Higgs Production

Theory

Daniel de Florian Dpto. de Física - FCEyN- UBA

 ent
Higgs Boson

Higgs Boson

BEH Boson ICHEPII

Results and prospects in the electroweah symmetry breahing sector

Higgs Boson

BEH Boson ICHEP'I4

Results and prospects in the electroweah symmetry breahing sector

Higgs Boson

BEH Boson ICHEP 14

BEGHHK Boson

Results and prospects in the electroweah symmetry breahing sector
Higgs Boson
BEH Boson ICHEP I4

BEGHHK Boson

"The" scalar Boson of the Standard Model responsible for ElectroWeak symmetry breaking

Higgs Boson

BEH Boson ICHEP 14

BEGHHK Boson

"The" scalar Boson of the Standard Model responsible for ElectroWeak symmetry breaking

Outline

-Latest results on Higgs boson production
$\checkmark \mathrm{ggF}$ at $\mathrm{N}^{3} \mathrm{LO}$
\checkmark Uncertainties
$\checkmark \mathrm{H}+$ jet
$\checkmark(N) N L O P S$
\checkmark Interferences and Higgs width
\checkmark Higgs pair production at NNLO

Higgs at Hadronic Colliders

Partonic cross-section: expansion in $\alpha_{s}\left(\mu_{R}^{2}\right) \ll 1 \quad d \hat{\sigma}=\alpha_{s}^{n} d \hat{\sigma}^{(0)}+\alpha_{s}^{n+1} d \hat{\sigma}^{(1)}+\ldots$
O Need precision for both PDFs and partonic cross sections

O Gluon-gluon fusion dominates due to large gluon luminosity

Production Channels at the LHC

associated production with W, Z

Uncertainties @ LHC
14 TeV

	TH	PDF4LHC	QCD	EW
ggF	8%	7%	$>100 \%$	5%
VBF	1%	3%	5%	5%
WF	1%	3%	25%	7%
ZH	4%	4%	30%	5%
$\mathbf{t t H}$	9%	9%	5%	$?$

ggF Higgs Cross-section @ LHC

- NNLO

Harlander, Kilgore (2002)
Anastasiou, Melnikov (2002)
Ravindran, Smith, van Neerven (2003)

- NNLL Resummation (9\% at 7 TeV) Catani, deF., Grazzini, Nason (2003)
- Two loop EW corrections not negligible ~ 5\%

Aglietti, Bonciani, Degrassi,Vicini (2004)
Degrassi, Maltoni (2004)
Actis, Passarino, Sturm, Uccirati (2008) Djouadi, Gambino (1994)

- Mixed EW-QCD effects evaluated in EFT approach Anastasiou et al (2008)
- + Mass effects, Line-shape, interferences, ...

Goria, Passarino, Rosco (2012)
Higgs Cross-Section WG

$$
\sigma\left(\mathrm{m}_{\mathrm{H}}=125 \mathrm{GeV}\right)=19.27_{-7.8 \%}^{\begin{array}{c}
\text { scale } \mathrm{pdf}+\alpha_{\mathrm{S}} \\
+7.2 \% \\
-7.5 \%
\end{array}} \mathrm{pb} \quad \text { def, Grazzini }
$$

ggF Higgs Cross-section @ LHC

- NNLO

Harlander, Kilgore (2002)
Anastasiou, Melnikov (2002)
Ravindran, Smith, van Neerven (2003)

- NNLL Resummation (9\% at 7 TeV) Catani, def., Grazzini, Nason (2003)

Aglietti, Bonciani, Degrassi,Vicini (2004)
Degrassi, Maltoni (2004)
Actis, Passarino, Sturm, Uccirati (2008) Djouadi, Gambino (1994)

- Two loop EW corrections not negligible ~ 5\%
- Mixed EW-QCD effects evaluated in EFT approach Anastasiou et al (2008)
- + Mass effects, Line-shape, interferences, ...

