189 ± 97	172 ± 93	149 ± 82
$t\overline{t} + b\overline{b}$	38 ± 20	58 ± 31	80 ± 44
$t\bar{t}+c\bar{c}$	480 ± 260	510 ± 300	147 ± 79
ttV	30.2 ± 6.3	54 ± 12	11.9 ± 2.9
Single t	229 ± 35	97 ± 16	17.3 ± 5.1
V+jets	350 ± 130	151 ± 66	40 ± 23
Diboson	10.4 ± 1.7	3.1 ± 0.6	0.7 ± 0.4
Total bkg	8770 ± 1250	4230 ± 850	740 ± 190
Data	9060	4616	774

111	1 1	
TT	\dashv	$\rightarrow \tau \tau$

	2 jets	3 jets	\geq 4 jets	2 jets	3 jets	\geq 4 jets
	1 b-tag	1 b-tag	1 b-tag	2 b-tags	2 b-tags	2 b-tags
tītH(125)	0.4 ± 0.1	0.6 ± 0.1	0.6 ± 0.2	0.1 ± 0.0	0.2 ± 0.1	0.4 ± 0.1
ft	225 ± 69	119 ± 38	64 ± 22	48 ± 15	38 ± 12	27.0 ± 9.1
tīV	1.1 ± 0.3	1.3 ± 0.3	1.4 ± 0.4	0.4 ± 0.1	0.6 ± 0.2	1.1 ± 0.3
Single t	11.2 ± 4.0	3.0 ± 1.4	1.1 ± 1.0	1.9 ± 1.1	0.9 ± 0.6	0.6 ± 0.7
V+jets	33 ± 17	11.7 ± 6.8	3.8 ± 2.8	1.4 ± 0.9	0.4 ± 0.3	0.5 ± 0.6
Diboson	0.9 ± 0.2	0.7 ± 0.2	0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0	0.1 ± 0.1
Total bkg	271 ± 82	135 ± 41	71 ± 24	52 ± 16	40 ± 12	29.2 ± 9.4
Data	292	171	92	41	48	35

Systematics of ttH, H→bb overview

Uncertainties of the sum of $t\bar{t}+lf$, $t\bar{t}+b$, $t\bar{t}+b$	$-b\overline{b}$, and $t\overline{t} + c\overline{c}$ eve	nts with \geq 6 jets and \geq 4 b-	tags
Source	Rate	Shape?	
QCD Scale (all $t\bar{t}+hf$)	35%	No	
QCD Scale $(t\bar{t} + b\bar{b})$	17%	No	
b-Tag bottom-flavor contamination	17%	Yes	
QCD Scale ($t\bar{t} + c\bar{c}$)	11%	No	
Jet Energy Scale	11%	Yes	Large und
b-Tag light-flavor contamination	9.6%	Yes	U
b-Tag bottom-flavor statistics (linear)	9.1%	Yes	
QCD Scale ($t\bar{t}+b$)	7.1%	No	
Madgraph Q^2 Scale (t $\overline{t} + b\overline{b}$)	6.8%	Yes	tt⊥l E· I∩v
b-Tag Charm uncertainty (quadratic)	6.7%	Yes	
Top $p_{\rm T}$ Correction	6.7%	Yes	driven cc
b-Tag bottom-flavor statistics (quadratic)	6.4%	Yes	
b-Tag light-flavor statistics (linear)	6.4%	Yes	
Madgraph Q^2 Scale (t \overline{t} + 2 partons)	4.8%	Yes	
b-Tag light-flavor statistics (quadratic)	4.8%	Yes	
Luminosity	4.4%	No	
Madgraph Q^2 Scale (t $\overline{t} + c\overline{c}$)	4.3%	Yes	
Madgraph Q^2 Scale (tt+b)	2.6%	Yes	×U
QCD Scale $(t\bar{t})$	3%	No	
pdf (<i>gg</i>)	2.6%	No	
Jet Energy Resolution	1.5%	No	TI
Lepton ID/Trigger efficiency	1.4%	No	
Pileup	1%	No	
b-Tag Charm uncertainty (linear)	0.6%	Yes	
		TIEDX	

