Higgs Couplings

(the best indirect BSM discriminators)

compositeness

supersymmetry

Multiverse

Alex Pomarol, UAB (Barcelona)

The LHC first-run legacy:

Many channels available!

\Leftrightarrow all quite compatible with the SM Higgs !

A better perspective to understand how close to a SM Higgs:

A better perspective to understand how close to a SM Higgs:

A better perspective to understand how close to a SM Higgs:

Higgs coupling measurements can place bounds on BSM!

(in natural theories, the Higgs couplings must be different from those of the SM)

MSSM with heavy spectrum (> 100 GeV)

Main effects from the 2nd Higgs doublet:

$$
\sim \frac{v^{2}}{M_{H}^{2}}
$$

Dominant effect!

Superpartners can only modify Higgs couplings at the loop-level:
Only stops/sbottoms give some contribution to hgg/hyY (not very large)

Relevant plane for susy Higgs couplings:

Relevant plane for susy Higgs couplings:

Relevant plane for susy Higgs couplings:

(data before Moriond I3)

Higgs coupling measurements are already ruling out susy-parameter space

Higgs coupling measurements are already ruling out susy-parameter space

$\mathbf{K}_{\mathrm{v}} \ll \mathbf{K}_{\mathbf{u}}, \mathbf{K}_{\mathbf{d}}$
(not needed in the fit)

Composite Higgs scenarios

Composite PGB Higgs couplings

Couplings dictated by symmetries (as in the QCD chiral Lagrangian)
Giudice,Grojean,AP,Rattazzi 07

$$
\frac{g_{h W W}}{g_{h W W}^{\mathrm{SM}}}=\sqrt{1-\frac{v^{2}}{f^{2}}}
$$

$\xi=(v / f)^{2} \leqslant 0.1$
or, equivalently:

$$
\frac{\delta g_{h W W}}{g_{h W W}} \lesssim 5 \%
$$

Composite PGB Higgs couplings

Couplings dictated by symmetries (as in the QCD chiral Lagrangian)
Giudice,Grojean,AP,Rattazzi 07

$$
\frac{g_{h W W}}{g_{h W W}^{\mathrm{SM}}}=\sqrt{1-\frac{v^{2}}{f^{2}}}
$$

$f=$ Decay-constant of the PGB Higgs
(model dependent but expected $f \sim v$)

$$
\frac{g_{h f f}}{g_{h f f}^{S M}}=\frac{1-(1+n) \frac{v^{2}}{f^{2}}}{\sqrt{1-\frac{v^{2}}{f^{2}}}}
$$

MCHM4 MCHM5
small deviations on the $\mathrm{h} \gamma \gamma(\mathrm{gg})$-coupling due to the Goldstone nature of the Higgs

observed (expected) 95\% CL upper limit of $\xi<0.12$ (0.29) MCHM4 $\xi<0.15$ (0.20) MCHM5

ATLAS+CMS:
$\frac{g_{\text {hff }}}{g_{\mathrm{hfl}}^{\mathrm{SM}}} 0$

ATLAS+CMS:
$\frac{g_{\text {hff }}}{g_{\mathrm{hfl}}^{\mathrm{SM}}} 0$

ATLAS+CMS:

getting into the interesting region

Model independent analysis

An organizing principle of possible SM deviations is needed to know what we know and what we should know (measure!)

Parametrization of BSM effects in Higgs physics

Assuming a large new-physics scale, $\Lambda \gg m w$:

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}=\mathcal{L}_{\mathrm{SM}}+ \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i} \\
& \uparrow_{\mathrm{NP} \text { scale }}^{\text {dim }=6} \\
& \underbrace{\text { e.g. }}\left||H|^{2} G_{\mu \mu}^{A} G^{A \mu \nu}\right|
\end{aligned}
$$

give the deviations
to SM Higgs physics from BSM
\Rightarrow effective theory for Higgs physics
\Rightarrow approach valid for all BSM with heavy particles !

