# Flogs Flunting 2014

Results and prospects in the electroweak symmetry breaking sector

# July 21-23, 2014, Orsay-France www.biggshunting.fr

# **Higgs Production** Theory



HEP

# **Daniel de Florian** Dpto. de Física - FCEyN- UBA

Argentina

**Higgs Production (Theory)** 

Daniel de Florian







# BEH Boson ICHEP'14





# BEH Boson ICHEP'14







BEH Boson ICHEP'14

# **BEGHHK Boson**







BEH Boson ICHEP'14

# **BEGHHK Boson**



"The" scalar Boson of the Standard Model responsible for ElectroWeak symmetry breaking





BEH Boson ICHEP'14

# **BEGHHK Boson**



"The" scalar Boson of the Standard Model responsible for ElectroWeak symmetry breaking



# Outline

Latest results on Higgs boson production

- ✓ ggF at N<sup>3</sup>LO
- ✓ Uncertainties
- ✓ H + jet
- ✓ (N)NLOPS
- ✓ Interferences and Higgs width
- ✓ Higgs pair production at NNLO



### **Higgs at Hadronic Colliders**



#### Need precision for both PDFs and partonic cross sections



#### **Production Channels at the LHC**



---- H

associated production with W,Z



HEP

• H



 Gluon-gluon fusion dominates due to large gluon luminosity

#### **Production Channels at the LHC**



#### Uncertainties @ LHC 14 TeV

|     | тн     | PDF4LHC | QCD    | EW |
|-----|--------|---------|--------|----|
| ggF | 8%     | 7%      | > 100% | 5% |
| VBF | ١%     | 3%      | 5%     | 5% |
| WF  | ١%     | 3%      | 25%    | 7% |
| ZH  | 4%     | 4%      | 30%    | 5% |
| ttH | ttH 9% | 9%      | 5%     | ?  |







associated production with W,Z



HEP

associated production with heavy quarks

Higgs Production (Theory)

Daniel de Florian

NNLO

Harlander, Kilgore (2002) Anastasiou, Melnikov (2002) Ravindran, Smith, van Neerven (2003)

- NNLL Resummation (9% at 7 TeV) Catani, deF., Grazzini, Nason (2003)
- Two loop EW corrections not negligible ~ 5%
   Aglietti, Bonciani, Degrassi, Vicini (2004)
   Degrassi, Maltoni (2004)
   Actis, Passarino, Sturm, Uccirati (2008)
   Djouadi, Gambino (1994)
- Mixed EW-QCD effects evaluated in EFT approach Anastasiou et al (2008)
- + Mass effects, Line-shape, interferences, ...
   Goria, Passarino, Rosco (2012)
   Higgs Cross-Section WG

scale  $pdf + \alpha_s$  $\sigma(m_H = 125 \, GeV) = 19.27^{+7.2\%}_{-7.8\%} + 7.5\%_{-6.9\%} \, pb$  deF, Grazzini













$$\begin{split} c^{(3)}_{gg}(z) &\simeq \delta(1-z) \, 1124.308887 \dots \qquad (\to 5.1\%) \\ &+ \left[ \frac{1}{1-z} \right]_{+} 1466.478272 \dots \qquad (\to -5.85\%) \\ &- \left[ \frac{\log(1-z)}{1-z} \right]_{+} 6062.086738 \dots \qquad (\to -22.88\%) \\ &+ \left[ \frac{\log^2(1-z)}{1-z} \right]_{+} 7116.015302 \dots \qquad (\to -52.45\%) \\ &- \left[ \frac{\log^3(1-z)}{1-z} \right]_{+} 1824.362531 \dots \qquad (\to -39.90\%) \\ &- \left[ \frac{\log^4(1-z)}{1-z} \right]_{+} 230 \qquad (\to 20.01\%) \\ &+ \left[ \frac{\log^5(1-z)}{1-z} \right]_{+} 216 \dots \qquad (\to 93.72\%) \end{split}$$