_arge uncertainty on tt+HF: ~50%

tt+LF: lower uncertainties, datadriven corrections

BDT input variables H→bb

Waithle	Docomistion
abs $\Delta \eta$ (leptonic top, bb)	Delta-R between the leptonic top reconstructed by the best Higgs mass
(and (An anton Jac) line can	algorithm and the <i>b</i> -jet pair chosen by the algorithm
abs $\Delta\eta$ (hadronic top, bb)	Delta-R between the hadronic top reconstructed by the best Higgs mass algorithm and the <i>b</i> -iet pair chosen by the algorithm
aplanarity	Event shape variable equal to $\frac{3}{2}(\lambda_3)$, where λ_3 is the third eigenvalue of
(mar / mar / mar)	the sphericity tensor as described in [31].
ave Cov (lags/ iluit-lags) ave AR(tag,tag)	Average <i>0</i> -tag discriminant varie for <i>0</i> -tagged / 11011-0-tagged jets
best Higgs boson mass	A minimum-chi-squared fit to event kinematics is used to select two <i>b</i> -
	tagged jets as top-decay products. Of the remaining <i>b</i> -tags, the invariant mass of the two with highest F_i is carred
best $\Delta R(\mathbf{b},\mathbf{b})$	The ΔR between the two <i>b</i> -jets chosen by the best Higgs boson mass
closest tagged dijet mass	algorithm The invariant mass of the two <i>b</i> -tagged jets that are closest in ΔR
dev from ave CSV (tags)	The square of the difference between the b -tag discriminant value of a
	given <i>b</i> -tagged jets, summed over all <i>b</i> -tagged jets
highest CSV (tags)	Highest <i>b</i> -tag discriminant value among <i>b</i> -tagged jets
HT HT	Scalar sum of transverse momentum for all jets with $p_T > 30 \text{ GeV/c}$
$\sum p_T$ (jets,leptons,MET)	The sum of the p_T of all jets, leptons, and MET
$\sum p_T$ (jets,leptons)	The sum of the p_T of all jets, leptons The transverse momentum of a given jet where the jet numbers corre-
	spond to rank by p_T
lowest CSV (tags)	Lowest <i>b</i> -tag discriminant value among <i>b</i> -tagged jets
mass(lepton,closest tag)	The invariant mass of the lepton and the closest b-tagged jet in ΔR (L)
Ì	channel)
$\max \Delta \eta$ (jet, ave jet η)	max difference between jet eta and avg deta between jets
max Δη (tag, ave jet η) max Δη (tag, ave tag η)	max difference between tag eta and avg deta between jets max difference between tag eta and avg deta between tags
median inv. mass (tag pairs) M3	median invariant mass of all combinations of <i>b</i> -tag pairs. The invariant mass of the 3-iet system with the largest transverse mo-
	mentum.
MHT	Vector sum of transverse momentum for all jets with $p_T > 30 \text{ GeV/c}$
MEI min AR(lenton iet)	Missing transverse energy The AR between the lenton and the closest iet (LL channel)
HiggsLike dijet mass(2)	the invariant mass of a jet pair (at least one is <i>b</i> -tagged) ordered in close-
number of HiggsLike dijet 15	ness to a Higgs boson mass (UIL channel) number of jet pairs(at least one is <i>b</i> -tagged) whose invariant mass is
	within 15 GeV window of a Higgs boson mass (DIL channel)
min ∆K(tag,tag) min ∆R(jet,jet)	The ΔR between the two closest <i>b</i> -tagged jets The ΔR between the two closest jets
$\sqrt{\Delta\eta(t^{lep}, bb) \times \Delta\eta(t^{had}, bb)}$	square root of the product of abs $\Delta\eta$ (leptonic top, bb) and abs $\Delta\eta$
	(hadronic top, bb)
second-highest CSV (tags)	Second-highest <i>b</i> -tag discriminant value among <i>b</i> -tagged jets Event share variable equal to $\frac{3}{2}(\lambda_{0} \pm \lambda_{0})$ where λ_{0} and λ_{0} are the sec.
printing	ond and third eigenvalues of the sphericity tensor as described in [31]
$(\Sigma \text{ jet } p_T)/(\Sigma \text{ jet E})$	The ratio of the sum of the transverse momentum of all jets and the sum
tagged dijet mass closest to 125	or the energy of all jets The invariant mass of the <i>h</i> -tagged nair closest to 125 GeV / c^2
tibb/tiH BDT	BDT used to discriminate between $t\bar{t}b\bar{b}$ and $t\bar{t}H$ in the LJ ≥ 6 jets, \geq
	4 tags, ≥ 6 jets + 3 tags, and 5 jets + ≥ 4 tags categories. See text for description and table 15 for list of wariables
	uescription and to not use of variables.

ttH, $H \rightarrow \mu\mu$ excess

CERN 20/03/14

C. Botta (CERN) Event kinematics

The **kinematic of the leptons** in the events does not show anomalies and is compatible with that of signal or ttV events

