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The LHC first-run legacy:

➥ all quite compatible with the SM Higgs !
Many channels available!
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!  Grouped by dominant 
decay: 
! χ2/dof = 0.9/5 
! p-value = 0.97 

(asymptotic) 
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Conclusion 

!  We’ve just started and there’s a long 
and exciting way to go: 
!  Go from O(10%) measurements to 

differential. 
!  Go from “seen” to O(%) measurements. 
!  Go from limits on rare things to 

observations. 
!  Reduce theory uncertainties. 
!  Explore the full potential of the LHC and 

its upgrades. 
 
!  All it takes is deviation to point 

us on the right way beyond the SM. 
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Composite Higgs
Higgs mediated processes recover calculability:

Back to the prediction era!
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small effects already expected,	

as EWPT (LEP1) put strong limits 	


to the coupling hVV	

 since it affects the Z propagator:

(reduction of couplings)

A better perspective to understand how close to a SM Higgs: 
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Higgs coupling measurements  
can place bounds on BSM !

(in natural theories, the Higgs couplings 	

must be different from those of the SM)



MSSM with heavy spectrum ( ≫100 GeV)

Main effects from the 2nd Higgs doublet:
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Superpartners can only modify Higgs couplings at the loop-level: 	

Only stops/sbottoms give some contribution to hgg/hγγ (not very large)
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FIG. 2: Theoretical expectation for Higgs couplings deviations for the MSSM with heavy stops and no mixing, taking

mh = 125GeV, showing contours of constant mA (solid blue) and tan� (dashed), obtained from the exact expressions

of Eqs. (68,69) of Appendix II. Also shown are the 68% (green), 95%(yellow) and 99%(grey) C.L. regions obtained by

a global fit of the most recent LHC Higgs data, as explained in Appendix I, neglecting loop contributions to the hgg and

h�� couplings. The dashed red lines show the approximate results of Eq. (21) for mH = 300, 500GeV.

push the MSSM into fine-tuning territory [21]. Ignoring for a moment this tension, we can assume these loop
contributions to be uniquely responsible for the large value of the Higgs mass, and write the deviations of cb,t
induced by loop e↵ects Eq. (20) together with the ones from the tree-level potential Eq. (14), as

cb ⇡ 1 +
m2

h � m2
Z cos 2�

m2
H

,

ct ⇡ 1 � (cot�)2
m2

h � m2
Z cos 2�

m2
H

. (21)

This shows that, in the MSSM with no stops mixing and for tan� > 1, the deviations in cb (ct) are always
positive (negaitive), as already observed in Ref. [15]. For large tan� the deviations in ct are suppressed, while

(cb � 1) ⇡
✓
154GeV

mH

◆2

. (22)

We can compare these results with the exact ones of Fig. 2, which shows the intuitive (cb, ct)-plane mentioned
above, and compares these theoretical expectations with the most recent data [8]-[12], using the methods
described in Appendix I. We assume a heavy sparticle spectrum, that does not a↵ect the Higgs couplings
to gluons and photons, other than through Eq. (21) (this is motivated by the fact that in this example, we
are assuming multi-TeV stops). Masses mH . 250GeV can be excluded, almost independently of tan�, as
suggested already by Eq. (22) for a sensitivity to the hb̄b coupling of about 50%. In Fig. 3 we also show
the CMS bounds on the traditional MSSM mA, tan� plane (for a recent analysis see Ref. [22]) from direct
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Figure 2. Theoretical expectation for Higgs couplings deviations for the MSSM with heavy stops
and no mixing, taking mh = 125GeV, showing contours of constant mA (solid blue) and tan�
(dashed), obtained from the exact expressions of eqs. (B.14), (B.15) of appendix B. Also shown are
the 68% (green), 95%(yellow) and 99%(grey) C.L. regions obtained by a global fit of the most recent
LHC Higgs data, as explained in appendix A, neglecting loop contributions to the hgg and h��

couplings. The dashed red lines show the approximate results of eq. (3.10) for mH = 300, 500GeV.

the EW scale through loop e↵ects and push the MSSM into fine-tuning territory [51].

Ignoring for a moment this tension, we can assume these loop contributions to be uniquely

responsible for the large value of the Higgs mass, and write the deviations of cb,t induced

by loop e↵ects eq. (3.9) together with the ones from the tree-level potential eq. (3.3), as
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This shows that, in the MSSM with no stops mixing and for tan� > 1, the deviations in

cb (ct) are always positive (negaitive), as already observed in ref. [19]. For large tan� the

deviations in ct are suppressed, while
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We can compare these results with the exact ones of figure 2, which shows the intuitive

(cb, ct)-plane mentioned above, and compares these theoretical expectations with the most
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Higgs coupling measurements are already 	

ruling out susy-parameter space
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Figure 5: Regions of the (mA, tan �) plane excluded in a simplified MSSM model via fits to the measured
rates of Higgs boson production and decays. The likelihood contours where �2 ln⇤ = 6.0, corresponding
approximately to 95% CL (2�), are indicated for the data and expectation assuming the SM Higgs sector.
The light shaded and hashed regions indicate the observed and expected exclusions, respectively. The
SM decoupling limit is mA ! 1.

for 2  tan �  10, with the limit increasing to larger masses for tan � < 2. The observed limit is
stronger than expected since the measured rates in the h ! �� (expected to be dominated by a W boson
loop) and h ! ZZ⇤ ! 4` channels are higher than predicted by the SM, but the simplified MSSM
has a physical boundary V  1 so the vector boson coupling cannot be larger than the SM value. The
physical boundary is accounted for by computing the profile likelihood ratio with respect to the maximum
likelihood obtained within the physical region of the parameter space, mA >0 and tan � >0. The range
0 tan � 10 is shown as only that part of the parameter space was scanned in the present version of this
analysis. The compatible region extends to larger tan � values.

The results reported here pertain to the simplified MSSM model studied and are not fully general.
The MSSM includes other possibilities such as Higgs boson decays to supersymmetric particles, decays
of heavy Higgs bosons to lighter ones, and e↵ects from light supersymmetric particles [60] which are
not investigated here.

8 Higgs Portal to Dark Matter

Many “Higgs portal” models [14,34,61–65] introduce an additional weakly-interacting massive particle
(WIMP) as a dark matter candidate. It is assumed to interact very weakly with the SM particles, except
for the Higgs boson. In this study, the coupling of the Higgs boson to the WIMP is taken to be a free
parameter.

The upper limit on the branching ratio of the Higgs boson to invisible final states, BRi, is derived
using the combination of rate measurements from the h ! ��, h ! ZZ⇤ ! 4`, h ! WW⇤ ! `⌫`⌫,
h! ⌧⌧, and h! bb̄ channels, together with the measured upper limit on the rate of the Zh! ``+ Emiss

T
process. The couplings of the Higgs boson to massive particles other than the WIMP are assumed to be
equal to the SM predictions, allowing the corresponding partial decay widths and invisible decay width
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(WIMP) as a dark matter candidate. It is assumed to interact very weakly with the SM particles, except
for the Higgs boson. In this study, the coupling of the Higgs boson to the WIMP is taken to be a free
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κV ≪ κu,κd  
(not needed in the fit)



Composite Higgs scenarios



Couplings dictated by symmetries (as in the QCD chiral Lagrangian)  
Giudice,Grojean,AP,Rattazzi 07
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Also affects the Z propagator,	

whose properties were 	

well-measured at LEP ☛  ξ = (v/f)2 ≲ 0.1

or, equivalently:
�ghWW

ghWW
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Couplings dictated by symmetries (as in the QCD chiral Lagrangian)  
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small deviations on the h𝜸𝜸(gg)-coupling due to the 
Goldstone nature of the Higgs
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Figure 2: Two-dimensional likelihood contours in the (V , F) coupling plane, where �2 ln⇤ = 2.3 and
�2 ln⇤ = 6.0 correspond approximately to 68% CL (1�) and 95% CL (2�) respectively. The coupling
predictions in the MCHM4 and MCHM5 models are shown as parametric functions of the Higgs boson
compositeness parameter ⇠ = v2/ f 2. The two-dimensional likelihood contours are shown for reference
and should not be used to estimate the exclusion for the single parameter ⇠.

5 Additional Electroweak Singlet

The simplest extension to the SM Higgs sector involves the addition of an EW singlet field [25, 30–35]
to the doublet Higgs field of the SM, providing a possible answer to the dark matter problem. Both fields
acquire non-zero vacuum expectation values. Spontaneous symmetry breaking leads to mixing between
the singlet state and the surviving state of the doublet field, resulting in two CP-even Higgs bosons,
where h (H) denotes the lighter (heavier) of the pair. The two Higgs bosons, h and H, are assumed to be
non-degenerate. They couple to fermions and vector bosons in a similar way as the SM Higgs boson, but
each with a strength reduced by a common scale factor, denoted as  for h and 0 for H. The constraint
of unitarity implies that:

2 + 02 = 1. (9)

In this model, the lighter Higgs boson h is assumed to have identical production and decay modes to
those of the SM Higgs boson, but with rates modified according to:

�h = 2 ⇥ �h,SM

�h = 2 ⇥ �h,SM

BRh,i = BRh,SM,i,

(10)

where � denotes the production cross section, � denotes the total decay width, BR denotes the branching
ratio, and i indexes the di↵erent decay modes.

For the heavier Higgs boson H, new decay modes such as H ! hh are possible if they are kinemati-
cally accessible. In this case, the production and decay rates of the H boson are modified with respect to
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The simplest extension to the SM Higgs sector involves the addition of an EW singlet field [25, 30–35]
to the doublet Higgs field of the SM, providing a possible answer to the dark matter problem. Both fields
acquire non-zero vacuum expectation values. Spontaneous symmetry breaking leads to mixing between
the singlet state and the surviving state of the doublet field, resulting in two CP-even Higgs bosons,
where h (H) denotes the lighter (heavier) of the pair. The two Higgs bosons, h and H, are assumed to be
non-degenerate. They couple to fermions and vector bosons in a similar way as the SM Higgs boson, but
each with a strength reduced by a common scale factor, denoted as  for h and 0 for H. The constraint
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Figure 1: Two-dimensional likelihood scan of the mass scaling factor, ✏, and the vacuum expectation
value parameter, M. The likelihood contours where �2 ln⇤ = 2.3 and �2 ln⇤ = 6.0, corresponding
approximately to 68% CL (1�) and 95% CL (2�) respectively, are shown for both the data and the
prediction for a SM Higgs boson. The best fit to the data and the SM expectation are indicated as ⇥ and
+ respectively.

are interpreted in the MCHM4 scenario by rescaling the rates in di↵erent production and decay modes
as functions of the couplings  = V = F , assuming the same production and decay modes as in the SM.
The couplings are in turn expressed as functions of ⇠ using Eq. 7.