Goria, Passarino, Rosco (2012) Higgs Cross-Section WG

$$
\sigma\left(\mathrm{m}_{\mathrm{H}}=125 \mathrm{GeV}\right)=19.27_{-7.8 \%}^{\begin{array}{c}
\text { scale } \mathrm{pdf}+\alpha_{\mathrm{S}} \\
+7.2 \% \\
-7.5 \%
\end{array} \mathrm{pb} \quad \text { deF, Grazzini }}
$$

$$
\text { ATLAS signal significance } \mu=1.30 \pm 0.12 \text { (stat) } \pm 0.10 \text { (th) } \pm 0.09 \text { (syst) }
$$

ggF Higgs Cross-section @ LHC

- NNLO

Harlander, Kilgore (2002)
Anastasiou, Melnikov (2002)
Ravindran, Smith, van Neerven (2003)

- NNLL Resummation (9\% at 7 TeV) Catani, deF., Grazzini, Nason (2003)

Aglietti, Bonciani, Degrassi,Vicini (2004)
Degrassi, Maltoni (2004)
Actis, Passarino, Sturm, Uccirati (2008) Djouadi, Gambino (I994)

- Two loop EW corrections not negligible ~ 5\%
- Mixed EW-QCD effects evaluated in EFT approach Anastasiou et al (2008)
- + Mass effects, Line-shape, interferences, ...

Goria, Passarino, Rosco (2012)
Higgs Cross-Section WG

$$
\sigma\left(\mathrm{m}_{\mathrm{H}}=125 \mathrm{GeV}\right)=19.27_{-7.8 \%}^{\substack{\text { scale } \mathrm{pdf}+\alpha_{\mathrm{S}} \\+7.2 \% \\-7.5 \% \\+6 \%}} \mathrm{pb} \quad \text { def, Grazzini }
$$

For RUN 2 higher TH accuracy needed

$$
\text { ATLAS signal significance } \mu=1.30 \pm 0.12 \text { (stat) } \pm 0.10 \text { (th) } \pm 0.09 \text { (syst) }
$$

ggF Higgs Cross-section @ LHC

- NNLO

Harlander, Kilgore (2002)
Anastasiou, Melnikov (2002)
Ravindran, Smith, van Neerven (2003)

- NNLL Resummation (9\% at 7 TeV) Catani, deF., Grazzini, Nason (2003)

Aglietti, Bonciani, Degrassi,Vicini (2004)
Degrassi, Maltoni (2004)
Actis, Passarino, Sturm, Uccirati (2008) Djouadi, Gambino (I994)

- Mixed EW-QCD effects evaluated in EFT approach Anastasiou et al (2008)
- + Mass effects, Line-shape, interferences, ...

Goria, Passarino, Rosco (2012) Higgs Cross-Section WG

- Two loop EW corrections not negligible ~ 5\%

$$
\begin{aligned}
& \text { scale } \operatorname{pdf}+\alpha_{\mathrm{S}} \\
& \sigma\left(\mathrm{~m}_{\mathrm{H}}=125 \mathrm{GeV}\right)=19.27_{-7.8 \%}^{+7.2 \%}{ }_{-6.9 \%}^{+7.5 \%} \mathrm{pb} \quad \text { deF, Grazzini } \\
& \text { For RUN } 2 \text { higher TH accuracy needed } \\
& \text { Higher LHC data and } \\
& \text { orders more observables } \\
& \text { ATLAS signal significance } \mu=1.30 \pm 0.12 \text { (stat) } \pm 0.10 \text { (th) } \pm 0.09 \text { (syst) }
\end{aligned}
$$

Even Higher orders: $\mathbf{N}^{\mathbf{3}}$ LO

- 3 loop form factor

Baikov et al (2009)
Gehrmann et al (2010)

Lee, Smirnov, Smirnov (2010)

- Triple real emission

Anastasiou, Duhr, Dulat, Mistlberger (20|3)