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger (2014) Cross section depends on one variable  $z = \frac{M_H^2}{s}$ < 1 - z > not the most appropriate measure of distance to threshold Affected by factorially-growing subleading terms (kinematic mistreat of energy conservation)





$$\begin{split} c^{(3)}_{gg}(z) &\simeq \delta(1-z) \, 1124.308887 \dots & (\to 5.1\%) \\ &+ \left[ \frac{1}{1-z} \right]_{+}^{} 1466.478272 \dots & (\to -5.85\%) \\ &- \left[ \frac{\log(1-z)}{1-z} \right]_{+}^{} 6062.086738 \dots & (\to -22.88\%) \\ &+ \left[ \frac{\log^2(1-z)}{1-z} \right]_{+}^{} 7116.015302 \dots & (\to -52.45\%) \\ &- \left[ \frac{\log^3(1-z)}{1-z} \right]_{+}^{} 1824.362531 \dots & (\to -39.90\%) \\ &- \left[ \frac{\log^4(1-z)}{1-z} \right]_{+}^{} 230 & (\to 20.01\%) \\ &+ \left[ \frac{\log^5(1-z)}{1-z} \right]_{+}^{} 216 \dots & (\to 93.72\%) \end{split}$$

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger (2014) Cross section depends on one variable  $z = \frac{M_H^2}{s}$ < 1 - z > not the most appropriate measure of distance to threshold

Affected by factorially-growing subleading terms (kinematic mistreat of energy conservation)

Natural space for threshold effects : Mellin 
$$z \to 1$$
  $\longrightarrow N \to \infty$   
 $c_{ab}(N) = \int_0^1 dz \ z^{N-1} \ c_{ab}(z)$   $\left[\frac{1}{1-z}\right]_+ \to -\ln N - \gamma_E + \mathcal{O}\left(\frac{1}{N}\right)$ 





$$\begin{split} c^{(3)}_{gg}(z) &\simeq \delta(1-z) \, 1124.308887 \dots \qquad (\to 5.1\%) \\ &+ \left[\frac{1}{1-z}\right]_{+} 1466.478272 \dots \qquad (\to -5.85\%) \\ &- \left[\frac{\log(1-z)}{1-z}\right]_{+} 6062.086738 \dots \qquad (\to -22.88\%) \\ &+ \left[\frac{\log^2(1-z)}{1-z}\right]_{+} 7116.015302 \dots \qquad (\to -52.45\%) \\ &- \left[\frac{\log^3(1-z)}{1-z}\right]_{+} 1824.362531 \dots \qquad (\to -39.90\%) \\ &- \left[\frac{\log^4(1-z)}{1-z}\right]_{+} 230 \qquad \qquad (\to 20.01\%) \\ &+ \left[\frac{\log^5(1-z)}{1-z}\right]_{+} 216. \qquad (\to 93.72\%) \end{split}$$

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger (2014) Cross section depends on one variable  $z = \frac{M_H^2}{s}$ < 1 - z > not the most appropriate measure of distance to threshold

Affected by factorially-growing subleading terms (kinematic mistreat of energy conservation)

Natural space for threshold effects : Mellin  $z \to 1$   $\longrightarrow N \to \infty$  $c_{ab}(N) = \int_0^1 dz \ z^{N-1} \ c_{ab}(z)$   $\left[\frac{1}{1-z}\right]_+ \to -\ln N - \gamma_E + \mathcal{O}\left(\frac{1}{N}\right)$ 

 $c_{gg}^{(3)}(N) = 36 \ln^6 N + 170.7 \ln^5 N + 744.8 \ln^4 N + 1405.2 \ln^3 N + 2676 \ln^2 N + 1897 \ln N + 1783.7$ 

- all coefficients positive
- automatically impose energy conservation
- better phenomenological approx. at NLO and NNLO



•Soft Virtual + sub-leading terms

 $\ln^k N, \quad \frac{\ln^k N}{N}$ 

#### Provides very good approximation for full result at NLO and NNLO



Use differences between SV and SV+sI to estimate error in approx.

