Higgs Couplings

(the best indirect BSM discriminators)

Alex Pomarol, UAB (Barcelona)

 $\sigma/\sigma_{\rm SM} \equiv 1.00 \pm 0.13^{\circ} \pm 0.09 (\text{stat.})^{\pm 0.08}_{-0.07} (\text{theo.}) \pm 0.07 (\text{syst.})$

Higgs coupling measurements can place bounds on BSM !

(in natural theories, the Higgs couplings must be different from those of the SM)

MSSM with heavy spectrum (>100 GeV)

Main effects from the **2nd Higgs doublet:**

Superpartners can only modify Higgs couplings at the loop-level: Only stops/sbottoms give some contribution to hgg/hYY (not very large)

Relevant plane for susy Higgs couplings:

Relevant plane for susy Higgs couplings:

Relevant plane for susy Higgs couplings:

from arXiv:1212.524

(data before Moriond 13)

Higgs coupling measurements are already ruling out susy-parameter space

Higgs coupling measurements are already ruling out susy-parameter space

Composite Higgs scenarios

Composite PGB Higgs couplings

Couplings dictated by symmetries (as in the QCD chiral Lagrangian) Giudice, Grojean, AP, Rattazzi 07 AP,Riva 12 Untitled-1 \mathcal{M} 2.5 1.5 0.5 1000 1500 2000 500 2500 3000 /sh Also affects the Z propagator, whose properties were **►** $\xi = (v/f)^2 ≤ 0.1$ well-measured at LEP or, equivalently: δg_{hWW} $\lesssim 5\%$ g_{hWW}

Composite PGB Higgs couplings

Couplings dictated by symmetries (as in the QCD chiral Lagrangian)

Giudice, Grojean, AP, Rattazzi 07 AP, Riva 12

$$\frac{g_{hWW}}{g_{hWW}^{\rm SM}} = \sqrt{1 - \frac{v^2}{f^2}} \qquad f$$

f = Decay-constant of the PGB Higgs

(model dependent but expected $f \sim v$)

$$\frac{g_{hff}}{g_{hff}^{SM}} = \frac{1 - (1+n)\frac{v^2}{f^2}}{\sqrt{1 - \frac{v^2}{f^2}}} \qquad n = 0, 1, 2, \dots$$

small deviations on the $h\gamma\gamma(gg)$ -coupling due to the Goldstone nature of the Higgs

observed (expected) 95% CL upper limit of $\xi < 0.12 (0.29)$ MCHM4 $\xi < 0.15 (0.20)$ MCHM5

ATLAS+CMS:

arXiv:1303.1812

ATLAS+CMS:

arXiv:1303.1812

ATLAS+CMS:

Model independent analysis

An organizing principle of possible SM deviations is needed to know what we know and what we should know (measure!)

Parametrization of BSM effects in Higgs physics

Assuming a large new-physics scale, $\Lambda > m_W$:

effective theory for Higgs physics
 approach valid for all BSM with heavy particles !