\mathcal{L}_{6}
 = dimension-six operators

$\mathcal{O}_{y_{u}}=y_{u}\|H\|^{2} \bar{Q}_{L} \widetilde{H} u_{R}$	$\mathcal{O}_{y_{d}}=y_{d}\|H\|^{2} \bar{Q}_{L} H d_{R}$	$\mathcal{O}_{y_{e}}=y_{e}\|H\|^{2} \bar{L}_{L} H e_{R}$
	$\mathcal{O}_{R}^{d}=\left(i H^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} H\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)$	$\begin{gathered} \mathcal{O}_{R}^{e}=\left(i H^{\dagger} \stackrel{D}{\mu}_{\mu} H\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right) \\ \mathcal{O}_{L}^{l}=\left(i H^{\dagger} \overleftrightarrow{D}_{\mu} H\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right) \\ \mathcal{O}_{L}^{(3) L}=\left(i H^{\dagger} \sigma^{a} \stackrel{\leftrightarrow}{D_{\mu}} H\right)\left(\bar{L}_{L} \gamma^{\mu} \sigma^{a} L_{L}\right) \end{gathered}$
$\begin{gathered} \mathcal{O}_{L R}^{u}=\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right) \\ \mathcal{O}_{L R}^{(8) u}=\left(\bar{Q}_{L} \gamma^{\mu} T^{A} Q_{L}\right)\left(\bar{u}_{R} \gamma^{\mu} T^{A} u_{R}\right) \end{gathered}$	$\begin{aligned} & \mathcal{O}_{L R}^{d}\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right) \\ & \mathcal{O}_{L R}^{(8) d}=\left(\bar{Q}_{L} \gamma^{\mu} T^{\mu} Q_{L}\right)\left(\bar{d}_{R} \gamma^{\mu} T^{\mu} d_{R}\right) \end{aligned}$	$\mathcal{O}_{L R}^{e}=\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)$
$\begin{gathered} \mathcal{O}_{R R}^{u}=\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right) \\ \mathcal{O}_{L L}^{q}=\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right) \\ \mathcal{O}_{L L}^{(8)}=\left(\bar{Q}_{L} \mu^{\mu} T^{A} Q_{L}\right)\left(\bar{Q}_{L} \gamma^{\mu} T^{A} Q_{L}\right) \end{gathered}$	$\mathcal{O}_{R R}^{d}=\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)$	$\begin{aligned} & \mathcal{O}_{R R}^{e}=\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right) \\ & \mathcal{O}_{L L}^{l}=\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right) \end{aligned}$
$\begin{gathered} \mathcal{O}_{L L}^{a a^{\prime}}=\left(\bar{Q}_{L} \gamma^{\mu} \bar{Q}_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right) \\ \mathcal{O}_{L L}^{(3) a l}=\left(\bar{Q}_{L} \gamma^{\mu} \sigma^{a} Q_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} \sigma^{a} L_{L}\right) \\ \mathcal{O}_{L R}^{q e}=\left(\bar{Q}_{L} \gamma^{\mu} Q_{L}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right) \\ \mathcal{O}_{L R}^{l u}=\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right) \\ \mathcal{O}_{u R}^{u d}=\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right) \\ \mathcal{O}_{R R}^{(8)}=\left(\bar{u}_{R} \gamma^{\mu} T^{A} u_{R}\right)\left(\bar{d}_{R} \gamma^{\mu} T^{A} d_{R}\right) \\ \mathcal{O}_{R R}^{u e}=\left(\bar{u}_{R} \gamma^{\mu} u_{R}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right) \end{gathered}$	$\mathcal{O}_{L R}^{l d}=\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)$ $\mathcal{O}_{R R}^{d e}=\left(\bar{d}_{R} \gamma^{\mu} d_{R}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)$	
$\mathcal{O}_{R}^{u d}=y_{u}^{\dagger} y_{d}\left(i \widetilde{H}^{\dagger}{\left.\stackrel{\leftrightarrow}{D_{\mu}} H\right)\left(\bar{u}_{R} \gamma^{\mu} d_{R}\right)}^{-}\right.$		
$\begin{gathered} \mathcal{O}_{y_{u} y_{d}=} y_{u} u_{d}\left(\bar{Q}_{L}^{r} u_{R}\right) \epsilon_{r s}\left(\bar{Q}_{L}^{s} d_{R}\right) \\ \mathcal{O}_{y_{u x} y_{d}}=y_{u} y_{d}\left(\bar{Q}_{L}^{r} T^{A} u_{R}\right) \epsilon_{r s}\left(\bar{Q}_{L}^{s} T^{A} d_{R}\right) \\ \mathcal{O}_{y_{u} y_{e}}=y_{u} y_{e}\left(\bar{Q}_{L}^{r} u_{R}\right) \epsilon_{r s}\left(\bar{L}_{L}^{s} e_{R}\right) \\ \mathcal{O}_{y_{u}} y_{e}=y_{u} y_{e}\left(\bar{Q}_{L}^{r \alpha} e_{R}\right) \epsilon_{r s}\left(\bar{L}_{L}^{s} u_{R}^{\alpha}\right) \\ \mathcal{O}_{y_{e} y_{d}}=y_{e} y_{d}^{\top}\left(\bar{L}_{L} e_{R}\right)\left(\bar{d}_{R} Q_{L}\right) \end{gathered}$		
$\begin{gathered} \mathcal{O}_{D B}^{u}=y_{u} \bar{Q}_{L} \sigma^{\mu \nu} u_{R} \widetilde{H} g^{\prime} B_{\mu \nu} \\ \mathcal{O}_{D W}^{u}=y_{u} \bar{Q}_{L} \sigma^{\mu \nu} u_{R} \sigma^{a} \widetilde{H} g W_{\mu \nu}^{a} \\ \mathcal{O}_{D G}^{u}=y_{u} \bar{Q}_{L} \sigma^{\mu \nu} T^{A} u_{R} \widetilde{H} g_{s} G_{\mu \nu}^{A} \end{gathered}$	$\begin{gathered} \hline \mathcal{O}_{D B}^{d}=y_{d} \bar{Q}_{L} \sigma^{\mu \nu} d_{R} H g^{\prime} B_{\mu \nu} \\ \mathcal{O}_{D W}^{d}=y_{d} \bar{Q}_{L} \sigma^{\mu \nu} d_{R} \sigma^{a} H g W_{\mu \nu}^{a} \\ \mathcal{O}_{D G}^{d}=y_{d} \bar{Q}_{L} \sigma^{\mu \nu} T^{A} d_{R} H g_{s} G_{\mu \nu}^{A} \end{gathered}$	$\begin{gathered} \hline \mathcal{O}_{D B}^{e}=y_{e} \bar{L}_{L} \sigma^{\mu \nu} e_{R} H g^{\prime} B_{\mu \nu} \\ \mathcal{O}_{D W}^{e}=y_{e} \bar{L}_{L} \sigma^{\mu \nu} e_{R} \sigma^{a} H g W_{\mu \nu}^{a} \end{gathered}$