The MCHM4 model contains a physical boundary ⇠ � 0, with the SM Higgs boson corresponding to
⇠ = 0. Ignoring this boundary, the scaling parameter is measured to be ⇠ = 1�µh = �0.30+0.17

�0.18, while the
expectation assuming the SM Higgs boson is 0.00+0.15

�0.17. The best-fit value observed for ⇠ is negative since
µh >1 is measured. The statistical and systematic uncertainties are of similar size. Accounting for the
lower boundary produces an observed (expected) 95% CL upper limit of ⇠ < 0.12 (0.29), corresponding
to a Higgs boson compositeness scale of f >710 GeV (460 GeV). The observed limit is stronger than
expected since µh >1 is measured.

Similarly, in the MCHM5 model [27,28] the measured rates are expressed in terms of ⇠ by rewriting
the couplings as:

V =
p

1 � ⇠

F =
1�2⇠p

1�⇠
.

(8)

The measurements of V and F are given in Model 2 of Table 1. As with the MCHM4 model, the
MCHM5 model contains the physical boundary ⇠ � 0, with the SM Higgs boson corresponding to ⇠ = 0.
Ignoring this boundary, the composite Higgs boson scaling parameter is determined to be ⇠ = �0.08+0.11

�0.16,
while 0.00+0.11

�0.13 is expected assuming the SM Higgs boson. As above, the best-fit value for ⇠ is negative
since µh >1 is measured. Accounting for the boundary produces an observed (expected) 95% CL upper
limit of ⇠ < 0.15 (0.20), corresponding to a Higgs boson compositeness scale of f >640 GeV (550 GeV).
Figure 2 shows the two-dimensional likelihood for vector boson (V ) and fermion (F) coupling measure-
ments in the (V , F) plane, overlaid with predictions as parametric functions of ⇠ for the MCHM4 and
MCHM5 models. A secondary minimum in the likelihood exists at F < 0 due primarily to the large
measured h! �� rate [13].
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Figure 1: Two-dimensional likelihood scan of the mass scaling factor, ✏, and the vacuum expectation
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+ respectively.

are interpreted in the MCHM4 scenario by rescaling the rates in di↵erent production and decay modes
as functions of the couplings  = V = F , assuming the same production and decay modes as in the SM.
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the couplings as:
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F =
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.
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The measurements of V and F are given in Model 2 of Table 1. As with the MCHM4 model, the
MCHM5 model contains the physical boundary ⇠ � 0, with the SM Higgs boson corresponding to ⇠ = 0.
Ignoring this boundary, the composite Higgs boson scaling parameter is determined to be ⇠ = �0.08+0.11

�0.16,
while 0.00+0.11

�0.13 is expected assuming the SM Higgs boson. As above, the best-fit value for ⇠ is negative
since µh >1 is measured. Accounting for the boundary produces an observed (expected) 95% CL upper
limit of ⇠ < 0.15 (0.20), corresponding to a Higgs boson compositeness scale of f >640 GeV (550 GeV).
Figure 2 shows the two-dimensional likelihood for vector boson (V ) and fermion (F) coupling measure-
ments in the (V , F) plane, overlaid with predictions as parametric functions of ⇠ for the MCHM4 and
MCHM5 models. A secondary minimum in the likelihood exists at F < 0 due primarily to the large
measured h! �� rate [13].
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blue one for 0.25 < ⇠ < 1. The contours are the 68%, 95% and 99% CL for a 125 GeV Higgs as obtained in Ref. [15]
from the CMS data.

For m
Q4 ' 3 TeV, the Higgs mass Eq. (43) can be as small as 40 GeV. Larger values of m

h

imply

larger values of FL

Q1
, meaning thatm

h

⇠125 GeV can be obtained without light fermionic resonances

as we show in Figure 1. In this case, however, it is important to notice that extra contributions are

needed to reduce ↵ in order to have hs
h

i ⌧ 1.

3 Higgs couplings to SM fermions

In composite Higgs models the Higgs couplings to fermions generically deviate from their SM values

[12]. For the SO(5)/SO(4) model, the Higgs couplings to the SM fermions can be parametrized by

Eq. (27). At low-energies p ⌧ m
Qi and in the limit ✏ ⌧ 1, the Higgs couplings reduce, for the case

of a generic SM fermion f
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, to
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From this we can obtain the hff coupling [12]:
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where we have used that m
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(h) = gs
h

/2 [5] and written the SM hff coupling as a function of the

physical W and fermion mass, gSM
hff

= gm
f

/(2m
W

). For m 6= 0, Eq. (45) gives deviations of order

one from the SM expectations, even in the limit ⇠ ! 1. For this reason, we will concentrate on the

m = 0 case. In Figure 2 we show, for m
h

' 125 GeV and assuming that all fermions couple in the
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getting into the 	

interesting region



Model independent analysis

An organizing principle of possible SM deviations is needed 	

to know what we know and what we should know (measure!) 



Assuming a large new-physics scale, Λ>>mW:	


Le↵ = LSM +
X

i

ci
⇤2

Oi

NP scale
dim=6

{

Parametrization of BSM effects in Higgs physics

give the deviations 	

to SM Higgs physics from BSM

In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|2Bµ⌫B
µ⌫ , OGG = g2s |H|2GA

µ⌫G
Aµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫ , OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O
3W =

1

3!
g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3G =
1

3!
gsfABCG

A ⌫
µ GB

⌫⇢G
C ⇢µ , (8)

and the CP-odd operators

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA

µ⌫
eGAµ⌫ , (9)

OHfW = ig(DµH)†�a(D⌫H)fW a
µ⌫ , OH eB = ig0(DµH)†(D⌫H) eBµ⌫ , (10)

O
3

fW =
1

3!
g✏abcfW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3

eG =
1

3!
gsfABC

eGA ⌫
µ GB

⌫⇢G
C ⇢µ , (11)

where eF µ⌫ = ✏µ⌫⇢�F⇢�/2. There are two more CP-even operators involving two Higgs fields and

gauge bosons, OWB = g0gH†�aHW a
µ⌫B

µ⌫ and OWW = g2|H|2W a
µ⌫W

µ⌫ a (and the equivalent

CP-odd ones), but these can be eliminated using the identities 5

OB = OHB +
1

4
OBB +

1

4
OWB , (12)

OW = OHW +
1

4
OWW +

1

4
OWB . (13)

The operators O
3W and O

3G (and the corresponding CP-odd ones) have three field-strengths

and then their corresponding coe�cients should scale as c
3W ⇠ g2/g2⇤ and c

3G ⇠ g2s/g
2

⇤ respec-

tively.

Let us now examine d = 6 operators involving SM fermions, considering a single family to

begin with. Operators of the first class involving the up-type quark are

Oyu = yu|H|2Q̄L
eHuR ,

Ou
R = (iH†

$
DµH)(ūR�

µuR) ,

Oq
L = (iH†

$
DµH)(Q̄L�

µQL) ,

O(3) q
L = (iH†�a

$
DµH)(Q̄L�

µ�aQL) , (14)

where eH = i�
2

H⇤, and in operators / Q̄LuR we include a Yukawa coupling yu (mu = yuv/
p
2)

as an order parameter of the chirality-flip. We also understand, here and in the following,

that when needed the Hermitian conjugate of a given operator is included in the analysis. In

the first class we have, in addition, the four-fermion operators:

Oq
LL = (Q̄L�

µQL)(Q̄L�
µQL) , O(8) q

LL = (Q̄L�
µTAQL)(Q̄L�

µTAQL) ,

Ou
LR = (Q̄L�

µQL)(ūR�
µuR) , O(8)u

LR = (Q̄L�
µTAQL)(ūR�

µTAuR) ,

Ou
RR = (ūR�

µuR)(ūR�
µuR) , (15)

5For CP-odd operators the identities are 4OH eB + OB eB + OW eB = 0 and 4O
HfW + O

WfW + OW eB = 0.

5

➥ e.g.

➥effective theory for Higgs physics	

➥approach valid for all BSM with heavy particles !
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2
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OB = ig0
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O
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2

(DµW a
µ⌫)

2

O
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O
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(DµGA
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2

OBB = g02|H|2Bµ⌫Bµ⌫

OGG = g2s |H|2GA
µ⌫G

Aµ⌫

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫

OHB = ig0(DµH)†(D⌫H)Bµ⌫

O
3W = 1

3!

g✏abcW a ⌫
µ W b

⌫⇢W
c ⇢µ

O
3G = 1

3!

gsfABCGA ⌫
µ GB

⌫⇢G
C ⇢µ

Table 1: 14 CP-even operators made of SM bosons. The operators are grouped in 3 di↵erent

boxes corresponding to the 3 classes of operators defined in Eq. (2). Dashed lines separate

operators of di↵erent structure within a given class. There are, in addition, the 6 CP-odd

operators given in Eqs. (9)-(11).

where Y f
L,R are the fermion hypercharges and YH the Higgs hypercharge. In particular, we

could trade OB and OW with other operators:

cBOB $ cB
g0 2
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X

f
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Y f
L Of
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ROf
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#
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cWOW $ cW
g2

g2⇤

"

�3

2
OH + 2O

6

+
1

2
(Oyu + Oyd + Oye) +

1

4

X

f

O(3) f
L

#

, (21)

where, in the last expression, we have eliminated Or using Eq. (19).

For one family of fermions the set of operators that we use is collected in Tables 1 and 2.