deF, Mazzitelli, Moch, Vogt (2014)



#### N<sup>3</sup>LO approximation deF, Mazzitelli, Moch, Vogt (2014) 12



SV+ sub-leading terms computed with physical kernel  $\begin{bmatrix} qd \\ otimes \\ otimes \\ otimes \\ N \end{bmatrix} = \begin{bmatrix} 1 \\ N \\ 0 \\ N \end{bmatrix}$ 

k=5,4,3 computed 2, 1,0 estimated

Correction ~within the expectation from scale dependence at NNLO



7

0-13% 
$$\mu=M_H$$
  
2-6%  $\mu=M_H/2$  ~ resumn

ned NNLL



#### <sup>12</sup> **N<sup>3</sup>LO approximation** deF, Mazzitelli, Moch, Vogt (2014)







#### **Improved Soft approximation**

Ball, Bonvini, Forte, Marzani, Ridolfi (2012)

•improved by analyticity

$$\ln^k N \to (\psi(N) + \gamma_E)^k$$

# •and high energy asymptotic behavior (small N)

$$C_{\text{h.e.}}(N,\alpha_s) = \sum_{n=1}^{\infty} c_n(m_t, m_H, \mu_F) \left(\frac{\alpha_s}{N-1}\right)^n + O\left(\alpha_s \left(\frac{\alpha_s}{N-1}\right)^n\right)\right)$$



~10-15% at 14 TeV

Core of both approximations is Soft-Virtual (TH agreement) Differences in Sub-leading logs (only log<sup>5</sup> correct)



- ✓ Full N<sup>3</sup>LO on the way (more terms in threshold expansion first)
- ✓ 4-5% accuracy calls for attention to other corrections
  - •To be improved by resummation, EW, etc
  - •(Bottom) mass effects in distributions (and inclusive at NNLO?)



#### Need matching precision in non-perturbative component!



#### **PDFs**

- Several groups provide pdf fits + uncertainties
- Differ by: data input, TH/bias, HQ treatment, coupling, etc
- Deviations larger than uncertainties :"global" vs "non-global"

| set          | H.O. | data                        | $\alpha_s(M_Z)$ @NNLO | uncertainty                      | HQ                    |
|--------------|------|-----------------------------|-----------------------|----------------------------------|-----------------------|
| MSTW<br>2008 | NNLO | DIS+DY+Jets                 | 0.1171                | Hessian (dynamical<br>tolerance) | GM-VFN<br>(ACOT+TR')  |
| CTI0         | NNLO | DIS+DY+Jets                 | 0.118                 | Hessian (dynamical<br>tolerance) | GM-VFN<br>(SACOT-X)   |
| NNPDF        | NNLO | DIS+DY+Jets<br>+LHC         | 0.1174                | Monte Carlo                      | GM-VFN<br>(FONLL)     |
| ABM          | NNLO | DIS+DY(f.t.)<br>+DY-tT(LHC) | 0.1132                | Hessian                          | FFN<br>BMSN           |
| (G)JR        | NNLO | DIS+DY(f.t.)+<br>some jet   | 0.1124                | Hessian                          | FFN<br>(VFN massless) |
| HERA<br>PDF  | NNLO | only DIS HERA               | 0.1176                | Hessian                          | GM-VFN<br>(ACOT+TR')  |



#### **PDFs**

- Several groups provide pdf fits + uncertainties
- Differ by: data input, TH/bias, HQ treatment, coupling, etc
- Deviations larger than uncertainties :"global" vs "non-global"