- 2 loop + single emission

Duhr, Gehrmann (2013); Li, Zu (20I3);
Gehrmann, Jaquier, Glover, Koukoutsakis (2012);
Anastasiou, Duhr, Dulat, Herzog, Mistlberger; Kilgore (20|3)

- I loop + double emission

Anastasiou, Duhr, Dulat, Herzog, Mistlberger, Furlan (20|3); Li, Manteuffel, Schabinger, Zhu (20I3)

- Subtraction terms

Höschele, Hoff, Pak, Steinhauser, Ueda (2013)
Buehler, Lazopoulos (2013)
threshold expansion
\mathbf{N}^{3} LO in the Soft-Virtual approximation

$$
\begin{array}{rlr}
c_{g g}^{(3)}(z) & \simeq \delta(1-z) 1124.308887 \ldots & (\rightarrow 5.1 \%) \\
& +\left[\frac{1}{1-z}\right]_{+} 1466.478272 \ldots & (\rightarrow-5.85 \%) \\
& -\left[\frac{\log (1-z)}{1-z}\right]_{+} 6062.086738 \ldots & (\rightarrow-22.88 \%) \\
& +\left[\frac{\log ^{2}(1-z)}{1-z}\right]_{+} 7116.015302 \ldots & (\rightarrow-52.45 \%) \\
& -\left[\frac{\log ^{3}(1-z)}{1-z}\right]_{+} 1824.362531 \ldots & (\rightarrow-39.90 \%) \\
& -\left[\frac{\log ^{4}(1-z)}{1-z}\right]_{+} 230 & (\rightarrow 20.01 \%) \\
& +\left[\frac{\log ^{5}(1-z)}{1-z}\right]_{+} 216 . & (\rightarrow 93.72 \%)
\end{array}
$$

Anastasiou, Duhr, Dulat, Furlan, Gehrmann,
Herzog, Mistlberger (2014)
Cross section depends on one variable $z=\frac{M_{H}^{2}}{s}$
$\langle 1-z\rangle$ not the most appropriate measure of distance to threshold

Affected by factorially-growing subleading terms (kinematic mistreat of energy conservation)

NEW N ${ }^{3}$ LO in the Soft-Virtual approximation

$$
\begin{array}{rlr}
c_{g g}^{(3)}(z) & \simeq \delta(1-z) 1124.308887 \ldots & (\rightarrow 5.1 \%) \\
& +\left[\frac{1}{1-z}\right]_{+} 1466.478272 \ldots & (\rightarrow-5.85 \%) \\
& -\left[\frac{\log (1-z)}{1-z}\right]_{+} 6062.086738 \ldots & (\rightarrow-22.88 \%) \\
& +\left[\frac{\log ^{2}(1-z)}{1-z}\right]_{+} 7116.015302 \ldots & (\rightarrow-52.45 \%) \\
& -\left[\frac{\log ^{3}(1-z)}{1-z}\right]_{+} 1824.362531 \ldots & (\rightarrow-39.90 \%) \\
& -\left[\frac{\log ^{4}(1-z)}{1-z}\right]_{+} 230 & (\rightarrow 20.01 \%) \\
& +\left[\frac{\log ^{5}(1-z)}{1-z}\right]_{+} 216 . & (\rightarrow 93.72 \%)
\end{array}
$$

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger (20|4)

Cross section depends on one variable $z=\frac{M_{H}^{2}}{s}$
$\langle 1-z\rangle$ not the most appropriate measure of distance to threshold

Affected by factorially-growing subleading terms (kinematic mistreat of energy conservation)

Natural space for threshold effects : Mellin $\quad z \rightarrow 1 \quad \neg N \rightarrow \infty$

$$
c_{a b}(N)=\int_{0}^{1} d z z^{N-1} c_{a b}(z)
$$

$$
\left[\frac{1}{1-z}\right]_{+} \rightarrow-\ln N-\gamma_{E}+\mathcal{O}\left(\frac{1}{N}\right)
$$