We keep all operators of Eqs. (4)-(11), since they are the relevant ones for a well-motivated

class of BSM scenarios such as universal theories, with the exception of Or, that we eliminate

of our basis using Eq. (19). In Tables 1 and 2 there are 58 operators; adding the 6 bosonic CP-

odd ones in Eqs. (9)-(11) leads to a total of 64 operators. We still have 5 redundant operators

that once eliminated leave a total of 59 independent operators, in agreement with [9]. We

leave free the choice of which 5 operators to eliminate: e.g., the operators of Eq. (5) could be

eliminated by using Eq. (20) or, alternatively, we could trade 5 operators that contain fermions

by the operators in Eq. (5). We will use later this freedom in di↵erent ways depending on the

physics process studied. Other redundant operators are discussed in Appendix A.
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Too many new terms to say something?

1 Introduction

2 Dimension-six operator basis

Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can

obtain an e↵ective Lagrangian made of local operators:

Le↵ =
⇤4

g2⇤
L
✓

Dµ

⇤
,
gHH

⇤
,
gfL,R

fL,R
⇤3/2

,
gFµ⌫

⇤2

◆

' L4 + L6 + · · · , (1)

where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states

1

= dimension-six operators
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(ū
R � µ

u
R )(ū
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R � µ
e
R )

O udR =
y †
u y

d (i
eH † $
D
µH

)(ū
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BSM primary physical Higgs effects !

arXiv:1308.2803	

arXiv:1405.0181

+  correlations between observables

☛ There are plenty of correlations among possible observables    

➥ Not all type of deviations from SM can arise from       !

1 Introduction

2 Dimension-six operator basis

Let us consider a sector beyond the SM (BSM) characterised by a new mass-scale ⇤ much

larger than the electroweak scale mW . We will assume, among other requirements to be

specified later, that this sector preserves lepton and baryon number. By integrating out this

sector and performing an expansion of SM fields and their derivatives Dµ over ⇤, we can

obtain an e↵ective Lagrangian made of local operators:

Le↵ =
⇤4

g2⇤
L
✓

Dµ

⇤
,
gHH

⇤
,
gfL,R

fL,R
⇤3/2

,
gFµ⌫

⇤2

◆

' L4 + L6 + · · · , (1)

where Ln denotes the term in the expansion made of operators of dimension n. By g⇤ we denote

a generic coupling of the BSM, while gH and gfL,R
are respectively the couplings of the Higgs-

doublet H (of hypercharge Y = 1/2) and SM fermion fL,R to the BSM sector, and g and Fµ⌫

are respectively the SM gauge couplings and field-strengths. The Lagrangian Eq. (1) is based

on dimensional grounds where the dependence on the couplings is easily obtained when the

Planck constant ~ is put back in place. The dominant e↵ects of the BSM sector are encoded

in L6, as L4 leads only to an unphysical redefinition of the SM couplings. There are di↵erent

basis used in the literature for the set of independent dimension-six operators appearing in L6.

Although physics is independent of the choice of basis, it is clear that some basis are better

suited than others for extracting the relevant information for, for example, Higgs physics.

A convenient basis can be that which capture in few operators the impact of di↵erent new-

physics scenarios, at least for the most interesting cases. For example, in the basis of ref. [],

universal theories only generate 11 CP-conserving operators, but this number can be larger

in other basis, as that of ref. [], with the corresponding correlation in their coe�cients. If

only ff ! ff processes are considered, only 4 operators can parametrize universal theories

if we use the basis []. Another important consideration for the choice of basis is to avoid

mixing operators whose coe�cients are naturally expected to have di↵erent sizes (again, at

least in main theories of interest). For example, it is convenient to keep separated operators

that can be induced at tree-level from integrating weakly-coupled states from those that can

only be generated at the one-loop level. This helps to determine what are the most relevant

operators when dealing with a large class of the BSM such as supersymmetric, composite

Higgs or little Higgs models among others. As shown in ref. [] this criteria is also useful when

considering one-loop operator mixing, since one finds that tree-level induced operators do not

contribute to the RG flow of one-loop induced ones, independently, of course, of the origin of

the operators. In this sense the basis of [] is better suited than that of []. It is obvious that

all the criteria given above are not at all in contradiction with being generic, that is also the

propose of these analysis, as soon as we keep all operators, as we do in this analysis.

In our bases we broadly distinguish three classes of operators. The first two classes consist

of operators that can in principle be generated at tree-level when integrating out heavy states

1

assuming 	

flavor-symmetries

(see also arXiv:1406.6376)



I.  Primary Higgs couplings

Higgs couplings affected by BSM but not	

affecting (at tree-level) other SM observables



e.g.

G G

1

g2s
G2

µ⌫ +
|H|2

⇤2
G2

µ⌫ !
✓

1

g2s
+

v2

⇤2

◆
G2

µ⌫

Effects that on the vacuum, H = v, give only 	

a redefinition of the SM couplings:

⨂ ⨂

G G
Not physical!

But can affect h physics:

G G

⨂h
affects GG →h!



How many of these effects can we have? 

 As many as parameters in the SM: 8
(assuming CP-conservation)

for one family



(f=t,b,𝝉)

How many of these effects can we have? 

 As many as parameters in the SM: 8
(assuming CP-conservation)

g

g0

mW

gs

mh

mf

for one family



(f=t,b,𝝉)

In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|2Bµ⌫B
µ⌫ , OGG = g2s |H|2GA

µ⌫G
Aµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a
µ⌫ , OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O
3W =

1

3!
g✏abcW

a ⌫
µ W b

⌫⇢W
c ⇢µ , O

3G =
1

3!
gsfABCG

A ⌫
µ GB

⌫⇢G
C ⇢µ , (8)

and the CP-odd operators

OB eB = g02|H|2Bµ⌫
eBµ⌫ , OG eG = g2s |H|2GA

µ⌫
eGAµ⌫ , (9)

OHfW = ig(DµH)†�a(D⌫H)fW a
µ⌫ , OH eB = ig0(DµH)†(D⌫H) eBµ⌫ , (10)

O
3

fW =
1

3!
g✏abcfW

a ⌫
µ W b
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µuR) ,

Oq
L = (iH†

$
DµH)(Q̄L�

µQL) ,

O(3) q
L = (iH†�a

$
DµH)(Q̄L�

µ�aQL) , (14)

where eH = i�
2

H⇤, and in operators / Q̄LuR we include a Yukawa coupling yu (mu = yuv/
p
2)

as an order parameter of the chirality-flip. We also understand, here and in the following,

that when needed the Hermitian conjugate of a given operator is included in the analysis. In

the first class we have, in addition, the four-fermion operators:

Oq
LL = (Q̄L�

µQL)(Q̄L�
µQL) , O(8) q

LL = (Q̄L�
µTAQL)(Q̄L�

µTAQL) ,

Ou
LR = (Q̄L�

µQL)(ūR�
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µTAuR) ,

Ou
RR = (ūR�
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|H|2|DµH|2

|H|6

|H|2f̄LHfR + h.c.

How many of these effects can we have? 

 As many as parameters in the SM: 8
(assuming CP-conservation)

g

g0

mW

gs

mh

mf

for one family



(f=t,b,𝝉)

htt, hbb, h𝝉𝝉

GGh coupling

hγγ coupling

hVV*
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hZγ coupling

h3 coupling



8 BSM primary effects in Higgs physics

(f=b, 𝝉, t)
�LBSM = �ghff h ¯fLfR + h.c.

+ ghV V h


W+µW�

µ +

1

2 cos

2 ✓W
ZµZµ

�

+ GG
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v
Gµ⌫Gµ⌫

+ ��
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v
F � µ⌫F �

µ⌫

+ �Z
h

v
F � µ⌫FZ

µ⌫

+ �g3h h
3

(assuming CP-conservation)
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More general model
● Assuming effective loop 

couplings for quarks and 
gluons

● Top coupling from ttH

● Gluon coupling from gluon 
fusion

● Top coupling directly from ttH

● Gluon coupling from gluon 
fusion production

● Compatibility with the SM

● With larger statistics, will 
start looking at deviations... 
 

CMS PAS HIG-14-009

All parameters floating and κ
V
 ≤1

NEW!

i =
ghii
gSMhii

Higgs coupling determination
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Combined signal strength

  

per decay

● Uncertainty at 15% level

● Theoretical systematics start 
to become important

● Compatibility between 
measurements and with SM

per production

ttH → multileptons
and diphotons

CMS PAS HIG-14-009

NEW!
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ATLAS Prelim.

-1Ldt = 4.6-4.8 fb∫ = 7 TeV s

-1Ldt = 20.3 fb∫ = 8 TeV s

 = 125.5 GeVHm

0.28-
0.33+ = 1.57µ

γγ →H 

 0.12-
 0.17+
 0.18-
 0.24+
 0.22-
 0.23+

0.35-
0.40+ = 1.44µ

 4l→ ZZ* →H 

 0.10-
 0.17+
 0.13-
 0.20+
 0.32-
 0.35+

0.29-
0.32+ = 1.00µ

νlν l→ WW* →H 

 0.08-
 0.16+
 0.19-
 0.24+
 0.21-
 0.21+
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Figure 1: The measured signal strengths for a Higgs boson of mass mH =125.5 GeV, normalised to the
SM expectations, for the individual final states and various combinations. The best-fit values are shown
by the solid vertical lines. The total ±1� uncertainties are indicated by green shaded bands, with the
individual contributions from the statistical uncertainty (top), the total (experimental and theoretical)
systematic uncertainty (middle), and the theory uncertainty (bottom) on the signal strength (from QCD
scale, PDF, and branching ratios) shown as superimposed error bars. The measurements are based on
Refs. [3, 5, 6], with the changes mentioned in the text.

Section 2. In the H ! ⌧⌧ channel, the ratio µVBF+VH/µggF+ttH has an infinite 1� upper bound, because
the signal is almost only observed in the VBF mode, hence the ggF denominator can be arbitrarily small.

To test the sensitivity to VBF production alone, the data are also fitted with the ratio µVBF/µggF+ttH .
In order not to influence the VBF measurement through the VH categories, the parameter µVH/µggF+ttH
is treated independently and profiled. A value of

µVBF/µggF+ttH = 1.4+0.5
�0.4 (stat) +0.4

�0.3 (sys)

is obtained from the combination of the four channels (Fig. 4). This result provides evidence at the 4.1�
level that a fraction of Higgs boson production occurs through VBF.

6

i =
ghii
gSMhii
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8 BSM primary effects in Higgs physics

(f=b, 𝝉, t)
�LBSM = �ghff h ¯fLfR + h.c.