- Jets and E_T^{miss} are more compatible with signal or ttV.
- The multeplicity of b-tags is also signal-like (while the reducible background has more often only 1 b-tag since the other b-jet is misidentified as a lepton)

ttH, $H \rightarrow \mu\mu$ excess

C. Botta (CERN)

- The events in excess are characterized by having both leptons very well isolated.
- Scrutiny of the events also confirms that both leptons are well reconstructed in the tracker and muon system, and that their charge is correctly assigned
- The analysis was also repeated using a looser working point of the lepton MVA
 - the excess is visible only when both leptons pass the tight MVA wp
 - the rest of the sample is well described by the background model
- The analysis was also repeated with a cut-based muon selection. The result is compatible with the nominal one but the sensitivity is worse

ttH, $H \rightarrow \mu\mu$ excess

C. Botta (CERN)

- leaving unconstrained the yields of ttW, ttZ, and reducible background (for fake e, μ separately)
- including additional control regions in the fit: trilepton events with one Z candidate (mostly ttZ), and dilepton events with 3 jets (ttW & red. bkg.)
- Results compatible with the nominal ones (but ~20% worse sensitivity)
- All backgrounds yields remain within 1σ from their input value: no indication of issues with ttW & ttZ
 - results for ttH and ttW are correlated, all the others are well resolved

	,	
parameter	expected	observed
$\mu(ttH)$	$1.0^{-1.3}_{+1.5}$	$2.8^{-1.6}_{+1.8}$
$\mu(\text{ttW})$	$1.0^{-0.5}_{+0.5}$	$1.4^{-0.5}_{+0.6}$
$\mu(ttZ)$	$1.0^{-0.3}_{+0.4}$	$1.1_{\pm 0.4}^{-0.3}$
μ (fake μ)	$1.0^{-0.3}_{+0.3}$	$0.7^{-0.3}_{+0.4}$
μ (fake e)	$1.0^{-0.3}_{+0.3}$	$0.9\substack{-0.3 \\ +0.3}$

33

CMS ttH Analysis Comparison to ATLAS

- For the ttH, H->bb analysis in the lepton+jets channel, the ATLAS limits are better than the baseline CMS analysis:
 - \diamond CMS baseline expected limit = 4.8, observed = 5.0
 - \Rightarrow ATLAS expected limit = 3.1, observed = 4.2
- Several differences between the two approaches, some large, some small.
- Most prominently, ATLAS analysis has...
 - ♦ Increased signal and background acceptance due to object definitions and selections
 - Different background composition in selected events due to different b-tag performance
 - ♦ Incorporated additional background-rich categories
 - ♦ Employed more accurate NLO modeling for ttH signal
- CMS has studied the effects which are immediately available to incorporate:

 - - ♦ In fully-blinded assessment, these changes would not have been significant for the CMS baseline analysis, small % improvement
 - ♦ NLO signal model shows higher acceptance in most sensitive categories
- Overall, no single aspect of the analysis differences cause the difference in performance
 - ✤ No simple explanation a collection of analysis optimizations

John Wood – jgw2kb@virginia.edu – University of Virginia

Thursday, July 3, 14

CMS ttH Analysis Comparison to ATLAS

- Details on the differences:
 - ♦ Object definition/selection:
 - o Leptons:
 - $\circ~$ ATLAS: pT>25, $|\eta|$ < 2.5 for e and μ
 - CMS: pT>30, $|\eta| < 2.5$ (2.1) for e (μ)
 - o Jets:
 - $\circ~$ ATLAS: pT>25, $|\eta|$ < 2.5, cone of 0.4
 - \circ CMS: pT > 40,40,40,30, $|\eta| < 2.4$, cone of 0.5
 - \circ b-tagging:
 - ATLAS has ~50% lower mistag rate at equivalent b-jet efficiency
 - \diamond Event Categorization
 - ATLAS includes background-dominated 4jet,2tag and 5jet,2tag categories, using a one-dimensional signal discriminant (H_τ)
 - ♦ Signal Discriminant:
 - ♦ ATLAS uses ANN, CMS uses BDT (do not expect one to be superior if well trained)
 - \diamond MC generators:
 - ♦ ttH signal: ATLAS uses NLO HELAC+OneLoop+Powheg, CMS uses LO Pythia
 - tt+jets: ATLAS uses POWHEG for ttbar plus 1 additional parton, CMS uses MadGraph for ttbar with up to 3 additional partons

 \diamond Luminosity:

 \diamond ATLAS has ~5% more luminosity than CMS

John Wood – jgw2kb@virginia.edu – University of Virginia

Thursday, July 3, 14