\mathcal{L}_6 = dimension-six operators

	$\mathcal{O}_{y_u} = y_u H ^2 \bar{Q}_L \widetilde{H} u_R$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{Q}_L H d_R$	$\mathcal{O}_{y_e} = y_e H ^2 \bar{L}_L H e_R$
$\mathcal{O}_{} = \frac{1}{2} (\partial \mu H ^2)^2$	$\mathcal{O}_R^u = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_R^d = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_R^e = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{e}_R \gamma^{\mu} e_R)$
$C_{H} = \frac{1}{2}(O^{*} II)^{2}$	$\mathcal{O}_L^q = (iH^\dagger \overset{\leftrightarrow}{D_\mu} H)(\bar{Q}_L \gamma^\mu Q_L)$		$\mathcal{O}_L^l = (iH^\dagger \stackrel{\leftrightarrow}{D_\mu} H)(\bar{L}_L \gamma^\mu L_L)$
$\mathcal{O}_T = \frac{1}{2} \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right)^2$	$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_L\gamma^{\mu}\sigma^a Q_L)$		$\mathcal{O}_L^{(3)l} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{L}_L\gamma^{\mu}\sigma^a L_L)$
$1 \qquad 2 \qquad (1 \qquad 2 \qquad)$	$\mathcal{O}_{LR}^u = (\bar{Q}_L \gamma^\mu Q_L) (\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_{LR}^{d} = (\bar{Q}_L \gamma^{\mu} Q_L) (\bar{d}_R \gamma^{\mu} d_R)$	$\mathcal{O}_{LR}^e = (\bar{L}_L \gamma^\mu L_L) (\bar{e}_R \gamma^\mu e_R)$
$\mathcal{O}_6 = \lambda H ^6$	$\mathcal{O}_{LR}^{(8)u} = (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{u}_R \gamma^\mu T^A u_R)$	$\mathcal{O}_{LR}^{(8)d} = (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{d}_R \gamma^\mu T^A d_R)$	
$ \rightarrow $	$\mathcal{O}_{RR}^u = (\bar{u}_R \gamma^\mu u_R) (\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}^d_{RR} = (\bar{d}_R \gamma^\mu d_R) (\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}^e_{RR} = (\bar{e}_R \gamma^\mu e_R)(\bar{e}_R \gamma^\mu e_R)$
$\mathcal{O}_W = \frac{ig}{2} \left(H^{\dagger} \sigma^a D^{\mu} H \right) D^{\nu} W^a_{\mu\nu}$	$\mathcal{O}_{LL}^q = (\bar{Q}_L \gamma^\mu Q_L) (\bar{Q}_L \gamma^\mu Q_L)$		$\mathcal{O}_{LL}^l = (\bar{L}_L \gamma^\mu L_L) (\bar{L}_L \gamma^\mu L_L)$
$ \begin{array}{c} 2 \\ \vdots \\ i \\ i$	$\mathcal{O}_{LL}^{(8)q} = (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{Q}_L \gamma^\mu T^A Q_L)$		
$\mathcal{O}_B = \frac{ig}{2} \left(H^{\dagger} D^{\mu} H \right) \partial^{\nu} B_{\mu\nu}$	$\mathcal{O}_{LL}^{ql} = (\bar{Q}_L \gamma^\mu Q_L) (\bar{L}_L \gamma^\mu L_L)$		
	$\mathcal{O}_{LL}^{(3)ql} = (\bar{Q}_L \gamma^\mu \sigma^a Q_L) (\bar{L}_L \gamma^\mu \sigma^a L_L)$		
$O_{2W} = -\frac{1}{2} (D^{\mu} W^{a}_{\mu\nu})^2$	$\mathcal{O}_{LR}^{qe} = (\bar{Q}_L \gamma^\mu Q_L) (\bar{e}_R \gamma^\mu e_R)$		
$\mathcal{O}_{2B} = -\frac{1}{2} (\partial^{\mu} B_{\mu\nu})^2$	$\mathcal{O}_{LR}^{lu} = (\bar{L}_L \gamma^\mu L_L) (\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_{LR}^{ld} = (\bar{L}_L \gamma^\mu L_L) (\bar{d}_R \gamma^\mu d_R)$	
$O_{\mu\nu} = \frac{1}{2} \left(D^{\mu} C^{A} \right)^{2}$	$\mathcal{O}_{RR}^{ud} = (\bar{u}_R \gamma^\mu u_R) (d_R \gamma^\mu d_R)$		
$U_{2G} = -\frac{1}{2}(D^{r} G_{\mu\nu})$	$\mathcal{O}_{RR}^{(s)ua} = (\bar{u}_R \gamma^\mu T^A u_R) (d_R \gamma^\mu T^A d_R)$		
$\mathcal{O}_{BB} = q^{\prime 2} H ^2 B_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{RR}^{ue} = (\bar{u}_R \gamma^\mu u_R) (\bar{e}_R \gamma^\mu e_R)$	$\mathcal{O}_{RR}^{de} = (d_R \gamma^\mu d_R) (\bar{e}_R \gamma^\mu e_R)$	1
$\bigcirc \qquad \qquad$	$\mathcal{O}_R^{ud} = y_u^{\dagger} y_d (i \widetilde{H}^{\dagger} \widetilde{D}_{\mu} H) (\bar{u}_R \gamma^{\mu} d_R)$		
$\bigcup_{GG} = g_s \Pi G_{\mu\nu} G^{\mu\nu}$	$\mathcal{O}_{y_u y_d} = y_u y_d (\bar{Q}_L^r u_R) \epsilon_{rs} (\bar{Q}_L^s d_R)$		
$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_{y_u y_d}^{(8)} = y_u y_d (\bar{Q}_L^r T^A u_R) \epsilon_{rs} (\bar{Q}_L^s T^A d_R)$		
$\mathcal{O}_{\mu\nu} = i a' (D^{\mu} H)^{\dagger} (D^{\nu} H) B$	$\mathcal{O}_{y_u y_e} = y_u y_e (\bar{Q}_L^r u_R) \epsilon_{rs} (\bar{L}_L^s e_R)$		
$C_{HB} = ig(D_{H})(D_{H})D_{\mu\nu}$	$\mathcal{O}_{y_u y_e}' = y_u y_e (\bar{Q}_L^{r\alpha} e_R) \epsilon_{rs} (\bar{L}_L^s u_R^\alpha)$		
$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a\nu}_{\mu} W^{o}_{\nu\rho} W^{c\rho\mu}$	$\mathcal{O}_{y_e y_d} = y_e y_d^{\dagger} (L_L e_R) (d_R Q_L)$		
$\mathcal{O}_{3C} = \frac{1}{2!} q_s f_{ABC} G^{A\nu} G^B G^{C\rho\mu}$	$\mathcal{O}^u_{DB} = y_u \bar{Q}_L \sigma^{\mu\nu} u_R \widetilde{H} g' B_{\mu\nu}$	$\mathcal{O}^d_{DB} = y_d \bar{Q}_L \sigma^{\mu\nu} d_R H g' B_{\mu\nu}$	$\mathcal{O}^e_{DB} = y_e \bar{L}_L \sigma^{\mu\nu} e_R H g' B_{\mu\nu}$
$3! 33 \pi D C \sim \mu \sim \nu \rho C$	$\mathcal{O}^u_{DW} = y_u \bar{Q}_L \sigma^{\mu\nu} u_R \sigma^a \tilde{H} g W^a_{\mu\nu}$	$\mathcal{O}^d_{DW} = y_d \bar{Q}_L \sigma^{\mu\nu} d_R \sigma^a H g W^a_{\mu\nu}$	$\mathcal{O}^e_{DW} = y_e \bar{L}_L \sigma^{\mu\nu} e_R \sigma^a H g W^a_{\mu\nu}$
	$\mathcal{O}^u_{DG} = y_u \bar{Q}_L \sigma^{\mu\nu} T^A u_R H g_s G^A_{\mu\nu}$	$\mathcal{O}_{DG}^d = y_d \bar{Q}_L \sigma^{\mu\nu} T^A d_R H g_s G^A_{\mu\nu}$	