| set          | H.O. | data                        | $\alpha_s(M_Z)$ @NNLO | uncertainty                      | HQ                    |
|--------------|------|-----------------------------|-----------------------|----------------------------------|-----------------------|
| MSTW<br>2008 | NNLO | DIS+DY+Jets                 | 0.1171                | Hessian (dynamical<br>tolerance) | GM-VFN<br>(ACOT+TR')  |
| CTI0         | NNLO | DIS+DY+Jets                 | 0.118                 | Hessian (dynamical<br>tolerance) | GM-VFN<br>(SACOT-X)   |
| NNPDF        | NNLO | DIS+DY+Jets<br>+LHC         | 0.1174                | Monte Carlo                      | GM-VFN<br>(FONLL)     |
| ABM          | NNLO | DIS+DY(f.t.)<br>+DY-tT(LHC) | 0.1132                | Hessian                          | FFN<br>BMSN           |
| (G)JR        | NNLO | DIS+DY(f.t.)+<br>some jet   | 0.1124                | Hessian                          | FFN<br>(VFN massless) |
| HERA<br>PDF  | NNLO | only DIS HERA               | 0.1176                | Hessian                          | GM-VFN<br>(ACOT+TR')  |



up to 5% ! >15% in Higgs cross section

Daniel de Florian









## **F4LHC recommendation**

<sup>\_\_</sup>2& CT & NNPDF (68%cl)

 $\Delta \alpha_s(M_Z) = \pm 0.0012$ 

Signal strength (μ) **ΓΙΟ ΟΙSCOVELY/ΙΑCK OF discovery** 

- $2 (stat) \pm 0.10 (th) \pm 0.09 (syst)$ 
  - But.... not enough for RUN 2?... Need to match perturbative accuracy
    - •Some sets out of the recommendation



Increased uncertainty due to different central values





## **F4LHC recommendation**

<sup>\_\_</sup>2& CT & NNPDF (68%cl)

 $\Delta \alpha_s(M_Z) = \pm 0.0012$ 

Signal strength (μ) **ΓΙΟ UISCOVELY/JACK OF discovery** 

- $2 (stat) \stackrel{i}{\pm} 0.10 (th) \stackrel{i}{\pm} 0.09 (syst)$ 
  - But.... not enough for RUN 2?... Need to match perturbative accuracy
    - •Some sets out of the recommendation



- Increased uncertainty due to different central values
- Precise LHC data needed for validation & improvement

Jets might no be enough? (NNLO on the way) Transverse momentum of V (qg) (NNLO needed) Find the origin of differences between sets!!!

will take some time...



# **More exclusive**





Higgs Production (Theory)

Daniel de Florian



HER

# $pp \rightarrow H + \text{jet}$

•gg channel : agrees with previous calculation (2 NNLO calculations!)

•Differential : Rapidity and transverse momentum

Higgs Production (Theory)



Daniel de Florian

M. Jaquier (LoopFest 2014)

### **Merging NLO with Parton Showers**

- Resummation to NLL accuracy + realistic final states
- Carry (N)NLO precision to all aspects of experimental analysis

talk by S. Frixione



•Can not reach NNLL but good overall agreement with HqT



**NEW** UN<sup>2</sup>LOPS (Higgs)





•Implement NNLO with  $q_T$  subtraction in SHERPA



Excellent agreement with HNNLO
Very good agreement with HqT (still not NNLL)



Ratio to NNLC

1.7

0.9



## **VH production**

#### Fully differential NNLO calculation for VH including NLO H→bb and V→II decays with spin correlations



#### LHCI4 fat-jet analysis

#### HVNNLO

Ferrera, Grazzini, Tramontano (2013,2014) WH ZH

# NLO decay effects relevant but well accounted by MC NNLO corrections at 14 TeV sizable (~16% due to jet veto) beyond MC@NLO uncertainties

| $\sigma$ (fb) | NLO (with LO dec.)     | NLO (full)             | NNLO (with NLO dec.) | MC@NLO               |
|---------------|------------------------|------------------------|----------------------|----------------------|
| w/o jet veto  | $2.54^{+1\%}_{-1\%}$   | $2.63^{+1\%}_{-1\%}$   | $2.52^{+2\%}_{-2\%}$ | $2.82^{+1\%}_{-1\%}$ |
| w jet veto    | $1.22^{+11\%}_{-14\%}$ | $1.29^{+12\%}_{-13\%}$ | $1.07^{+8\%}_{-6\%}$ | $1.33^{+1\%}_{-1\%}$ |