\mathbf{N}^{3} LO in the Soft-Virtual approximation

$$
\begin{array}{rlr}
c_{g g}^{(3)}(z) & \simeq \delta(1-z) 1124.308887 \ldots & (\rightarrow 5.1 \%) \\
& +\left[\frac{1}{1-z}\right]_{+} 1466.478272 \ldots & (\rightarrow-5.85 \%) \\
& -\left[\frac{\log (1-z)}{1-z}\right]_{+} 6062.086738 \ldots & (\rightarrow-22.88 \%) \\
& +\left[\frac{\log ^{2}(1-z)}{1-z}\right]_{+} 7116.015302 \ldots & (\rightarrow-52.45 \%) \\
& -\left[\frac{\log ^{3}(1-z)}{1-z}\right]_{+} 1824.362531 \ldots & (\rightarrow-39.90 \%) \\
& -\left[\frac{\log ^{4}(1-z)}{1-z}\right]_{+} 230 & (\rightarrow 20.01 \%) \\
& +\left[\frac{\log ^{5}(1-z)}{1-z}\right]_{+} 216 . & (\rightarrow 93.72 \%)
\end{array}
$$

Anastasiou, Duhr, Dulat, Furlan, Gehrmann,
Herzog, Mistlberger (2014)
Cross section depends on one variable $z=\frac{M_{H}^{2}}{s}$
$\langle 1-z\rangle$ not the most appropriate measure of distance to threshold

Affected by factorially-growing subleading terms (kinematic mistreat of energy conservation)

Natural space for threshold effects: Mellin $\quad z \rightarrow 1 \quad \neg N \rightarrow \infty$

$$
\begin{aligned}
& c_{a b}(N)=\int_{0}^{1} d z z^{N-1} c_{a b}(z) \quad\left[\frac{1}{1-z}\right]_{+} \rightarrow-\ln N-\gamma_{E}+\mathcal{O}\left(\frac{1}{N}\right) \\
& c_{g g}^{(3)}(N)=36 \ln ^{6} N+170.7 \ln ^{5} N+744.8 \ln ^{4} N+1405.2 \ln ^{3} N+2676 \ln ^{2} N+1897 \ln N+1783.7
\end{aligned}
$$

- all coefficients positive
- automatically impose energy conservation
- better phenomenological approx. at NLO and NNLO
-SoftVirtual + sub-leading terms $\quad \ln ^{k} N, \frac{\ln ^{k} N}{N}$

Provides very good approximation for full result at NLO and NNLO

Use differences between SV and SV+sl to estimate error in approx.
deF, Mazzitelli, Moch,Vogt (2014)
Higgs Production (Theory)
\mathbf{N}^{3} LO approximation def, Mazzitelli, Moch,Vogt (2014)
SV+ sub-leading terms computed with physical kernel

$$
\begin{array}{r}
\frac{\ln ^{k} N}{N} \quad k=5,4,3 \text { computed } \\
2,1,0 \text { estimated }
\end{array}
$$

Correction ~within the expectation from scale dependence at NNLO

$$
\begin{array}{cl}
10-13 \% & \quad \mu=M_{H} \\
2-6 \% & \quad \mu=M_{H} / 2 \quad \sim \text { resummed NNLL }
\end{array}
$$

SV+ sub-leading terms computed with physical kernel

$$
\begin{array}{r}
\frac{\ln ^{k} N}{N} \quad \begin{array}{r}
k=5,4,3 \text { computed } \\
\text { 2, I,0 estimated }
\end{array}
\end{array}
$$

Correction ~within the expectation from scale dependence at NNLO

$\square \mu=m_{H}$
$\square \mu=m_{H} / 2$
Reduction in scale dependence Estimate of $\mathrm{N}^{4} \mathrm{LO}$ SV contribution TH uncertainty below 5%

$$
\begin{aligned}
& \text { IO-I3\% } \quad \mu=M_{H} \\
& \text { 2-6\% } \quad \mu=M_{H} / 2 \quad \sim \text { resummed NNLL }
\end{aligned}
$$