Too many new terms to say something?

BSM primary physical Higgs effects !

correlations between observables

(see also arXiv:1406.6376)

\blacktriangleright Not <u>all type</u> of deviations from SM can arise from \mathcal{L}_6 !

There are plenty of correlations among possible observables

I. Primary Higgs couplings

Higgs couplings affected by BSM but <u>not</u> affecting (at tree-level) other SM observables

Effects that on the vacuum, H = v, give only a redefinition of the SM couplings:

Not physical!

But can affect h physics:

How many of these effects can we have?

As many as parameters in the SM: 8 for one family (assuming CP-conservation)

 $(f=t,b,\tau)$

How many of these effects can we have? As many as parameters in the SM: 8 for one family

(assuming CP-conservation)

(assuming CP-conservation)

$$\Delta \mathcal{L}_{BSM} = \frac{\delta g_{hff}}{\delta f_L f_R} h \bar{f}_L f_R + h.c. \qquad (f=b, \tau, t) \\ + \frac{g_{hVV}}{g_{hVV}} h \left[W^{+\mu} W^{-}_{\mu} + \frac{1}{2\cos^2 \theta_W} Z^{\mu} Z_{\mu} \right] \\ + \frac{\kappa_{GG}}{v} \frac{h}{v} G^{\mu\nu} G_{\mu\nu} \\ + \frac{\kappa_{\gamma\gamma}}{v} \frac{h}{v} F^{\gamma \mu\nu} F^{\gamma}_{\mu\nu} \\ + \frac{\kappa_{\gamma Z}}{v} \frac{h}{v} F^{\gamma \mu\nu} F^{Z}_{\mu\nu} \\ + \frac{\delta g_{3h}}{v} h^3$$