Too many new terms to say something?

I. Primary Higgs couplings

Higgs couplings affected by BSM but not affecting (at tree-level) other SM observables

Effects that on the vacuum, $\mathbf{H}=v$, give only a redefinition of the SM couplings:

$$
\text { e.g. } \frac{1}{g_{s}^{2}} G_{\mu \nu}^{2}+\frac{|H|^{2}}{\Lambda^{2}} G_{\mu \nu}^{2} \rightarrow\left(\frac{1}{g_{s}^{2}}+\frac{v^{2}}{\Lambda^{2}}\right) G_{\mu \nu}^{2}
$$

Not physical!
But can affect h physics:

affects GG $\rightarrow \mathrm{h}$!

How many of these effects can we have?

As many as parameters in the SM: 8 for one family (assuming CP-conservation)

How many of these effects can we have?

 As many as parameters in the SM: 8 for one family (assuming CP-conservation)$$
\begin{gathered}
\mathbf{g}_{s} \\
\mathbf{g} \\
\mathbf{g}^{\prime} \\
\mathbf{m}_{\mathbf{W}} \\
\mathbf{m}_{\mathbf{h}} \\
\mathbf{m}_{\mathbf{f}} \\
(\mathrm{f}=\mathrm{t}, \mathrm{~b}, \tau)
\end{gathered}
$$

How many of these effects can we have?

 As many as parameters in the SM: 8 for one family (assuming CP-conservation)

How many of these effects can we have?