Can be improved by adding more terms when computed

Improved Soft approximation
-improved by analyticity
-and high energy asymptotic behavior (small N)

$$
\ln ^{k} N \rightarrow\left(\psi(N)+\gamma_{E}\right)^{k}
$$

~10-15\% at 14 TeV

Core of both approximations is Soft-Virtual (TH agreement) Differences in Sub-leading logs (only log ${ }^{5}$ correct)
\checkmark Full $\mathrm{N}^{3} \mathrm{LO}$ on the way (more terms in threshold expansion first) \checkmark 4-5\% accuracy calls for attention to other corrections

- To be improved by resummation, EW, etc
-(Bottom) mass effects in distributions (and inclusive at NNLO?)

Grazzini, Sargsyan (20|3)

Need matching precision in non-perturbative component!

PDFs

- Several groups provide pdf fits + uncertainties
- Differ by: data input,TH/bias, HQ treatment, coupling, etc
- Deviations larger than uncertainties :"global" vs "non-global"

set	H.O.	data	$\alpha_{s}\left(M_{Z}\right) @ N N L O$	uncertainty	HQ
MSTW 2008	NNLO	DIS+DY+Jets	$0 . I I 7 I$	Hessian (dynamical tolerance)	GM-VFN (ACOT+TR')
CTIO	NNLO	DIS+DY+Jets	$0.1 I 8$	Hessian (dynamical tolerance)	GM-VFN (SACOT-X)
NNPDF	NNLO	DIS+DY+Jets +LHC	$0.1 I 74$	Monte Carlo	GM-VFN (FONLL)
ABM	NNLO	DIS+DY(f.t.) +DY-tT(LHC)	0.1132	Hessian	FFN BMSN
(G)JR	NNLO	DIS+DY(f.t.) some jet	$0 . I I 24$	Hessian	FFN (VFN massless)
HERA PDF	NNLO	only DIS HERA	$0 . I I 76$	Hessian	GM-VFN (ACOT+TR')

PDFs

- Several groups provide pdf fits + uncertainties
- Differ by: data input, TH/bias, HQ treatment, coupling, etc
- Deviations larger than uncertainties :"global" vs "non-global"
up to 5% ! >15\% in Higgs cross section

set	H.O.	data	$\alpha_{s}\left(M_{Z}\right) @ N N L O$	uncertainty	HQ
MSTW 2008	NNLO	DIS+DY+Jets	$0.1 I 71$	Hessian (dynamical tolerance)	GM-VFN (ACOT+TR')
CTI0	NNLO	DIS+DY+Jets	$0.1 I 8$	Hessian (dynamical tolerance)	GM-VFN (SACOT-X)
NNPDF	NNLO	DIS+DY+Jets +LHC	$0.1 I 74$	Monte Carlo	GM-VFN (FONLL)
ABM	NNLO	DIS+DY(f.t.) +DY-tT(LHC)	0.1132	Hessian	FFN BMSN
(G)JR	NNLO	DIS+DY(f.t.)+ some jet	$0.1 I 24$	Hessian	FFN (VFN massless)
HERA PDF	NNLO	only DIS HERA	$0.1 I 76$	Hessian	GM-VFN (ACOT+TR')

PDF4LHC recommendation

- Envelope of MSTW \& CT \& NNPDF (68\%cl) $\quad \Delta \alpha_{s}\left(M_{Z}\right)= \pm 0.0012$
- No discovery/lack of discovery hurt by this choice ($\mathrm{HH}^{\prime} \mathrm{II}$)

PDF4LHC recommendation

- Envelope of MSTW \& CT \& NNPDF (68\%cl) $\quad \Delta \alpha_{s}\left(M_{Z}\right)= \pm 0.0012$
- No discovery/lack of discovery hurt by this choice ($\mathrm{HH}^{\prime} \mathrm{II}$)

But.... not enough for RUN 2?...
Need to match perturbative accuracy

- Some sets out of the recommendation
 - Increased uncertainty due to different central values