JHEP 1311 (2013) 066

(assuming CP-conservation)

$$\Delta \mathcal{L}_{BSM} = \delta g_{hff} h \bar{f}_L f_R + h.c. \qquad (f=b, \tau, t) \\ + g_{hVV} h \left[W^{+\mu} W^{-}_{\mu} + \frac{1}{2 \cos^2 \theta_W} Z^{\mu} Z_{\mu} \right] \\ + \kappa_{GG} \frac{h}{v} G^{\mu\nu} G_{\mu\nu} \\ + \kappa_{\gamma\gamma} \frac{h}{v} F^{\gamma \mu\nu} F^{\gamma}_{\mu\nu} \qquad \text{important:} \\ + \kappa_{\gamma Z} \frac{h}{v} F^{\gamma \mu\nu} F^{Z}_{\mu\nu} \\ + \delta g_{3h} h^3$$

JHEP 1311 (2013) 066

(assuming CP-conservation)

$$\Delta \mathcal{L}_{BSM} = \begin{cases} \delta g_{hff} h \bar{f}_L f_R + h.c. & (f=b, \tau, t) \\ + g_{hVV} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2\cos^2 \theta_W} Z^{\mu} Z_{\mu} \right] \\ + \kappa_{GG} \frac{h}{v} G^{\mu\nu} G_{\mu\nu} \\ + \kappa_{\gamma\gamma} \frac{h}{v} F^{\gamma \, \mu\nu} F_{\mu\nu}^{\gamma} \\ + \kappa_{\gamma Z} \frac{h}{v} F^{\gamma \, \mu\nu} F_{\mu\nu}^{Z} \\ + \delta g_{3h} h^3 \end{cases}$$

JHEP 1311 (2013) 066

Higgs coupling determination

All parameters floating and $\kappa_v \leq 1$

6-parameter fit not found!

(assuming CP-conservation)

$$\Delta \mathcal{L}_{BSM} = \begin{cases} \delta g_{hff} & h\bar{f}_L f_R + h.c. \quad (f=b, \tau, t) \\ 6 \text{ measured} & + g_{hVV} & h \left[W^{+\,\mu}W^{-}_{\mu} + \frac{1}{2\cos^2\theta_W} Z^{\mu}Z_{\mu} \right] \\ & + \frac{\kappa_{GG}}{v} h^{-}_{\mu} G^{\mu\nu}G_{\mu\nu} \\ & + \frac{\kappa_{\gamma\gamma}}{v} h^{-}_{\nu} F^{\gamma\,\mu\nu}F^{\gamma}_{\mu\nu} \\ & + \frac{\kappa_{\gammaZ}}{v} h^{-}_{\nu} F^{\gamma\,\mu\nu}F^{Z}_{\mu\nu} \end{pmatrix} \qquad h \rightarrow Z\gamma \\ & + \frac{\delta g_{3h}}{b} h^{3} \qquad \text{Affects h}^{3}: \\ \text{It can be measured} \\ \text{in the far future by} \\ & \text{GG} \rightarrow h \qquad \text{JHEP 1311 (2013) 066} \end{cases}$$

Experimental bound on $h \rightarrow Z\gamma$ (10 x the SM)

small in the SM since it comes at one-loop

... last hope for finding O(I) deviations? (possibility in composite Higgs models)

Message:

Even today, it would be very good to provide the full **<u>8-parameter</u>** fit using all data!

well motivated theoretically, as cover all BSM (with heavy spectrum)

6 BSM primary effects:

$$\begin{split} \Delta \mathcal{L}_{\text{BSM}} &= i\delta \tilde{g}_{hff} h \bar{f}_L f_R + h.c. \qquad (\text{f=b}, \tau, \text{t}) \\ &+ \tilde{\kappa}_{GG} \frac{h}{v} G^{\mu\nu} \tilde{G}_{\mu\nu} \qquad \qquad (\tilde{F}_{\mu\nu} \equiv \epsilon_{\mu\nu\rho\sigma} F^{\rho\sigma}) \\ &+ \tilde{\kappa}_{\gamma\gamma} \frac{h}{v} F^{\gamma \ \mu\nu} \tilde{F}^{\gamma}_{\mu\nu} \\ &+ \tilde{\kappa}_{\gamma Z} \frac{h}{v} F^{\gamma \ \mu\nu} \tilde{F}^{Z}_{\mu\nu} \end{split}$$

Constrained indirectly: one-loop impact on Electric Dipole Moments (EDM): e.g. $d_e < 8.7 \ 10^{-29} e cm$ (ACME 13)

McKeen,Pospelov,Ritz 12

and similarly for $\widetilde{\kappa}_{YZ}$ (using also $d_{u,d}$)

Flavor violating Higgs couplings: $h \rightarrow f_1 f_2$

Interesting region for $h \rightarrow \tau \mu$:

2. Beyond the primary Higgs couplings

Some modifications in $h \rightarrow Zff$ related to $Z \rightarrow ff$ Constrained by LEPI at the per-mille level!