8 BSM primary effects in Higgs physics

(assuming CP-conservation)

$$
\begin{aligned}
\Delta \mathcal{L}_{\mathrm{BSM}}= & \delta g_{h f f} h \bar{f}_{L} f_{R}+h . c . \quad(\mathrm{f}=\mathrm{b}, \tau, \mathrm{t}) \\
& +g_{h V V} h\left[W^{+\mu} W_{\mu}^{-}+\frac{1}{2 \cos ^{2} \theta_{W}} Z^{\mu} Z_{\mu}\right] \\
& +\kappa_{G G} \frac{h}{v} G^{\mu \nu} G_{\mu \nu} \\
& +\kappa_{\gamma \gamma} \frac{h}{v} F^{\gamma \mu \nu} F_{\mu \nu}^{\gamma} \\
& +\kappa_{\gamma Z} \frac{h}{v} F^{\gamma \mu \nu} F_{\mu \nu}^{Z} \\
& +\delta g_{3 h} h^{3}
\end{aligned}
$$

8 BSM primary effects in Higgs physics

(assuming CP-conservation)

$$
\begin{aligned}
\Delta \mathcal{L}_{\mathrm{BSM}}= & \delta g_{h f f} h \bar{f}_{L} f_{R}+h . c . \quad(\mathrm{f}=\mathrm{b}, \tau, \mathrm{t}) \\
& +g_{h V V} h\left[W^{+\mu} W_{\mu}^{-}+\frac{1}{2 \cos ^{2} \theta_{W}} Z^{\mu} Z_{\mu}\right] \\
& +\kappa_{G G} \frac{h}{v} G^{\mu \nu} G_{\mu \nu} \\
& +\kappa_{\gamma \gamma} \frac{h}{v} F^{\gamma \mu \nu} F_{\mu \nu}^{\gamma} \quad \begin{array}{l}
\text { important: } \\
\text { custodial invari }
\end{array} \\
& +\kappa_{\gamma Z} \frac{h}{v} F^{\gamma \mu \nu} F_{\mu \nu}^{Z} \\
& +\delta g_{3 h} h^{3}
\end{aligned}
$$

8 BSM primary effects in Higgs physics

(assuming CP-conservation)
$\Delta \mathcal{L}_{\mathrm{BSM}}=\quad \delta g_{\text {hff }} h \bar{f}_{L} f_{R}+h . c . \quad(\mathrm{f}=\mathrm{b}, \boldsymbol{\tau}, \mathrm{t})$
6 measured at the LHC

$$
\begin{aligned}
& +g_{h V V} h\left[W^{+\mu} W_{\mu}^{-}+\frac{1}{2 \cos ^{2} \theta_{W}} Z^{\mu} Z_{\mu}\right] \\
& +\kappa_{G G} \frac{h}{v} G^{\mu \nu} G_{\mu \nu} \\
& +\kappa_{\gamma \gamma} \frac{h}{v} F^{\gamma \mu \nu} F_{\mu \nu}^{\gamma} \\
& +\kappa_{\gamma Z} \frac{h}{v} F^{\gamma \mu \nu} F_{\mu \nu}^{Z} \\
& +\delta g_{3 h} h^{3}
\end{aligned}
$$

Higgs coupling determination

ATLAS Preliminary

$\sqrt{\mathrm{s}}=7 \mathrm{TeV} \int \mathrm{Ldt}=4.6-4.8 \mathrm{fb} \mathrm{b}^{-1}$
$\sqrt{s}=8 \mathrm{TeV} \int \mathrm{Ldt}=20.3 \mathrm{fb}^{-1}$

6-parameter fit not found!