PDF4LHC recommendation

- Envelope of MSTW \& CT \& NNPDF (68\%cl) $\quad \Delta \alpha_{s}\left(M_{Z}\right)= \pm 0.0012$
- No discovery/lack of discovery hurt by this choice ($\mathrm{HH}^{\prime} \mathrm{II}$)

But.... not enough for RUN 2?...
Need to match perturbative accuracy

- Some sets out of the recommendation
 - Increased uncertainty due to different central values
- Precise LHC data needed for validation \& improvement

Jets might no be enough? (NNLO on the way) Transverse momentum of V (qg) (NNLO needed)
will take
some time... Find the origin of differences between sets!!!

More exclusive

-Transverse momentum distributions

- Jet vetoes

Still large Experimental uncertainties

$$
p p \rightarrow H+\text { jet }
$$

- NOW: gg and qg channels (>98\% of total result)
- Full NNLO with exclusive distributions

$$
\begin{array}{ll}
+60 \% & \text { NLO } \\
+30-40 \% & \text { NNLO }
\end{array}
$$

- Preliminary results E.Caola (LoopFest 2014)
scale dep. $\sim 4 \%$

$p p \rightarrow H+$ jet
-gg channel : agrees with previous calculation (2 NNLO calculations!)
-Differential : Rapidity and transverse momentum

Merging NLO with Parton Showers

- Resummation to NLL accuracy + realistic final states
- Carry (N)NLO precision to all aspects of experimental analysis

talk by S. Frixione

-POWHEG+MINLO

- $\mathrm{H}+\mathrm{jet}$ at NLO (+PS)
\bullet - Inclusive reweigthed to NNLO

- Can not reach NNLL but good overall agreement with HqT

NEW UN2LOPS (Higgs) Höche, Li, Prestel (2014)

- UN²LOPS method to match $\mathrm{H}+0$ jet and $\mathrm{H}+\mathrm{I}$ jet at NLO+PS
- Implement NNLO with qt subtraction in SHERPA

- Excellent agreement with HNNLO
- Very good agreement with HqT (still not NNLL)

VH production

- Fully differential NNLO calculation for VH including NLO $\mathrm{H} \rightarrow \mathrm{bb}$ and $\mathrm{V} \rightarrow$ Il decays with spin correlations

LHCI4 fat-jet analysis
HVNNLO
Ferrera, Grazzini, Tramontano (2013,20I4) WH ZH

- NLO decay effects relevant but well accounted by MC
- NNLO corrections at 14 TeV sizable ($\sim 16 \%$ due to jet veto) beyond MC@NLO uncertainties

σ (fb)	NLO (with LO dec.)	NLO (full)	NNLO (with NLO dec.)	MC@NLO
w/o jet veto	$2.54_{-1 \%}^{+1 \%}$	$2.63_{-1 \%}^{+1 \%}$	$2.52_{-2 \%}^{+2 \%}$	$2.82_{-1 \%}^{+1 \%}$
w jet veto	$1.22_{-14 \%}^{+11 \%}$	$1.29_{-13 \%}^{+12 \%}$	$1.07_{-6 \%}^{+8 \%}$	$1.33_{-1 \%}^{+1 \%}$

Off-shell effects and interference

signal background

$\Delta_{H}^{2}\left(q^{2}\right) \sim \frac{1}{\left(q^{2}-M_{H}^{2}\right)^{2}+\Gamma_{H}^{2} M_{H}^{2}} \sim \frac{\pi}{M_{H} \Gamma_{H}} \delta\left(q^{2}-M_{H}^{2}\right)+\mathcal{O}\left(\frac{\Gamma_{H}}{M_{H}}\right)$ ZWA

Off-shell effects and interference

$$
\mathcal{A}_{i j \rightarrow X}=\mathcal{A}_{i j \rightarrow H} \underset{\substack{\text { Propagator }}}{\Delta_{\mathrm{H}}} \mathcal{A}_{H \rightarrow X} \quad+\mathcal{A}_{\text {continuum }}
$$