Explicit correlations between hZff and Zff:

arXiv:1405.0181 arXiv:1406.6376

$$\begin{split} \Delta \mathcal{L}_{ee}^{V} &= \delta \boldsymbol{g}_{\boldsymbol{eR}}^{\boldsymbol{Z}} \frac{\hat{h}^{2}}{v^{2}} Z^{\mu} \bar{e}_{R} \gamma_{\mu} e_{R} \\ &+ \delta \boldsymbol{g}_{\boldsymbol{eL}}^{\boldsymbol{Z}} \frac{\hat{h}^{2}}{v^{2}} \left[Z^{\mu} \bar{e}_{L} \gamma_{\mu} e_{L} - \frac{c_{\theta_{W}}}{\sqrt{2}} (W^{+\mu} \bar{\nu_{L}} \gamma_{\mu} e_{L} + \text{h.c.}) \right] \\ &+ \delta \boldsymbol{g}_{\boldsymbol{\nu L}}^{\boldsymbol{Z}} \frac{\hat{h}^{2}}{v^{2}} \left[Z^{\mu} \bar{\nu}_{L} \gamma_{\mu} \nu_{L} + \frac{c_{\theta_{W}}}{\sqrt{2}} (W^{+\mu} \bar{\nu_{L}} \gamma_{\mu} e_{L} + \text{h.c.}) \right] \end{split}$$

Correlations with triple gauge couplings (TGC):

arXiv:1405.0181

arXiv:1406.6376

$$\begin{split} \Delta \mathcal{L}_{g_{1}^{Z}} &= \delta g_{1}^{Z} \Bigg[igc_{\theta_{W}} \Big(Z^{\mu} (W^{+\nu}W^{-}_{\mu\nu} - \mathrm{h.c.}) + Z^{\mu\nu}W^{+}_{\mu}W^{-}_{\nu} \Big) + \frac{e^{2}v}{2c_{\theta_{W}}^{2}}hZ_{\mu}Z^{\mu} \\ &- 2c_{\theta_{W}}^{2} \frac{h}{v} \Bigg(g(W^{-}_{\mu}J^{\mu}_{-} + \mathrm{h.c.}) + \frac{gc_{2\theta_{W}}}{c_{\theta_{W}}^{3}}Z_{\mu}J^{\mu}_{Z} + 2et_{\theta_{W}}Z_{\mu}J^{\mu}_{em} \Bigg) \left(1 + \frac{h}{2v} \right) \\ &- g^{2}c_{\theta_{W}}^{2} \Big(W^{+}_{\mu}W^{-\mu} + \frac{c_{2\theta_{W}}}{2c_{\theta_{W}}^{4}}Z_{\mu}Z^{\mu} \Big) \Big(\frac{5}{2}h^{2} + 2\frac{h^{3}}{v} + \frac{h^{4}}{2v^{2}} \Big) + g^{2}c_{\theta_{W}}^{2}v\Delta \Bigg] \,. \end{split}$$

Correlations with triple gauge coupling (TGC):