8 BSM primary effects in Higgs physics

(assuming CP-conservation)
$\Delta \mathcal{L}_{\mathrm{BSM}}=\quad \delta g_{h f f} h \bar{f}_{L} f_{R}+h . c . \quad(\mathrm{f}=\mathrm{b}, \boldsymbol{\tau}, \mathrm{t})$
6 measured at the LHC

Experimental bound on $\mathrm{h} \rightarrow \mathrm{Z} \boldsymbol{\gamma}$ ($10 \times$ the SM)

small in the SM since it comes at one-loop
... last hope for finding $\mathrm{O}(\mathrm{I})$ deviations? (possibility in composite Higgs models)

Message:

Even today, it would be very good to provide the full 8 -parameter fit using all data!
well motivated theoretically, as cover all BSM (with heavy spectrum)

CP-violating Higgs couplings

6 BSM primary effects:

$$
\begin{array}{rlrl}
\Delta \mathcal{L}_{\mathrm{BSM}}= & i \delta \tilde{g}_{h f f} h \bar{f}_{L} f_{R}+h . c . & & (\mathrm{f}=\mathrm{b}, \boldsymbol{\tau}, \mathrm{t}) \\
& +\tilde{\kappa}_{G G} \frac{h}{v} G^{\mu \nu} \tilde{G}_{\mu \nu} & \left(\tilde{F}_{\mu \nu} \equiv \epsilon_{\mu \nu \rho \sigma} F^{\rho \sigma}\right) \\
& +\tilde{\kappa}_{\gamma \gamma} \frac{h}{v} F^{\gamma \mu \nu} \tilde{F}_{\mu \nu}^{\gamma} & & \\
& +\tilde{\kappa}_{\gamma Z} \frac{h}{v} F^{\gamma \mu \nu} \tilde{F}_{\mu \nu}^{Z} & &
\end{array}
$$

CP-violating Higgs couplings

Constrained indirectly: one-loop impact on Electric Dipole Moments (EDM):

$$
\text { e.g. } \mathrm{d}_{\mathrm{e}}<8.7 \quad 10^{-29} \mathrm{e} \mathrm{~cm} \mathrm{(ACME} \mathrm{I3)}
$$

too strong to compete!

$\tilde{K}_{\gamma \gamma} \leq 10^{-5}$
and similarly for $\widetilde{\mathrm{K}}_{\mathrm{YZ}}$ (using also $\mathrm{d}_{u, \mathrm{~d}}$)

CP-violating Higgs couplings

Constrained indirectly: one-loop impact on Electric Dipole Moments (EDM):

$$
\text { e.g. } d_{e}<8.7 \quad 10^{-29} \text { e cm (ACME I3) }
$$

Brod,Haisch,Zupan 13

CP-violating Higgs couplings

Constrained indirectly: one-loop impact on Electric Dipole Moments (EDM):

$$
\text { e.g. } d_{e}<8.7 \quad 10^{-29} \text { e cm (ACME I3) }
$$

Higgs physics (HL-LHC needed)
But weak bounds on CP-violating $\mathrm{h} \tau \tau$ couplings:

Flavor violating Higgs couplings: $h \rightarrow f_{1} f_{2}$

Interesting region for $h \rightarrow \boldsymbol{T} \mu$:

$$
B R(h \rightarrow \tau \mu) \sim \frac{m_{\mu}}{m_{\tau}} B R(h \rightarrow \tau \tau) \sim 0.4 \%
$$

getting there (CMS):

$\mathrm{BR}(\mathrm{H} \rightarrow \mu \tau)<1.57 \%$ at $95 \% \mathrm{CL}$ (expected limit of 0.75%)

2. Beyond the primary Higgs couplings

2. Beyond the primary Higgs couplings

$h Z^{\mu} Z_{\mu}, h Z^{\mu v} Z_{\mu v}, h W^{\mu v} W_{\mu v}, h Z^{\mu} f \gamma_{\mu} f, h W^{\mu} f \gamma_{\mu} f, \ldots$

 custodial breaking hVVmomentum-dependent
hVV couplings

contact interactions

2. Beyond the primary Higgs couplings

$h Z^{\mu} Z_{\mu}, h Z^{\mu \nu} Z_{\mu v}, h W^{\mu \nu} W_{\mu v}, h Z^{\mu} f \gamma_{\mu} f, h W^{\mu} f \gamma_{\mu} f, \ldots$

custodial breaking hVV momentum-dependent hVV couplings
but beaten paths... (not independent from other couplings already tested)

2. Beyond the primary Higgs couplings

$$
h Z^{\mu} Z_{\mu}, h Z^{\mu v} Z_{\mu v}, h W^{\mu v} W_{\mu v}, h Z^{\mu} f \gamma_{\mu} f, h W^{\mu} f \gamma_{\mu} f, \ldots
$$

custodial breaking hVV
but beaten paths... (not independent from other couplings already tested)