But above threshold decay amplitude compensates $1 /\left(q^{2}\right)^{2}$

$$
\left|\mathcal{A}_{H \rightarrow V V}\right|^{2} \sim\left(q^{2}\right)^{2}
$$

-Sizable contribution from off-shell - Enhances effect of interference

Daniel de Florian

Width measurement from off-shell Caola, Melnikov

Width measurement from off-shell Caola, Melnikov

Width measurement from off-shell Caola, Melnikov

Width measurement from off-shell Caola, Melnikov

$$
\sigma^{\exp }=\sigma^{\text {back }}+\sigma^{\mathrm{on}}+\sigma^{\mathrm{off}} \times \frac{\Gamma_{H}}{\Gamma_{H}^{S M}}+\sigma^{\text {int }} \times \sqrt{\frac{\Gamma_{H}}{\Gamma_{H}^{S M}}}
$$

CMS $\quad \Gamma_{H}<22 \mathrm{MeV}$ (5.4 SM)
ATLAS $\Gamma_{H}<24 \mathrm{MeV}$ (5.7 SM)

Width measurement from interference

In diphoton channel, interference small for total cross section but asymmetry produces shift in invariant mass : enhanced by detector resolution

Dicus, Willenbrock (1986)
Dixon, Siu (2003)
Martin (20|2,20|3)
deF et al (2013)
Dixon, Li (2013)

Look at $\Delta M_{\mathrm{H}}=M_{\mathrm{H}}^{\gamma \gamma}-M_{\mathrm{H}}^{\mathrm{ZZ}}$

$$
\begin{gathered}
\Delta M_{\mathrm{H}} \sim 1 \mathrm{GeV} \text { implies } \Gamma_{H} \sim 200 \Gamma_{H}^{\mathrm{SM}} \\
\Delta M_{\mathrm{H}}=\left\{\begin{array}{l}
-0.90 \pm 0.75 \mathrm{GeV} \text { (CMS) } \\
+1.47 \pm 0.72 \mathrm{GeV} \text { (ATLAS) }
\end{array}\right.
\end{gathered}
$$

Width measurement from interference

In diphoton channel, interference small for total cross section but asymmetry produces shift in invariant mass : enhanced by detector resolution

Dicus, Willenbrock (1986)
Dixon, Siu (2003)
Martin (20|2,20|3)
deF et al (2013)
Dixon, Li (2013)

Look at $\Delta M_{\mathrm{H}}=M_{\mathrm{H}}^{\gamma \gamma}-M_{\mathrm{H}}^{\mathrm{ZZ}}$

$$
\begin{gathered}
\Delta M_{\mathrm{H}} \sim 1 \mathrm{GeV} \quad \text { implies } \quad \Gamma_{H} \sim 200 \Gamma_{H}^{\mathrm{SM}} \\
\Delta M_{\mathrm{H}}=\left\{\begin{array}{l}
-0.90 \pm 0.75 \mathrm{GeV}(\mathrm{CMS}) \\
+1.47 \pm 0.72 \mathrm{GeV}(\mathrm{ATLAS})
\end{array}\right.
\end{gathered}
$$

QCD corrections needed for Interference in general talk by K. Ellis

Higgs self couplings: Fundamental to test Higgs potential

$$
V=\frac{\lambda}{4}\left(2 v H+H^{2}\right)^{2}=\frac{1}{2}\left(2 \lambda v^{2}\right) H^{2}+\lambda v H^{3}+\frac{\lambda}{4} H^{4}
$$

Higgs self couplings: Fundamental to test Higgs potential

$$
V=\frac{\lambda}{4}\left(2 v H+H^{2}\right)^{2}=\frac{1}{2}\left(2 \lambda v^{2}\right) H^{2}+\lambda v H^{3}+\frac{\lambda}{4} H^{4}
$$