Daniel de Florian

#### Off-shell effects and ing the second of the





# $\begin{array}{c} \textbf{Off-shell effects and interfection (ZZ) analysis}\\ signal & background\\ \textbf{Oesijt-work for the Higgs Hoson?} \times & +\mathcal{A}_{continuum}\\ Propagator\\ \Delta_{H}^{2}(q^{2}) \sim \frac{1}{(q^{2}-M_{H}^{2})^{2}+\Gamma_{H}^{2}M_{H}^{2}} \sim \frac{\pi}{M_{H}\Gamma_{H}} \delta(q^{2}-M_{H}^{2}) + \mathcal{O}\left(\frac{\Gamma_{H}}{M_{H}}\right) \text{ZVVA} \end{array}$

But above threshold decay amplitude compensates  $1/(q^2)^2$ 

$$|\mathcal{A}_{H \to VV}|^2 \sim (q^2)^2$$

Sizable contribution from off-shell
Enhances effect of interference





















#### Width measurement from interference

20000

000

000

In diphoton channel, interference small for total cross section but asymmetry produces shift in invariant mass : enhanced by detector resolution

Dicus, Willenbrock (1986) Dixon, Siu (2003) Martin (2012,2013) deF et al (2013) Dixon, Li (2013)

300

200 M /B/MC

-100

-200

-300

-400

 $\Delta M_H / MeV$ 





24

Look at  $\Delta M_{\rm H} = M_{\rm H}^{\gamma\gamma} - M_{\rm H}^{\rm ZZ}$ 



#### Width measurement from interference

000

Daniel de Florian

In diphoton channel, interference small for total cross section but asymmetry produces shift in invariant mass : enhanced by detector resolution

Dicus, Willenbrock (1986) **Dixon, Siu (2003)** Martin (2012,2013) deF et al (2013) Dixon, Li (2013)

300

200 M /B/MC

-100

-200

-300

-400

HEP

 $\Delta M_H / MeV$ 



Theory



Higgs Pr



implies  $\Gamma_H \sim 200 \Gamma_H^{\rm SM}$ 

 $-0.90 \pm 0.75 \,\text{GeV} \,(\text{CMS}) + 1.47 \pm 0.72 \,\,\text{GeV} \,(\text{ATLAS})$ 

gg interference

qg interference

qq interference

Look at  $\Delta M_{\rm H} = M_{\rm H}^{\gamma\gamma} - M_{\rm H}^{\rm ZZ}$ 

Schera

40

alk by K. Ellis

24

#### Higgs self couplings: Fundamental to test Higgs potential

$$V = \frac{\lambda}{4} \left( 2vH + H^2 \right)^2 = \frac{1}{2} \left( 2\lambda v^2 \right) H^2 + \lambda v H^3 + \frac{\lambda}{4} H^4$$







#### Higgs self couplings: Fundamental to test Higgs potential

$$V = \frac{\lambda}{4} \left( 2vH + H^2 \right)^2 = \frac{1}{2} \left( 2\lambda v^2 \right) H^2 + \lambda v H^3 + \frac{\lambda}{4} H^4$$



Compared to ~50 pb for single Higgs production



#### Higgs self couplings: Fundamental to test Higgs potential

$$V = \frac{\lambda}{4} \left( 2vH + H^2 \right)^2 = \frac{1}{2} \left( 2\lambda v^2 \right) H^2 + \lambda v H^3 + \frac{\lambda}{4} H^4$$



Compared to ~50 pb for single Higgs production

•Several recent phenomenological studies

In general need very large luminosities 600-3000 fb<sup>-1</sup> Baur, Plehn, Rainwater (2003) Dolan, Englert, Spannowsky (2012) Baglio et al (2012) Papaefstathiou, Yang, Zurita (2012)

20%-30% uncertainty in triple Higgs coupling ?