Deviations in these couplings are related to deviations in other SM couplings (not seen at present)
momentum-dependent hVV couplings

contact interactions

Some modifications in $h \rightarrow$ Zff related to $\mathrm{Z} \rightarrow \mathrm{ff}$

Constrained by LEPI
at the per-mille level!

$$
\begin{aligned}
& \begin{array}{l}
\Delta \mathcal{L}_{q q}^{V}=\delta g_{u R}^{Z} \frac{\hat{h}^{2}}{v^{2}} Z^{\mu} \bar{u}_{R} \gamma_{\mu} u_{R}+\delta g_{\boldsymbol{d} \boldsymbol{R}}^{Z} \frac{\hat{h}^{2}}{v^{2}} Z^{\mu} \bar{d}_{R} \gamma_{\mu} d_{R} \\
+\delta \boldsymbol{g}_{\boldsymbol{d L}}^{Z} \frac{\hat{h}^{2}}{v^{2}}\left[Z^{\mu} \bar{d}_{L} \gamma_{\mu} d_{L}-\frac{c_{\theta_{W}}}{\sqrt{2}}\left(W^{+\mu} \bar{u}_{L} \gamma_{\mu} d_{L}+\text { h.c. }\right)\right] \quad \text { appear combined }
\end{array} \\
& +\delta \boldsymbol{g}_{u L}^{Z} \frac{\hat{h}^{2}}{v^{2}}\left[Z^{\mu} \bar{u}_{L} \gamma_{\mu} u_{L}+\frac{c_{\theta_{W}}}{\sqrt{2}}\left(W^{+\mu} \overline{u_{L}} \gamma_{\mu} d_{L}+\text { h.c. }\right)\right] \\
& \text { in the same } \\
& \text { operators } \\
& \Delta \mathcal{L}_{e e}^{V}=\delta g_{e \boldsymbol{R}}^{Z} \frac{\hat{h}^{2}}{v^{2}} Z^{\mu} \bar{e}_{R} \gamma_{\mu} e_{R} \\
& +\boldsymbol{\delta} \boldsymbol{g}_{e L}^{Z} \frac{\hat{h}^{2}}{v^{2}}\left[Z^{\mu} \bar{e}_{L} \gamma_{\mu} e_{L}-\frac{c_{\theta_{W}}}{\sqrt{2}}\left(W^{+\mu} \overline{\nu_{L}} \gamma_{\mu} e_{L}+\text { h.c. }\right)\right] \\
& +\boldsymbol{\delta} \boldsymbol{g}_{\boldsymbol{\nu}}^{Z} \frac{\hat{h}^{2}}{v^{2}}\left[Z^{\mu} \bar{\nu}_{L} \gamma_{\mu} \nu_{L}+\frac{c_{\theta_{W}}}{\sqrt{2}}\left(W^{+\mu_{\nu_{L}}} \gamma_{\mu} e_{L}+\text { h.c. }\right)\right]
\end{aligned}
$$

Correlations with the primary Higgs couplings:

arXiv:I405.018I
arXiv:I406.6376

$$
\begin{aligned}
& \Delta \mathcal{L}_{\gamma \gamma}^{h}=\boldsymbol{\kappa}_{\boldsymbol{\gamma} \boldsymbol{\gamma}}\left(\frac{h}{v}+\frac{h^{2}}{2 v^{2}}\right)\left[A_{\mu \nu} A^{\mu \nu}+Z_{\mu \nu} Z^{\mu \nu}+2 W_{\mu \nu}^{+} W^{-\mu \nu}\right] \\
& \text { hVV form-factor } \\
& \text { correlated with hYV }
\end{aligned}
$$