+ ghV V h
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µ +
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+ ��
h

v
F � µ⌫F �

µ⌫

+ �Z
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v
F � µ⌫FZ

µ⌫

+ �g3h h
3

Affects h³: 	

It can be measured  
in the far future by 

GG→hh

h→Zγ 

(assuming CP-conservation)

6 measured	

at the LHC
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... last hope for finding O(1) deviations ?

small in the SM since it comes at one-loop

(possibility in composite Higgs models)



Message:  
!
Even today, it would be very good to provide 	

the full 8-parameter fit using all data!

well motivated theoretically, 
 as cover all BSM (with heavy spectrum)



6 BSM primary effects:

(f=b, 𝝉, t)�LBSM = i�g̃hff hf̄LfR + h.c.
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v
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v
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CP-violating Higgs couplings



3

⇠ hFF̃ �

h

S

FIG. 1. Left: the diagram that gives rise to fermionic EDMs via the insertion of the operator hF F̃ from Eq. (2). Right: the
two-loop diagram that leads to fermion EDMs in the model involving a VL lepton,  , coupled to a singlet, S, that mixes with
the Higgs. The cross on the scalar line indicates that this contribution is proportional to the mixing term, A, in the scalar
potential.

of ỸS , ✓, and m :

df = d(2l)f ⇥Q2

 ỸS
v

m 
sin(2✓)

⇥
g(m2

 /m
2

h) � g(m2

 /m
2

S)
⇤
,

(13)
where the loop function is given by

g(z) =
z

2

Z
1

0

dx
1

x(1 � x) � z
ln

✓
x(1 � x)

z

◆
, (14)

which satisfies g(1) ⇠ 1.17 and g ⇠ 1

2

ln z for large z. We
show the Feynman diagram responsible for this contribu-
tion on the right of Fig. 1.

It is instructive to consider di↵erent limits of
(13). When mh ⌧ m ,mS , to logarithmic accuracy
g(m2

 /m
2

h) � g(m2

 /m
2

S) ! 1

2

ln(m2

min

/m2

h), where m
min

is the smaller of mS and m . In this limit, the heavy
fields can be integrated out sequentially, with S and  
first, and h second. The first step is simplified by the
use of the chiral anomaly equation for  , @µ ̄�µ�5 =
2i ̄�

5

 + ↵
8⇡Q

2

 Fµ⌫ F̃µ⌫ . This leads to the following iden-
tification:

c̃h

⇤̃2

=
↵Q2

 

4⇡

ỸSA

m2

Sm 
; ⇤

UV

' min(mS ,m ). (15)

Apart from a smaller value for the logarithmic cuto↵,
the result in this limit di↵ers little from the contact op-
erator case above. Even if the value of the logarithm is
not enhanced, ln(m2

min

/m2

h) ⇠ O(1), the corrections to
the Higgs diphoton rate will be limited to at most the
sub-percent level unless a fine-tuned cancellation of de is
arranged with some other CP -odd source.

We now consider a di↵erent near-degenerate limit,
|mh � mS | ⌧ mh, which turns out to be more inter-
esting as it allows the EDM constraints to be bypassed.
If the di↵erence between the masses is small, we can ap-
proximate

sin(2✓)(m2

S � m2

h) ! 2Av, (16)

and the EDM becomes

df = d(2l)f ⇥ Q2
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g0(m2

 /m
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�! d(2l)f ⇥ Q2

 ỸS
Av2

m2
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, (18)

where in the final step we made use of the large m limit.
The limiting case (17) receives no logarithmic enhance-

ment. Moreover, the value of the A parameter can be
very small, comparable to the mass splitting between h
and S or less. An O(1 GeV) mass splitting would nat-
urally place Av2/(m2

hm ) in the O(10�2 � 10�3) range,
suppressing the EDM safely below the bound.
At the same time, as explicitly shown in Ref. [5], mod-

ifications to the h ! �� rate can be significant, and
enhancement can come from the Fµ⌫ F̃µ⌫ amplitude. Un-
like corrections to the Fµ⌫Fµ⌫ amplitudes that can en-
hance or suppress the e↵ective rate, the CP -odd chan-
nel always adds to R�� . Assuming that the mass di↵er-
ence between the singlet and the Higgs is small enough
that they cannot be separately resolved (which requires
|mS � mh| ⇠< 3 GeV with current statistics [5]), the ap-
parent increase in the diphoton rate in this model is

Re↵
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and �
ˆh!�� ⇠ �

ˆS!�� then R�� simplifies to a ✓-
independent expression,
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��(ỸS) ' 1 +
�

ˆS!��

�
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. (21)

The rate for the weak eigenstate Ŝ to decay to two pho-
tons via its pseudoscalar coupling to the VL fermions is

�
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↵2Q4

 Ỹ
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s m
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Constrained indirectly: one-loop impact on Electric Dipole 
Moments (EDM): 
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☛ Small effect expected in 	

       Higgs physics (HL-LHC needed)

But weak bounds on CP-violating  h𝝉𝝉 couplings:	


          Can we measure CPV in h→𝝉𝝉? 



Flavor violating Higgs couplings: 
h→f1f2

Interesting region for h→τμ:

getting there (CMS):
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Figure 5: Left) Upper limits by category for the LFV H ! µt decays. Right) Best fit branching
fractions by category.

9 Extracting limits on lepton flavor violating couplings
The constraint on B(H ! µt) can be interpreted in terms of LFV Higgs Yukawa couplings.
The LFV decays H ! eµ, et, µt arise at tree level from the assumed flavor violating Yukawa
interactions where the relevant terms are explicitly

LV ⌘ �Yeµ ēLµRh � Yµeµ̄LeRh � Yet ēLtRh � Ytet̄LeRh � Yµtµ̄LtRh � Ytµt̄LµRh

The branching fraction in terms of the Yukawa couplings are given by

B(H ! lalb) =
G(H ! lalb)

G(H ! lalb) + GSM
(1)

where la, lb = e, µ, t and la 6= lb. The decay width, in turn, is

G(H ! lalb) =
mh

8p
(|Ylb la |2 + |Yla lb |2) (2)

and SM Higgs width is GSM = 4.1 MeV for a 125 GeV Higgs boson. It was assumed that at
most one of non-standard decay mode of the Higgs is significant compared to the SM decay
width.

The constraints on the Yukawa couplings derived from the limit B(H ! µt) < 1.57% are shown
in Figure 6. This is compared to the constraints from previous indirect measurements. It can be
seen that the direct search improves the constraint by roughly an order of magnitude.

10 Conclusions
The first direct search for lepton flavor violating decays of a Higgs boson to a muon-tau pair,
based on the full 8 TeV dataset collected by CMS in 2012 is presented. The sensitivity of the

μτe 

μτhad 

Search for H�μτ 

@CMSexperiment @ICHEP2014 a.david@cern.ch 

89 

!  τ lepton flavor violation not as well constrained as μe (MEG). 
!  Based on SM H�ττ analysis. Different kinematics allows good SM H rejection. 

!  BR(H�μτ) < 1.57% at 95%CL (expected limit of 0.75%) 

[CMS-PAS-HIG-14-005] 
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custodial breaking hVV momentum-dependent 	

hVV couplings
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contact interactions

but beaten paths… 
(not independent from other	


couplings already tested)

EWPT TGC

Higgs primary 
 couplings

dipoles

EWPT
☛

Deviations in these couplings  
are related to deviations  

in other SM couplings  
(not seen at present)



H†DµHf̄�µf

=
1

2v
⇥

Some modifications in h→Zff  related to Z→ff      

Example:

Constrained by LEP1	

 at the per-mille level!



Explicit correlations between hZff and Zff:

ĥ ⌘ v + h

3

first term of Eq. (10) gives a contribution to the
custodial-preserving coupling hV V (V = Z,W ) and
determines another BSM primary e↵ect. This cou-
pling can be measured, for example, in WW ! h.

It is important at this point to stress that, by
construction, the di↵erent �Li are orthogonally pro-
jected into di↵erent BSM primary e↵ects, and none
of the terms in a given �Li contributes to other BSM
primaries that is not its own (e.g., no term in �Lh

��

contributes to the hZ�, hGG, hff , h3 or hV V cou-
pling). The additional terms in each �Li, beyond
the BSM primary e↵ect, tell us what physical pro-
cesses are not independent and are instead correlated
with the BSM primaries. This can be useful if a de-
parture from the SM predictions is observed: for ex-
ample, if only a deviation in h ! �� is measured,
Eq. (5) tells us that there must also be departures in
h ! ZZ/WW . Alternatively, if no deviations from
the SM are found in the BSM primary e↵ects, these
relations can be used to put constraints on the size
of the other terms in �Li.

Having presented all possible interactions achieved
by an ĥ-dependent shift in the SM parameters, we
study next the set of possible (CP-conserving) BSM
contributions that can lead to departures from gauge-
coupling universality. How many e↵ects of this type
can we have? Since EM and SU(3)c must be unbro-
ken, only the W and Z couplings can receive devi-
ations from the SM. Assuming for simplicity family
universality we have, in principle, 9 gauge-boson cou-
plings to fermions (the Z couplings to eL,R, ⌫L, uL,R,
dL,R and the W couplings to eL⌫L and uLdL), the Z
coupling to ĥ, 3 and triple-gauge (TGC) and quartic-
gauge (QGC) self-couplings. We must however keep
in mind that not all deviations in these couplings are
independent from each other, since a linear combi-
nation of all these corresponds to the universal shift
of Eq. (6).