$$\begin{split} \Delta \mathcal{L}_{\kappa_{\gamma}} &= \frac{\delta \kappa_{\gamma}}{v^{2}} \Big[i e \hat{h}^{2} (A_{\mu\nu} - t_{\theta_{W}} Z_{\mu\nu}) W^{+\mu} W^{-\nu} + Z_{\nu} \partial_{\mu} \hat{h}^{2} (t_{\theta_{W}} A^{\mu\nu} - t_{\theta_{W}}^{2} Z^{\mu\nu}) \\ &+ \frac{(\hat{h}^{2} - v^{2})}{2} \Big(t_{\theta_{W}} Z_{\mu\nu} A^{\mu\nu} + \frac{c_{2\theta_{W}}}{2c_{\theta_{W}}^{2}} Z_{\mu\nu} Z^{\mu\nu} + W^{+}_{\mu\nu} W^{-\mu\nu} \Big) \Big], \\ \hat{h} &\equiv v + h \\ \mathbf{custodial \ breaking \ hVV-coupling \ correlated \ with \ ZWW} \\ \Delta \mathcal{L}_{g_{1}^{Z}} &= \delta g_{1}^{Z} \Big[i g c_{\theta_{W}} \Big(\frac{Z^{\mu} (W^{+\nu} W^{-}_{\mu\nu} - \mathbf{h.c.}) + Z^{\mu\nu} W^{+}_{\mu} W^{-}_{\nu} \Big) + \frac{e^{2} v}{2c_{\theta_{W}}^{2}} h Z_{\mu} Z^{\mu} \\ &- 2c_{\theta_{W}}^{2} \frac{h}{v} \Big(g (W^{-}_{\mu} J^{\mu}_{-} + \mathbf{h.c.}) + \frac{g c_{2\theta_{W}}}{c_{\theta_{W}}^{3}} Z_{\mu} J^{\mu}_{Z} + 2e t_{\theta_{W}} Z_{\mu} J^{\mu}_{em} \Big) \Big(1 + \frac{h}{2v} \Big) \\ &- g^{2} c_{\theta_{W}}^{2} \Big(W^{+}_{\mu} W^{-\mu} + \frac{c_{2\theta_{W}}}{2c_{\theta_{W}}^{4}} Z_{\mu} Z^{\mu} \Big) \Big(\frac{5}{2} h^{2} + 2 \frac{h^{3}}{v} + \frac{h^{4}}{2v^{2}} \Big) + g^{2} c_{\theta_{W}}^{2} v \Delta \Big]. \end{split}$$

arXiv:1405.0181

arXiv:1406.6376

2. Beyond the primary Higgs couplings

 $hZ^{\mu}Z_{\mu}$, $hZ^{\mu\nu}Z_{\mu\nu}$, $hW^{\mu\nu}W_{\mu\nu}$, $hZ^{\mu}f\gamma_{\mu}f$, $hW^{\mu}f\gamma_{\mu}f$, ...

no large deviations expected in these couplings

2. Beyond the primary Higgs couplings
hZ^µZ_µ, hZ^{µν}Z_{µν}, hW^{µν}W_{µν}, hZ^µfY_µf, hW^µfY_µf, ...
→ no large deviations expected in these couplings
BUT worth to explore. Some interesting physical effects in:

VH associated production

Higgs decays:

I. breaking of custodial in $h \rightarrow ZZ^*,WW^*$:

parametrized by λ_{WZ}

Higgs decays:

I. breaking of custodial in $h \rightarrow ZZ^*,WW^*$:

 $\lambda_{WZ} \approx 0.6 \, \delta g_1^{Z} - 0.5 \, \delta K_{Y} - 1.6 \, K_{ZY}$

Higgs decays:

I. breaking of custodial in $h \rightarrow ZZ^*,WW^*$:

and similarly for $h \rightarrow Wff$, Zff form-factors:

(assuming m_f=0 and CP-conservation)

 $\mathcal{M}(h \to V J_f) = (\sqrt{2} G_F)^{1/2} \epsilon^{*\mu}(q) J_f^{V\nu}(p) \left[A_f^V \eta_{\mu\nu} + B_f^V \left(p \cdot q \eta_{\mu\nu} - p_\mu q_\nu \right) \right]$

$$A_f^V = a_f^V + \widehat{a}_f^V \frac{m_V^2}{p^2 - m_V^2}, \qquad B_f^V = b_f^V \frac{1}{p^2 - m_V^2} + \widehat{b}_f^V \frac{1}{p^2} \qquad (\widehat{b}_f^V = 0 \text{ for } V = W)$$

3 parameters (apart from a total rescaling; 2 for V=W) to be measured in momentum/angle distributions

(order one bounds from SM values expected after the end of LHC run2)

Predictions from \mathcal{L}_6 :