Daniel de Florian

## **HH production channels**



HEP UBA www.hep.df.uba.ar

## HH production in gg fusion





## HH production in gg fusion



## **HH production in gg fusion**



**Higgs Production (Theory)** 

Daniel de Florian



As expected, very similar pattern to single Higgs

- •Large QCD corrections
- •Scale band: overlap between NLO and NNLO
- •Reduction in scale dependence

 $C_{H}^{(2)} = C_{HH}^{(2)}$ 



#### Dependence on collider Energy

| $E_{cm}$ [TeV]                  | 8                      | 14                   | 33                | 100                |
|---------------------------------|------------------------|----------------------|-------------------|--------------------|
| $\sigma_{\rm NNLO}  [{\rm fb}]$ | $9.76^{+0.88}_{-0.96}$ | $40.2^{+3.2}_{-3.5}$ | $243^{+17}_{-18}$ | $1638^{+96}_{-95}$ |



Soft-virtual emission ~98% of total correction (14 TeV)
Explains increase of corrections at lower energies (closer to threshold)



Doable within EFT : reach status of single Higgs production

•Fully differential at NNLO, NNLL, SV@N<sup>3</sup>LO, ...

Needed : go beyond EFT approximation and distributions !

•Full NLO distribution hard to compute 2 loop •Improve over EFT  $\phi_1 = \frac{g}{t,b}$   $\phi_1 = \frac{g}{t,b}$   $\phi_1 = \frac{g}{t,b}$   $\phi_1 = \frac{g}{t,b}$ 

Figure 2: Generic diagrams describing neutral Higgs-boson pair production in gluongluon collisions ( $\phi, \phi_i = h, H, A$ ).

where  $\theta$  is the scattering angle in the partonic c.m. system with invariant mass Q, and

$$\lambda(x, y, z) = (x - y - z)^2 - 4yz.$$
(13)

0

 $C_{\Box} = 1$ 

The integration limits

00000

g

$$\hat{t}_{\pm} = -\frac{1}{2} \left[ Q^2 - m_1^2 - m_2^2 \mp \sqrt{\lambda(Q^2, m_1^2, m_2^2)} \right]$$
(14)

000000

in Eq. (11) correspond to  $\cos \theta = \pm 1$ . The scale parameter  $\mu$  is the renormalization scale. The complete dependence on the fermion masses is contained in the functions  $F_{\Delta}$ ,  $F_{\Box}$ , and  $G_{\Box}$ . The full expressions of the form factors  $F_{\Delta}$ ,  $F_{\Box}$ ,  $G_{\Box}$ , including the exact dependence on the fermion masses, can be found in Ref. [10].

The couplings  $C_{\triangle}$  and  $C_{\Box}$  and the form factors  $F_{\triangle}, F_{\Box}, G_{\Box}$  in the heavy-quark limit are given by:

 $= \lambda_{HHH} \frac{M_Z^2}{\lambda_{HHH}^2 + M_Z},$ 

Daniel de Florian

(i) <u>SM:</u>



Higgs Production (Theory)

30

 $\phi_2$ 

Doable within EFT : reach status of single Higgs production

•Fully differential at NNLO, NNLL, SV@N<sup>3</sup>LO, ...

Needed : go beyond EFT approximation and distributions !



# (short) Conclusions

•Covered a reduced number of improvements over ~ last year



# (short) Conclusions

•Covered a reduced number of improvements over ~ last year

•Every Higgs Hunting meeting a bunch of **NEW calculations** 

- •ggF at N<sup>3</sup>LO
- •H + jet
- •(N)NLOPS
- Interferences
- •Higgs pair production



# (short) Conclusions

•Covered a reduced number of improvements over ~ last year

•Every Higgs Hunting meeting a bunch of **NEW** calculations

- •ggF at N<sup>3</sup>LO
- •H + jet
- •(N)NLOPS
- Interferences
- Higgs pair production

Work triggered by experimental measurements





# Thanks



# Thanks