$\sim 40 \mathrm{fb} \quad$ very challenging

$\sim 0.05 \mathrm{fb}$ impossible

Compared to $\sim 50 \mathrm{pb}$ for single Higgs production

Higgs self couplings: Fundamental to test Higgs potential

$$
V=\frac{\lambda}{4}\left(2 v H+H^{2}\right)^{2}=\frac{1}{2}\left(2 \lambda v^{2}\right) H^{2}+\lambda v H^{3}+\frac{\lambda}{4} H^{4}
$$

$\sim 40 \mathrm{fb}$ very challenging
@ 14 TeV

$\sim 0.05 \mathrm{fb} \quad$ impossible

Compared to $\sim 50 \mathrm{pb}$ for single Higgs production
-Several recent phenomenological studies
\rightarrow In general need very large luminosities $600-3000 \mathrm{fb}^{-1}$

Baur, Plehn, Rainwater (2003)
Dolan, Englert, Spannowsky (2012)
Baglio et al (2012)
Papaefstathiou, Yang, Zurita (2012)
20\%-30\% uncertainty in triple Higgs coupling ?

HH production channels

Gluon-gluon fusion dominates
Only some contribute with HHH

HH production in gg fusion

LO : Triangle and Box contributions

Very difficult to reach higher orders
\square Use effective Lagrangian

HH production in gg fusion

LO : Triangle and Box contributions

Very difficult to reach higher orders
\square Use effective Lagrangian Pretty bad approximation at LO
expansion in $\quad \rho=\frac{m_{H}^{2}}{m_{t}^{2}} \quad$ Grigo, Hoff, Melnikov, Steinhauser (20I3)

HH production in gg fusion

LO : Triangle and Box contributions

Very difficult to reach higher orders

Use effective Lagrangian Pretty bad approximation at LO But OK (~10\%)
, Hoff, Melnikov, Steinhauser (2013)

NNLO

As expected, very similar pattern to single Higgs

- Large QCD corrections
$C_{H}^{(2)}=C_{H H}^{(2)}$
- Scale band: overlap between NLO and NNLO
$<2 \%$ effect
-Reduction in scale dependence

$$
0 \leq C_{H H}^{(2)} \leq 2 C_{H}^{(2)}
$$

Dependence on collider Energy

deF, J. Mazzitelli (2013)

- Soft-virtual emission $\sim 98 \%$ of total correction (14 TeV)
- Explains increase of corrections at lower energies (closer to threshold)

Doable within EFT : reach status of single Higgs production
-Fully differential at NNLO, NNLL, SV@N3LO, ...
Needed : go beyond EFT approximation and distributions !
-Full NLO distribution hard to compute 2 loop - Improve over EFT

Doable within EFT : reach status of single Higgs production

-Fully differential at NNLO, NNLL, SV@N³LO, ...
Needed :go beyond EFT approximation and distributions !

- Full NLO distribution hard to compute 2 loop
- Improve over EFT

Frederix et al (2013) MadGraph5_aMC@NLO Talk by Marco Zaro

All channels with full m_{T} dependence in real contributions EFT for virtual

(short) Conclusions

- Covered a reduced number of improvements over ~ last year

(short) Conclusions

-Covered a reduced number of improvements over ~ last year

- Every Higgs Hunting meeting a bunch of NEW calculations

-ggF at $\mathrm{N}^{3} \mathrm{LO}$
\bullet - + jet
$\bullet(N) N L O P S$
- Interferences
-Higgs pair production

(short) Conclusions

-Covered a reduced number of improvements over ~ last year

- Every Higgs Hunting meeting a bunch of NNE calculations

$$
\begin{aligned}
& \text { •ggF at } \mathrm{N}^{3} \text { LO } \\
& \text { •H + jet } \\
& \text { •(N)NLOPS } \\
& \text { •Interferences } \\
& \text { •Higgs pair production }
\end{aligned}
$$

-Work triggered by experimental measurements
in the right path to Higgs precision!

Thanks

Thanks