Let us first look at the 10 gauge-boson couplings
to fermions and to the Higgs-field ĥ. In the gauge
eigenstate basis, corrections to these couplings arise

3 We do not independently count the W coupling to ĥ, since
this is equivalent to considering the custodial-preserving
combination ĥ2(WµWµ + ZµZµ/2c2✓W ) that has already

been accounted for in Eq. (10).

from the ĥ-dependent interactions

ĥ2V a
µ J

µa
f , ĥ2⌘aV a

µ J
µ
L f , ĥ2⌘aV a

µ J
µ
R f , (12)

ĥ4⌘a⌘bV a
µ V

µ b , ĥ4⌘a⌘bV a
µ J

µ b
L f , (13)

where V a
µ ⌘ W a

µ � t✓W �a3Bµ (to preserve EM) and,
to make the global SU(2)L properties manifest, we
have separated the interactions in which the Higgs
enters as a singlet, ĥ2, or as a triplet,

ĥ2⌘a 2 H†�aH , with ⌘a ⌘ (0, 0, 1) . (14)

The lepton currents are Jµa
f = L̄L�a�µLL, J

µ
L f =

L̄L�µLL and Jµ
R f = ēR�µeR, and similarly for

quarks. All terms of Eq. (12) can arise from L
6

built
as products of fermion currents and Higgs currents,
these latter being, in the unitary gauge,

iH†$DµH = �g
ĥ2

2
⌘aV a

µ , iH†�a
$
DµH = g

ĥ2

2
V a
µ .

(15)
Similarly, the first term of Eq. (13) can arise from
a dimension-6 operator built by squaring the first
Higgs current of Eq. (15). On the other hand, the
second term in Eq. (13), containing four Higgs, can
only arise from a dimension-8 operator and can then
be neglected. This has the implication that, at the
leading order (L

6

), BSM-e↵ects in the W couplings
are not independent from those in the Z couplings.

There are many ways to connect the BSM-e↵ects
of Eq. (12) to experiments. Since the best con-
straints on V ff vertices come from measurement of
the couplings at the Z-pole by LEP, it is convenient
to parametrize the e↵ects of Eq. (12) as modifications
of the Z couplings to fermions:
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by an ĥ-dependent shift in the SM parameters, we
study next the set of possible (CP-conserving) BSM
contributions that can lead to departures from gauge-
coupling universality. How many e↵ects of this type
can we have? Since EM and SU(3)c must be unbro-
ken, only the W and Z couplings can receive devi-
ations from the SM. Assuming for simplicity family
universality we have, in principle, 9 gauge-boson cou-
plings to fermions (the Z couplings to eL,R, ⌫L, uL,R,
dL,R and the W couplings to eL⌫L and uLdL), the Z
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ĥ2

2
V a
µ .

(15)
Similarly, the first term of Eq. (13) can arise from
a dimension-6 operator built by squaring the first
Higgs current of Eq. (15). On the other hand, the
second term in Eq. (13), containing four Higgs, can
only arise from a dimension-8 operator and can then
be neglected. This has the implication that, at the
leading order (L

6

), BSM-e↵ects in the W couplings
are not independent from those in the Z couplings.

There are many ways to connect the BSM-e↵ects
of Eq. (12) to experiments. Since the best con-
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to parametrize the e↵ects of Eq. (12) as modifications
of the Z couplings to fermions:
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2 CP-conserving BSM primary e↵ects

2.1 ĥ-dependent BSM e↵ects

We start considering BSM-e↵ects that can be parametrized as ĥ-dependent interactions, where
ĥ is the neutral component of the Higgs-field:

ĥ ⌘ v + h(x) , (2)

where v ' 246 GeV is the Higgs vacuum expectation value (VEV) and h the Higgs excitation.
We first consider those CP-conserving e↵ects which a↵ect interactions involving only h, that
arise from dimension-6 operators generated by multiplying operators in L

4

by |H|2/⇤2 (H being
the Higgs doublet). In the unitary gauge, that will be used henceforth, these e↵ects can be
captured by promoting the SM parameters, that we take to be e, s✓W , gs, Yf ,�h, and the Higgs

kinetic-term Zh, b to ĥ-dependent functions:

e(ĥ), s✓W (ĥ), gs(ĥ), Yf (ĥ), �h(ĥ), Zh(ĥ) . (3)

These functions can be expanded in powers of ĥ2/⇤2, e.g. e(ĥ) = e+ �e ĥ2/v2+ · · · , where (here
and in what follows) we absorb powers of v2/⇤2 in the expansion coe�cients. In the vacuum
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from e(ĥ), s✓W (ĥ), gs(ĥ), it is convenient to write the SM gauge-interactions in a non-canonical
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Eq. (4) gives the SM EW-interactions after substituting Aµ ! Aµ � s2✓W (v)Zµ and canonically
normalizing the gauge-boson fields. The two independent deviations w.r.t. the SM, parametrized
by e(ĥ) and s✓W (ĥ), can be projected orthogonally into two di↵erent physical processes, that we
choose to be h ! �� and h ! Z� for the accuracy to which they are experimentally constrained.
Indeed, a h�� coupling can arise from the ĥ-dependence of e with constant s✓W :
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bThe e↵ect of |H|2/⇤2 multiplying the SM fermion kinetic-terms is redundant as can be eliminated by a
redefinition of the SM fermions.

to our first BSM primary e↵ect: it defines the best observable that can be used to bound all
terms in �Lh

�� . Indeed, from the experimental value of h ! �� 7 we obtain bounds on �� at
the per-mille level 5.

On the other hand, we can take, orthogonally to Eq. (5), the direction
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that in Eq. (4) gives the BSM-induced interactions
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The first term of Eq. (8) defines another BSM primary e↵ect: its contribution to the hZ�
coupling, that is constrained by h ! Z� searches. Similarly, taking the SU(3)c coupling gs(ĥ) =
gs(1 + GGĥ2/v2), one obtains

�Lh
GG = GG

✓
h

v
+

h2

2v2

◆
GA

µ⌫G
Aµ⌫ , (9)

whose first term modifies the hGG coupling measured in GG ! h7, that leads also to a per-mille
bound on GG
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@hYf (ĥ) and �g3h = �v2@h�h(ĥ), whose BSM primary e↵ects are respectively

the contributions to the hff and h3 interactions. Finally, from Zh(ĥ) we obtain, by going to
the canonical basis, and up to a redefinition of �gh

ff and �g3h in Eq. (10), the BSM-e↵ect
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The first term of Eq. (11) gives a contribution to the custodial-preserving coupling hV V (V =
Z,W ) and determines another BSM primary e↵ect. This coupling can be measured, for example,
in WW ! h.

It is important at this point to stress that, by construction, the di↵erent�Li are orthogonally
projected into di↵erent BSM primary e↵ects, and none of the terms in a given �Li contributes
to other BSM primaries that is not its own (e.g., no term in �Lh

�� contributes to the hZ�, hGG,
hff , h3 nor hV V coupling). The additional terms in each �Li, beyond the BSM primary e↵ect,
tell us what physical processes are not independent and are instead correlated with the BSM
primaries. This can be useful if a departure from the SM predictions is observed: for example,
if only a deviation in h ! �� is measured, Eq. (6) tells us that there must also be departures
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the canonical basis, and up to a redefinition of �gh

ff and �g3h in Eq. (10), the BSM-e↵ect

�Lh
V V = �gh

V V

"
h

 
W+µW�

µ +
ZµZµ

2c2✓W

!
+�

#
, (11)

where

� =

 
W+µW�

µ +
ZµZµ

2c2✓W

!⇣2h2

v
+

4h3

3v2
+

h4

3v3

⌘
+

m2

h

12m2

W

✓
h4

v
+

3h5

4v2
+

h6

8v3

◆

+
mf

4m2

W

✓
h2

v
+

h3

3v2

◆�
f̄LfR + h.c.

�
, (12)

The first term of Eq. (11) gives a contribution to the custodial-preserving coupling hV V (V =
Z,W ) and determines another BSM primary e↵ect. This coupling can be measured, for example,
in WW ! h.

It is important at this point to stress that, by construction, the di↵erent�Li are orthogonally
projected into di↵erent BSM primary e↵ects, and none of the terms in a given �Li contributes
to other BSM primaries that is not its own (e.g., no term in �Lh

�� contributes to the hZ�, hGG,
hff , h3 nor hV V coupling). The additional terms in each �Li, beyond the BSM primary e↵ect,
tell us what physical processes are not independent and are instead correlated with the BSM
primaries. This can be useful if a departure from the SM predictions is observed: for example,
if only a deviation in h ! �� is measured, Eq. (6) tells us that there must also be departures

to our first BSM primary e↵ect: it defines the best observable that can be used to bound all
terms in �Lh

�� . Indeed, from the experimental value of h ! �� 7 we obtain bounds on �� at
the per-mille level 5.

On the other hand, we can take, orthogonally to Eq. (5), the direction
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coupling, that is constrained by h ! Z� searches. Similarly, taking the SU(3)c coupling gs(ĥ) =
gs(1 + GGĥ2/v2), one obtains

�Lh
GG = GG

✓
h

v
+

h2

2v2

◆
GA

µ⌫G
Aµ⌫ , (9)

whose first term modifies the hGG coupling measured in GG ! h7, that leads also to a per-mille
bound on GG

5. Also, from Yf (ĥ) and �h(ĥ), we obtain
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◆
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�L
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✓
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3h

2v
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3h2

4v2
+

h3

8v3

◆
, (10)

with �gh
ff = � vp

2

@hYf (ĥ) and �g3h = �v2@h�h(ĥ), whose BSM primary e↵ects are respectively

the contributions to the hff and h3 interactions. Finally, from Zh(ĥ) we obtain, by going to
the canonical basis, and up to a redefinition of �gh

ff and �g3h in Eq. (10), the BSM-e↵ect

�Lh
V V = �gh

V V
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, (11)

where
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+
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v
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�
, (12)

The first term of Eq. (11) gives a contribution to the custodial-preserving coupling hV V (V =
Z,W ) and determines another BSM primary e↵ect. This coupling can be measured, for example,
in WW ! h.

It is important at this point to stress that, by construction, the di↵erent�Li are orthogonally
projected into di↵erent BSM primary e↵ects, and none of the terms in a given �Li contributes
to other BSM primaries that is not its own (e.g., no term in �Lh

�� contributes to the hZ�, hGG,
hff , h3 nor hV V coupling). The additional terms in each �Li, beyond the BSM primary e↵ect,
tell us what physical processes are not independent and are instead correlated with the BSM
primaries. This can be useful if a departure from the SM predictions is observed: for example,
if only a deviation in h ! �� is measured, Eq. (6) tells us that there must also be departures

Correlations with the primary Higgs couplings:
hVV form-factor	

correlated with hγγ

hVV form-factor	

correlated with hγZ
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using ↵em, mW and mZ as the SM input parameters. This latter choice makes the phenomeno-
logical analysis particularly transparent, since these input parameters receive no corrections
from BSM-e↵ects. e On the other hand, �gZ

1 is constrained by TGC measurements at LEP2 10

and LHC. Although a global analysis on the L
6

contributions to TGC, using all existing data,
does not exist yet, we expect that bounds on �gZ

1 can reach at present the per-cent level 11,12.
Eq. (22) gives also contributions to Higgs physics, such as a custodial-breaking hV V coupling or
new e↵ects to h ! V f̄f that could be also used to constrain �gZ

1 . We believe however that when
rigorous analyses of both TGC and Higgs physics (on the lines of Ref. 13) will be available, TGC
constraints will always outdo Higgs physics ones 12, so that our parametrization will remain the
most convenient.