arXiv:1308.2803

$$\begin{split} a_{f}^{Z} &= 2\delta g_{f}^{Z} - 2\delta g_{1}^{Z} (g_{f}^{Z}c_{2\theta_{W}} + eQs_{2\theta_{W}}) + 2\delta \kappa_{\gamma} g' Y \frac{s_{\theta_{W}}}{c_{\theta_{W}}^{2}}, \quad a_{f}^{W} &= \sqrt{2}c_{\theta_{W}} \delta g_{f}^{Z} - 2\delta g_{1}^{Z} g_{f}^{W} c_{\theta_{W}}^{2}, \\ \widehat{a}_{f}^{Z} &= 2g_{f}^{Z} + \frac{g_{f}^{Z} v}{m_{Z}^{2} c_{\theta_{W}}^{2}} \left(\delta g_{VV}^{h} + \delta g_{1}^{Z} e^{2} v - \delta \kappa_{\gamma} g'^{2} v \right), \qquad \widehat{a}_{f}^{W} &= 2g_{f}^{W} + \frac{\delta g_{VV}^{h} g_{f}^{W} v}{m_{W}^{2}}, \\ b_{f}^{Z} &= 2\frac{g_{f}^{Z}}{c_{\theta_{W}}^{2}} \left(-\delta \kappa_{\gamma} - \kappa_{Z\gamma} c_{2\theta_{W}} - 2\kappa_{\gamma\gamma} c_{\theta_{W}}^{2} \right), \qquad b_{f}^{W} &= 2g_{f}^{W} \left(-\delta \kappa_{\gamma} - \kappa_{Z\gamma} - 2\kappa_{\gamma\gamma} \right), \\ \widehat{b}_{f}^{Z} &= -2eQ_{f} t_{\theta_{W}} \kappa_{Z\gamma}, \end{split}$$

all BSM effects can be written as a functions of contributions to other couplings:

Corrections to TGC: $\delta g_1^z, \delta \kappa_\gamma$ Corrections to Zff: δg_f^z Corrections to hVV: δg^h_{VV} Corrections to hZY & hYY: κ_{ZY}, κ_{YY}

that tell us that already constrained from EWPT and TGC:

I) No large deviations from universality in $h \rightarrow Wff$, Zff allowed

2) Small deviations in the distributions

(assuming no new-physics in $h \rightarrow Z\gamma$)

Towards the high-energy regime

GOOD: some BSM effects are enhanced at high-energy E:

Example: $pp \rightarrow V^* \rightarrow Vh$ (same parametrization of the amplitude as in $h \rightarrow Vff$)

 $\mathcal{M} \sim \mathcal{M}_{SM} + \mathcal{C}_{BSM} E^2/\Lambda^2$ Ieading effects from contact interactions: hV^μqγ_μq

Towards the high-energy regime

GOOD: some BSM effects are enhanced at high-energy **E**:

BUT: Not being yet well measured (bounds of order one $\Delta \mathcal{M}_{BSM}/\mathcal{M} < O(I)$), one has to be sure is not out of the EFT validity:

P

D

- Validity of EFT: $\epsilon = E^2/\Lambda^2 \ll 1$ (expansion parameter) $c_{BSM} \leq O(I)/\epsilon$
- Experimental bound: $C_{BSM} E^2 / \Lambda^2 \leq O(1)$

at present we can only bound theories with large CBSM $rac{rac}{rac}$ strongly-coupled BSM where $c_{BSM} \sim 16\pi^2$

In this (and only this) case, hV-production put important constraints:

in competition with TGC (similar high-energy behaviour!):

Invisible Higgs decay

Possible in certain models:

for example: χ = Dark Matter = extra scalar, neutralinos, ...

(or $\chi \chi$ = gravitino + neutrino, as in models in which the Higgs is the susypartner of the neutrino) arXiv:1211.4526

Bounds on invisible Higgs decay

missing $E_T + l^+l^-$

ATLAS (4.7+13.0 fb⁻¹):

 Br(H→χχ) < 65% (84% exp.) @ 95% CL, m_H = 125 GeV

CMS (5+20 fb⁻¹):

 Br(H→χχ) < 75% (91% exp.) @ 95% CL, m_H = 125 GeV

Conclusions

With the Higgs is the SM is completed

 \blacktriangleright No need for anything else (at least) up to around the Planck scale

... but very unnatural theory!

Expected "deformations" from SM properties in natural theories To see them, we must test the Higgs couplings very well

If we find them in $h \rightarrow \text{ff only} = probably MSSM$ We find smaller couplings

- If deviations are not found... Fine-tuned SM (Multiverse?)

 - probably Composite Higgs

<u>Model-independent analysis</u> **w** 8 primary couplings! (one-family & CP-even) $h \rightarrow Z\gamma$ offers best (last?) chance for large deviations Other Higgs couplings related to other observables = Predictions! Near future measurements: Probe of contact-interaction qqhV in $pp \rightarrow Vh$ at high-energies (in competition with $pp \rightarrow VV$)