Apart from Eq. (13), there can also be BSM-induced interactions between fermion and gauge-
bosons of a di↵erent type than those in the SM. These include couplings of W to right-handed
quarks and dipole-type interactions, that we parametrize as

�LW
R = �gW

R

ĥ2

v2
W+

µ ūR�
µdR + h.c. , (23)

�LV
dipole

=
Yqĥ

m2

W

h
�G

q q̄LT
A�µ⌫qRG

A
µ⌫ + �A

q (T
3

q̄L�
µ⌫qRAµ⌫ +

s✓Wp
2
ūL�

µ⌫dRW
+

µ⌫)

+ �Z
q (T3

q̄L�
µ⌫qRZµ⌫ +

c✓Wp
2
ūL�

µ⌫dRW
+

µ⌫) + h.c.
i
,

for quarks q = u, d, where the coe�cients are assumed to be real and T
3

denotes weak isospin
(and similarly for leptons). Note that the dipole interactions with W are not independent from
those of A and Z, as the term that splits these dipole interactions, ĥ2⌘aW a

µ⌫ ĥq̄L�
µ⌫qR, arises at

dimension-8.
Let us now move to TGC and QGC. At O(p4) there are 4 possible CP-conserving TGC

couplings and 5 QGC14, but not all can arise from L
6

. We already encountered one with the same
Lorentz structure as in the SM:�LgZ1

that led to Eq. (21). Other contributions could in principle

arise from L
6

operators containing covariant derivatives and/or field-strengths. However, by
integration by parts and using the EOM, one can reduce them to dimension-6 operators with
only field-strengths 2. The only operators at O(p4), made of field-strengths and contributing to
EWSB, are

ĥ2⌘aW a
µ⌫B

µ⌫ , ĥ4⌘a⌘bW a
µ⌫W

b µ⌫ . (24)

The second one involves four Higgs and cannot arise from dimension-6 operators, while the first
one gives

ĥ2⌘aW a
µ⌫B

µ⌫ = ĥ2
h
Ŵ 3

µ⌫B
µ⌫ + 2igc✓WW�

µ W+

⌫ (Aµ⌫ � t✓WZµ⌫)
i
. (25)

The second term clearly contains a new dipole-type TGC for the W , that can be identified with
�� of Ref. 8. Since Eq. (25) also contains contributions to other BSM primaries (such as the
S-parameter and h ! ��, Z�), we must arrange a linear combination that does not project into
them. We find that

�L� =
��

v2

h
ieĥ2(Aµ⌫ � t✓WZµ⌫)W

+µW�⌫ + Z⌫@µĥ
2(t✓WAµ⌫ � t2✓WZµ⌫)

+
(ĥ2 � v2)

2

⇣
t✓WZµ⌫A

µ⌫ +
c
2✓W

2c2✓W
Zµ⌫Z

µ⌫ +W+

µ⌫W
�µ⌫

⌘i
, (26)

gives us the combination that we were looking for: it projects into a new BSM primary e↵ect,
the TGC �� 8, but not into previous ones.

eFour-fermion interactions in L6 (which have no direct relation with Higgs physics and can therefore be studied
separately) a↵ect the value of GF as extracted through the measurement of µ-decay. For this reason the traditional
choice of using GF to fix one input parameter is less convenient than the one we propose here.

Correlations with triple gauge couplings (TGC):

hVV form-factor	

correlated with ZWW

ĥ ⌘ v + h

for leptons, and similarly for quarks:

�LV
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uR

ĥ2

v2
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ĥ2

v2


Zµd̄L�µdL � c✓Wp

2
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2
(W+µūL�µdL + h.c.)

�
. (18)

Notice that, as discussed above, modifications to the W couplings are explicitly related to
modifications to the Z couplings.

It remains to consider the independent e↵ect of the first term of Eq. (14). We consider it in
the following linear combination (that includes also terms of Eq. (13)):

��gZ
1 c2✓W
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#
,

(19)
where Jµ

Z = Jµ
3

�s2✓W Jµ
em. Why this particular combination? This is obtained by performing the

EM-preserving shift

s2✓W ! s2✓W (1 + 2�gZ
1 c2✓W ĥ2/v2) (keeping e constant) , (20)

only in the SM gauge-couplings of the fermions and ĥ. In the vacuum ĥ = v (freezing the Higgs
h), the e↵ects in Eq. (19) can only be probed as a relative di↵erence of s✓W as measured in

the fermion and ĥ sector (V ff couplings and gauge-boson masses), with respect to the value
as measured in interactions involving gauge bosons only. Therefore it requires the knowledge
of TGC/QGC. Indeed, by field redefinitions, the non-Higgs physics part of Eq. (19) can be
rewritten as a contribution to the VWW coupling (gV ) and V V 0WW coupling (gV V 0

) only.
This explicitly gives

�gZ
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gZSM
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2c2✓W gWW
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=
�gZZ

2gZZ
SM

=
�g�Z
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. (21)

where �gZ
1 has been chosen to match the TGC definition of Ref. 8. Eq. (19) gives however also

a contribution to the custodial-preserving hV V coupling that defines one of our BSM primary,
�gh

V V . To eliminate this, we redefine �gh
V V ! �gh

V V + g2v�gZ
1 c2✓W in Eq. (11), that gives an

extra contribution proportional �gZ
1 to be added to Eq. (19). The final result is

�LgZ1
= �gZ

1

"
igc✓W

⇣
Zµ(W+⌫W�

µ⌫ � h.c.) + Zµ⌫W+

µ W�
⌫

⌘
+

e2v

2c2✓W
hZµZ

µ

� 2c2✓W
h

v

 
g(W�

µ Jµ
� + h.c.) +

gc
2✓W

c3✓W
ZµJ

µ
Z + 2et✓WZµJ

µ
em

!✓
1 +

h

2v

◆

� g2c2✓W

⇣
W+

µ W�µ +
c
2✓W

2c4✓W
ZµZ

µ
⌘⇣5

2
h2 + 2

h3

v
+

h4

2v2

⌘
+ g2c2✓W v�

#
. (22)

The interesting property of our parametrization in Eqs. (17,18,22) is the following. Since
BSM-e↵ects to SM propagators can always be eliminated through the equations of motion
(EOM), there is a one to one correspondence between each of the �gZ

f of Eqs. (17,18) and

the corresponding �(Z ! ff) partial-width measured at LEP1 9. d Therefore all the 7 param-
eters �gZ

f can be bounded at the per-mille level by Z decay-widths and asymmetries at LEP1,

dThis is true in the limit in which mf is neglected, so that interference with dipole-type BSM e↵ects vanishes.
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using ↵em, mW and mZ as the SM input parameters. This latter choice makes the phenomeno-
logical analysis particularly transparent, since these input parameters receive no corrections
from BSM-e↵ects. e On the other hand, �gZ

1 is constrained by TGC measurements at LEP2 10

and LHC. Although a global analysis on the L
6

contributions to TGC, using all existing data,
does not exist yet, we expect that bounds on �gZ

1 can reach at present the per-cent level 11,12.
Eq. (22) gives also contributions to Higgs physics, such as a custodial-breaking hV V coupling or
new e↵ects to h ! V f̄f that could be also used to constrain �gZ

1 . We believe however that when
rigorous analyses of both TGC and Higgs physics (on the lines of Ref. 13) will be available, TGC
constraints will always outdo Higgs physics ones 12, so that our parametrization will remain the
most convenient.

Apart from Eq. (13), there can also be BSM-induced interactions between fermion and gauge-
bosons of a di↵erent type than those in the SM. These include couplings of W to right-handed
quarks and dipole-type interactions, that we parametrize as

�LW
R = �gW

R

ĥ2
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,

for quarks q = u, d, where the coe�cients are assumed to be real and T
3

denotes weak isospin
(and similarly for leptons). Note that the dipole interactions with W are not independent from
those of A and Z, as the term that splits these dipole interactions, ĥ2⌘aW a

µ⌫ ĥq̄L�
µ⌫qR, arises at

dimension-8.
Let us now move to TGC and QGC. At O(p4) there are 4 possible CP-conserving TGC

couplings and 5 QGC14, but not all can arise from L
6

. We already encountered one with the same
Lorentz structure as in the SM:�LgZ1

that led to Eq. (21). Other contributions could in principle

arise from L
6

operators containing covariant derivatives and/or field-strengths. However, by
integration by parts and using the EOM, one can reduce them to dimension-6 operators with
only field-strengths 2. The only operators at O(p4), made of field-strengths and contributing to
EWSB, are

ĥ2⌘aW a
µ⌫B

µ⌫ , ĥ4⌘a⌘bW a
µ⌫W

b µ⌫ . (24)

The second one involves four Higgs and cannot arise from dimension-6 operators, while the first
one gives

ĥ2⌘aW a
µ⌫B

µ⌫ = ĥ2
h
Ŵ 3
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µ⌫ + 2igc✓WW�
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. (25)

The second term clearly contains a new dipole-type TGC for the W , that can be identified with
�� of Ref. 8. Since Eq. (25) also contains contributions to other BSM primaries (such as the
S-parameter and h ! ��, Z�), we must arrange a linear combination that does not project into
them. We find that

�L� =
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gives us the combination that we were looking for: it projects into a new BSM primary e↵ect,
the TGC �� 8, but not into previous ones.

eFour-fermion interactions in L6 (which have no direct relation with Higgs physics and can therefore be studied
separately) a↵ect the value of GF as extracted through the measurement of µ-decay. For this reason the traditional
choice of using GF to fix one input parameter is less convenient than the one we propose here.
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for leptons, and similarly for quarks:
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Notice that, as discussed above, modifications to the W couplings are explicitly related to
modifications to the Z couplings.

It remains to consider the independent e↵ect of the first term of Eq. (14). We consider it in
the following linear combination (that includes also terms of Eq. (13)):
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where Jµ
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em. Why this particular combination? This is obtained by performing the

EM-preserving shift

s2✓W ! s2✓W (1 + 2�gZ
1 c2✓W ĥ2/v2) (keeping e constant) , (20)

only in the SM gauge-couplings of the fermions and ĥ. In the vacuum ĥ = v (freezing the Higgs
h), the e↵ects in Eq. (19) can only be probed as a relative di↵erence of s✓W as measured in

the fermion and ĥ sector (V ff couplings and gauge-boson masses), with respect to the value
as measured in interactions involving gauge bosons only. Therefore it requires the knowledge
of TGC/QGC. Indeed, by field redefinitions, the non-Higgs physics part of Eq. (19) can be
rewritten as a contribution to the VWW coupling (gV ) and V V 0WW coupling (gV V 0
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where �gZ
1 has been chosen to match the TGC definition of Ref. 8. Eq. (19) gives however also

a contribution to the custodial-preserving hV V coupling that defines one of our BSM primary,
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V V . To eliminate this, we redefine �gh
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The interesting property of our parametrization in Eqs. (17,18,22) is the following. Since
BSM-e↵ects to SM propagators can always be eliminated through the equations of motion
(EOM), there is a one to one correspondence between each of the �gZ

f of Eqs. (17,18) and

the corresponding �(Z ! ff) partial-width measured at LEP1 9. d Therefore all the 7 param-
eters �gZ

f can be bounded at the per-mille level by Z decay-widths and asymmetries at LEP1,

dThis is true in the limit in which mf is neglected, so that interference with dipole-type BSM e↵ects vanishes.
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1. breaking of custodial in h→ZZ∗,WW∗:

Higgs decays:

prediction from L6 :  arXiv:1308.2803
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λWZ ≈ 0.6 δg1Z - 0.5 δκγ - 1.6 κZγ
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and similarly for h→Wff, Zff form-factors:

(assuming mf=0 and CP-conservation)

3.1 New physics e↵ects in h ! V f̄f

The decays h ! V f̄f (V = W,Z) are potentially much richer than two-body decays, since

the di↵erent di↵erential partial-widths can give in principle extra information on BSM con-

tributions [7, 34–39]. Nevertheless, as we will show, most of the new information that we

could extract from measuring the various di↵erential partial-widths of the decay h ! V f̄f is

already constrained by other experiments.

Contributions to h ! V f̄f can come from corrections to hV V vertices and contact-

interactions hV f̄f . Apart from the contributions given in Eq. (31), we have
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h
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i
, (37)
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i
, (38)

where Dµ⌫ = @µ@⌫ �2⌘µ⌫ and

ĉW = cW + HW , ĉZ = ĉW + ĉBt
2
✓W

, ĉB = cB + HB , (39)

cWW = HW , cZZ =
1

2
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2
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)� 2
s4✓W
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BB . (40)

Eq. (38) gives the contributions to the contact hV f̄f vertices that is found to be correlated

with those to the V f̄f vertices:

ghZff =
2

v
�gfZ and ghWff 0 =

2

v
�gfW , (41)

where �gfZ and �gfW are given respectively in Eqs. (60) and (68) of Appendix A.

The CP-even part of the total amplitude for the process h ! V f̄f can be written as 4

M(h ! V Jf ) = (
p
2GF )

1/2✏⇤µ(q) JV ⌫
f (p)

⇥
AV

f ⌘µ⌫ + BV
f (p · q ⌘µ⌫ � pµ q⌫)

⇤
, (42)

where q and p are respectively the total 4-momentum of V and the fermion pair in the JV
f

current (Jµ
fL,R

= f̄L,R�µfL,R), ✏µ is the polarization 4-vector of V , and we have defined

AV
f = aVf + baVf

p2 +m2
V

p2 �m2
V

, BV
f = bVf

1

p2 �m2
V

+bbVf
1

p2
(bbVf = 0 for V = W ) . (43)

4We neglect terms proportional to the light fermion masses (see however Ref. [38]). Also we omit a term
proportional to CW

f ✏µ⌫↵� p
↵ q� that could be CP-even if CW

f is pure imaginary. None of the Wilson coe�cients
of the dimension-6 operators contribute to this term at tree-level.
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➥3 parameters  (apart from a total rescaling; 2 for V=W) to be 
measured in momentum/angle distributions
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● NLO corrections are not treated properly. The known SM 

EWK corrections are just scaled with κ

● Changes to the W- and Z-couplings would likely also cause 
changes to event kinematics
● Visible in H→WW and H→ZZ decays
● Visible in VBF and VH production

→ κ-framework is good for inclusive quantities
→ but a coupling strength is not sufficient for distributions

κ-framework: known limitations

(order one bounds from SM values 	

expected after the end of LHC run2)

5 Phenomenology

5.1 Form-factors for ff ! V h decays

For V = Z,W , the CP-even part of the total amplitude for the process ff ! V h can be

written as

M(ff ! V h) =
1

v
✏⇤µ(q) JV ⌫

f (p)
⇥
AV

f ⌘µ⌫ + BV
f (p · q ⌘µ⌫ � pµ q⌫)

⇤
, (45)

where q and p are respectively the total 4-momentum of V and the fermion pair in the JV
f

current (Jµ
fL,R

= f̄L,R�µfL,R), ✏µ is the polarization 4-vector of V , and we have defined

AV
f = aVf + baVf

m2
V

p2 �m2
V

, BV
f = bVf

1

p2 �m2
V

+bbVf
1

p2
(bbVf = 0 for V = W ) . (46)

where,

gfZ =
g

c✓W
(T3 �Qfs

2
✓W

) gfW =
gp
2

(47)

and,

aZf = 2�gZ
ff � 2�gZ

1 (g
f
Zc2✓W + eQs2✓W ) + 2��g0Y

s✓W
c2✓W

, aWf =
p
2c✓W �gZ

ff � 2�gZ
1 g

f
W c2✓W ,

baZf = 2 +
gfZv

m2
Zc

2
✓W

�
�gh

V V + �gZ
1 e

2v � ��g
02v
�
, baWf = 2 +

�gh
V V g

f
Wv

m2
W

,

bZf = 2
gfZ
c2✓W

(��� � �Z�c2✓W � 2���c
2
✓W

) , bWf = 2gfW (��� � �Z� � 2���) ,

bbZf = �2eQf t✓W �Z� , (48)

At high energies, i.e. for s � m2
V we get,

M(ff ! ZTh) =
✏⇤ · Jf

v

2m2
Z

ŝ

"
1�

" 
eQf t✓W +

gfZc2✓W
c2✓W

!
�Z� +

gfZ
c2✓W

(�� + 2���c
2
✓W

)

#
ŝ

2m2
Z

#
,

M(ff ! ZLh) =
p · Jf
v

2mZ

ŝ

"
1 +

✓
2�gZ

ff � 2�gZ
1 (g

f
Zc2✓W + eQs2✓W ) + 2��g0Y

s✓W
c2✓W

◆
ŝ

2m2
Z

#
,

M(ff ! WTh) =
✏⇤ · Jf

v

2m2
Z

ŝ

"
1� gfW (�� + �Z� + 2���)

ŝ

2m2
W

#
,

M(ff ! WLh) =
p · Jf
v

2mW

ŝ

"
1 +

⇣p
2c✓W �gZ

ff � 2�gZ
1 g

f
W c2✓W

⌘ ŝ

2m2
W

#
.

(49)

5.2 Form-factors for h ! V ff decays

Same as previous subsection.
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Predictions from L6 :

Corrections to TGC:           δg1Z ,δκγ	

Corrections to Zff:              δgf Z	


Corrections to hVV:            δgh VV	


Corrections to hZγ & hγγ:  κZγ , κγγ

all BSM effects can be written as a functions of 	

contributions to other couplings: 

arXiv:1308.2803

5 Phenomenology

5.1 Form-factors for ff ! V h decays

For V = Z,W , the CP-even part of the total amplitude for the process ff ! V h can be

written as

M(ff ! V h) =
1

v
✏⇤µ(q) JV ⌫

f (p)
⇥
AV

f ⌘µ⌫ + BV
f (p · q ⌘µ⌫ � pµ q⌫)

⇤
, (45)

where q and p are respectively the total 4-momentum of V and the fermion pair in the JV
f

current (Jµ
fL,R

= f̄L,R�µfL,R), ✏µ is the polarization 4-vector of V , and we have defined

AV
f = aVf + baVf

m2
V

p2 �m2
V

, BV
f = bVf

1

p2 �m2
V

+bbVf
1

p2
(bbVf = 0 for V = W ) . (46)

where,

gZf =
g

c✓W
(T3 �Qfs

2
✓W

) gWf =
gp
2

(47)

and,

aZf = 2�gZ
f � 2�gZ

1 (g
Z
f c2✓W + eQs2✓W ) + 2��g

0Y
s✓W
c2✓W

, aWf =
p
2c✓W �gZ

f � 2�gZ
1 g

W
f c2✓W ,

baZf = 2gZf +
gZf v

m2
Zc

2
✓W

�
�gh

V V + �gZ
1 e

2v � ��g
02v
�
, baWf = 2gWf +

�gh
V V g

W
f v

m2
W

,

bZf = 2
gZf
c2✓W

(��� � Z�c2✓W � 2��c
2
✓W

) , bWf = 2gWf (��� � Z� � 2��) ,

bbZf = �2eQf t✓WZ� , (48)

At high energies, i.e. for ŝ � m2
V we get,

M(ff ! ZTh) = gZf
✏⇤ · Jf

v

2m2
Z

ŝ

"
1 +

1

gZf

"
2�gZ

f � 2�gZ
1 (g

Z
f c2✓W + eQs2✓W )

+

 
�

gZf
c2✓W

+
2g0Y s✓W

c2✓W

!
�� �

 
eQf t✓W +

gZf c2✓W
c2✓W

!
Z� � 2gZf ��

#
ŝ

2m2
Z

#
,

M(ff ! ZLh) = gZf
q · Jf
v

2mZ

ŝ

"
1 +

1

gZf

✓
2�gZ

f � 2�gZ
1 (g

Z
f c2✓W + eQs2✓W ) + 2��g

0Y
s✓W
c2✓W

◆
ŝ

2m2
Z

#
,

M(ff ! WTh) = gWf
✏⇤ · Jf

v

2m2
W

ŝ

"
1 + ((

p
2c✓W

�gZ
f

gWf
� 2�gZ

1 c
2
✓W

)

� (�� + Z� + 2��))
ŝ

2m2
W

#
,

M(ff ! WLh) = gWf
q · Jf
v

2mW

ŝ

"
1 +

 
p
2c✓W

�gZ
f

gWf
� 2�gZ

1 c
2
✓W

!
ŝ

2m2
W

#
.

(49)
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(assuming no new-physics in h→Zγ)

using EWPT & TGC	


that tell us that already constrained from EWPT and TGC:

1) No large deviations from universality  
in h→Wff,Zff allowed

2) Small deviations in the distributions

h→Zff 



Towards the high-energy regime

M ~ MSM + cBSM E2/Λ2

GOOD: some BSM effects are enhanced at high-energy E:

Example:   pp→V*→Vh (same parametrization of the amplitude as in h→Vff)

V

hq

q
leading effects from 	

contact interactions:	


h Vμ q γμq 



Towards the high-energy regime

M ~ MSM + cBSM E2/Λ2

GOOD: some BSM effects are enhanced at high-energy E:

Example:   pp→V*→Vh (same parametrization of the amplitude as in h→Vff)

V

hq

q

(d
�
/
d
p
T
)/
�

pT (V )

cW = 0.16(⇤2/m2
W), cB = �0.09(⇤2/m2

W)
cW = cB = 0

(d
�
/
d
R

b
b
)/
�

�Rbb

cW = 0.16(⇤2/m2
W), cB = �0.09(⇤2/m2

W)
cW = cB = 0

Figure 1: To illustrate the UV behavior of the operators OV , these plots contrast the partonic
LO distributions of pT (V ) and �R(b, b) (pp ! ZH@8TeV) for the SM and SM+OV with large
Wilson coe�cients.

3 On the Validity of the EFT at Large Energy

The EFT of Eq. (1) is an expansion in derivatives and SM fields over powers of ⇤, defined
as the scale where resonant new physics e↵ects should become visible. Without additional
assumptions, the EFT cannot be expected to describe processes at energies higher than ⇤ as
operators of arbitrary dimension are then expected to become equally important, leading to a
breakdown of the EFT description. In a bottom-up approach (from an IR point of view), ⇤ is
not known a priori, but is a free parameter which needs to be fixed by experiment. The question
whether or not the energy at which an experiment is performed lies within the validity of the
EFT then depends on the sensitivity of the experiment itself. For instance, LEP1, working at
c.o.m. energy

p
ŝ = mZ , put bounds ⇤ & 1.6 TeV for operators like the combination OW +OB.

The sensitivity of the measurement hence fully justifies the EFT expansion in E/⇤, making the
procedure self-consistent. As we will see, at least for the Higgs production data available from
the 7 TeV and 8 TeV LHC runs, the situation is less clear.

Dimension-6 operators including more derivatives with respect to an existing dimension-4
interaction (class 2 in the classification of Eq. (2)) are expected to contribute an extra factor of
p2 ⇠ ŝ to the amplitude compared to the SM, and hence

�

�SM
⇠ (1 + ci2

ŝ

⇤2
)2 (8)

(in reality, this somewhat simplistic view will be complicated by helicity e↵ects). For ci2 ⇠ O(1),
the points at which SM amplitudes are overtaken by EFT e↵ects would typically mark the
breakdown of the expansion in E/⇤. This is indeed the case for the operators in which we
are interested. This is illustrated in Fig. 3, where we show the ud ! hW+ cross section in
the presence of OW at fixed center-of-mass energies

p
ŝ = 400, 500, 1200, and compare the first

(linear) term of �/�SM in the cWE2/⇤2 expansion with the complete expression. As expected,

modifications of the Higgs branching ratios and wave-function normalization: we will comment on this in section 4.

6

arXiv:1406.7320

BSM-effects enhanced	

at the tail of distributions: 

SM

BSM

leading effects from 	

contact interactions:	


h Vμ q γμq 



BUT: Not being yet well measured (bounds of order one ΔMBSM/M < O(1)),        
    one has to be sure is not out of the EFT validity:

Data is coming…

at present we can only bound theories with large cBSM	

    ☛ strongly-coupled BSM where cBSM  ~ 16π2

cBSM  < O(1)/𝟄 
● Validity of EFT:  𝟄 ≡ E2/Λ2  ≪ 1   (expansion parameter)

● Experimental bound:  cBSM E2/Λ2  < O(1) }

V

hq

q



In this (and only this) case, hV-production put important constraints:

VL

hq

q

in competition with TGC (similar high-energy behaviour!):

-0.06 < δg1Z < 0.02  at  95%CL
arXiv:1406.7320

ZL

WL
q

q

WL

hq

q
≈e.g.

ŝ≫mW2 ŝ≫mW2

only one combination of contact-interaction 	

not so well-measured at LEP1



Invisible Higgs decay

for example:	

𝛘 = Dark Matter = extra scalar,  neutralinos, …

Possible in certain models:

(or 𝛘 𝛘 = gravitino + neutrino, as in models in which 
the Higgs is the susypartner of the neutrino)	


                                                          arXiv:1211.4526	


Higgs boson into massive gauge bosons, which will be discussed later in detail. Using the

equivalence theorem and the Lagrangian eq. (1.58), one can write immediately the partial

decay width of the Higgs boson into two longitudinal Z bosons [or W bosons]

Γ(H → ZZ) ∼ Γ(H → w0w0) =

(
1

2MH

) (
2! M2

H

2v

)2 1

2

(
1

8π

)
→

M3
H

32πv2
(1.165)

where the first parenthesis is for the flux factor, the second for the amplitude squared, the

factor 1
2 is for the two identical final particles, and the last parenthesis is for the phase space

factor. For the decay H → WW , one simply needs to remove the statistical factor to account

for both W± states

Γ(H → W+W−) ≃ 2Γ(H → ZZ) (1.166)

The behavior, ΓH ∝ M3
H , compared to ΓH ∝ MH for decays into fermions for instance, is

due to the longitudinal components that grow with the energy [which is MH in this context].

H
V

V

• •
•

+ + + · · ·

Figure 1.16: Generic diagrams for the one– and two–loop corrections to Higgs boson decays.

Let us have a brief look at these decays when higher–order radiative corrections, involving

the Higgs boson and therefore the quartic coupling λ, are taken into account. Including the

one–loop and two–loop radiative corrections, with some generic Feynman diagrams shown

in Fig. 1.16, the partial Higgs decay width into gauge bosons is given by [121, 122]

Γtot ≃ ΓBorn

[
1 + 3λ̂+ 62λ̂2 + O(λ̂3)

]
(1.167)

with λ̂ = λ/(16π2). If the Higgs boson mass is very large, MH ∼ O(10 TeV), the one loop

term becomes close to the Born term, 3λ̂ ∼ 1, and the perturbative series is therefore not

convergent. Even worse, already for a Higgs boson mass in the TeV range, MH ∼ O(1 TeV),

the two–loop contribution becomes as important as the one–loop contribution, 3λ̂ ∼ 62λ̂2.

Hence, for perturbation theory to hold, MH should be smaller than about 1 TeV.

In addition, the partial decay widths become extremely large for a very heavy Higgs

particle. Indeed, taking into account only W and Z decay modes, the total width is

Γ(H → WW + ZZ) ∼ 500 GeV (MH/1 TeV)3 (1.168)
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Bounds on invisible Higgs decay
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42

✦ Given the accuracy of present measurement of 
Higgs branching fractions, there is a lot of 
room for non-SM decays, e.g. decays into 
invisible particles

✦ Many theoretical models predict such decays, e.g.:
๏ Higgs coupled to light dark matter
๏ Hidden valley models
๏ Right-handed neutrino models

✦ Search is done in associated production with 
the Z boson decaying leptonically
๏ Discriminating variables: MET (ATLAS), 

MT (CMS)
✦ ATLAS (4.7+13.0 fb-1):

๏ Br(H→χχ) < 65% (84% exp.) @ 95% CL, 
mH = 125 GeV

✦ CMS (5+20 fb-1):
๏ Br(H→χχ) < 75% (91% exp.) @ 95% CL, 

mH = 125 GeV

q

q

Z
H χ

χ

Z

l−

l+

Figure 1: Leading Feynman diagram of the associated ZH production. In this search the

stable particle
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✦ Given the accuracy of present measurement of 
Higgs branching fractions, there is a lot of 
room for non-SM decays, e.g. decays into 
invisible particles

✦ Many theoretical models predict such decays, e.g.:
๏ Higgs coupled to light dark matter
๏ Hidden valley models
๏ Right-handed neutrino models

✦ Search is done in associated production with 
the Z boson decaying leptonically
๏ Discriminating variables: MET (ATLAS), 

MT (CMS)
✦ ATLAS (4.7+13.0 fb-1):

๏ Br(H→χχ) < 65% (84% exp.) @ 95% CL, 
mH = 125 GeV

✦ CMS (5+20 fb-1):
๏ Br(H→χχ) < 75% (91% exp.) @ 95% CL, 

mH = 125 GeV

missing ET + l+l-



With the Higgs ➠ the SM is completed
➥ No need for anything else 	

(at least) up to around the Planck scale

… but very unnatural theory !

Expected “deformations” from SM properties in natural theories
To see them, we must test the Higgs couplings very well

If deviations are not found…   ☛  Fine-tuned SM (Multiverse?)	

If we find them in h→ff only    ☛  probably MSSM	

We find smaller couplings       ☛  probably Composite Higgs

Model-independent analysis ☛ 8 primary couplings! (one-family & CP-even)	

!
Other Higgs couplings related to other observables = Predictions!

Conclusions

           h→Z𝛄 offers best (last?) chance for large deviations

Higgs

Near future measurements: Probe of contact-interaction qqhV 	

in pp→Vh at high-energies (in competition with pp→VV)