Correlations with triple gauge couplings (TGC):

$$
\begin{aligned}
& \Delta \mathcal{L}_{\kappa_{\gamma}}=\frac{\boldsymbol{\delta} \kappa_{\gamma}}{v^{2}}\left[i e \hat{h}^{2}\left(A_{\mu \nu}-t_{\theta_{W}} Z_{\mu \nu}\right) W^{+\mu} W^{-\nu}+Z_{\nu} \partial_{\mu} \hat{h}^{2}\left(t_{\theta_{W}} A^{\mu \nu}-t_{\theta_{W}}^{2} Z^{\mu \nu}\right)\right. \\
& +\underbrace{\frac{\left(\hat{h}^{2}-v^{2}\right)}{2}}(t_{\theta_{W}} Z_{\mu \nu} A^{\mu \nu}+\frac{c_{2 \theta_{W}}}{2 c_{\theta_{W}}^{2}} Z_{\mu \nu} Z^{\mu \nu}+\underbrace{W_{\mu \nu}^{+} W^{-\mu \nu}})], \\
& \hat{h} \equiv v+h \\
& \text { hVV form-factor } \\
& \text { correlated with ZWW }
\end{aligned}
$$

$$
\begin{aligned}
\Delta \mathcal{L}_{g_{1}^{Z}} & =\delta g_{1}^{Z}\left[i g c_{\theta_{W}}\left(Z^{\mu}\left(W^{+\nu} W_{\mu \nu}^{-}-\text {h.c. }\right)+Z^{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right)+\frac{e^{2} v}{2 c_{\theta_{W}}^{2}} h Z_{\mu} Z^{\mu}\right. \\
& -2 c_{\theta_{W}}^{2} \frac{h}{v}\left(g\left(W_{\mu}^{-} J_{-}^{\mu}+\text { h.c. }\right)+\frac{g c_{2 \theta_{W}}}{c_{\theta_{W}}^{3}} Z_{\mu} J_{Z}^{\mu}+2 e t_{\theta_{W}} Z_{\mu} J_{e m}^{\mu}\right)\left(1+\frac{h}{2 v}\right) \\
& \left.-g^{2} c_{\theta_{W}}^{2}\left(W_{\mu}^{+} W^{-\mu}+\frac{c_{2 \theta_{W}}}{2 c_{\theta_{W}}^{4}} Z_{\mu} Z^{\mu}\right)\left(\frac{5}{2} h^{2}+2 \frac{h^{3}}{v}+\frac{h^{4}}{2 v^{2}}\right)+g^{2} c_{\theta_{W}}^{2} v \Delta\right]
\end{aligned}
$$

Correlations with triple gauge coupling (TGC):

$$
\begin{aligned}
& \Delta \mathcal{L}_{\kappa_{\gamma}}=\frac{\delta \kappa_{\gamma}}{v^{2}}\left[i e \hat{h}^{2}\left(A_{\mu \nu}-t_{\theta_{W}} Z_{\mu \nu}\right) W^{+\mu} W^{-\nu}+Z_{\nu} \partial_{\mu} \hat{h}^{2}\left(t_{\theta_{W}} A^{\mu \nu}-t_{\theta_{W}}^{2} Z^{\mu \nu}\right)\right. \\
&\left.+\frac{\left(\hat{h}^{2}-v^{2}\right)}{2}\left(t_{\theta_{W}} Z_{\mu \nu} A^{\mu \nu}+\frac{c_{2 \theta_{W}}}{2 c_{\theta_{W}}^{2}} Z_{\mu \nu} Z^{\mu \nu}+W_{\mu \nu}^{+} W^{-\mu \nu}\right)\right], \\
& \quad \hat{h} \equiv v+h
\end{aligned}
$$

custodial breaking hVV-coupling correlated with ZWW

$$
\begin{aligned}
\Delta \mathcal{L}_{g_{1}^{Z}} & =\delta \boldsymbol{g}_{1}^{Z}\left[i g c_{\theta_{W}}\left(Z^{\mu}\left(W^{+\nu} W_{\mu \nu}^{-}-\text {h.c. }\right)+Z^{\mu \nu} W_{\mu}^{+} W_{\nu}^{-}\right)+\frac{e^{2} v}{2 c_{\theta_{W}}^{2}} h Z_{\mu} Z^{\mu}\right. \\
& -2 c_{\theta_{W}}^{2} \frac{h}{v}\left(g\left(W_{\mu}^{-} J_{-}^{\mu}+\text { h.c. }\right)+\frac{g c_{2 \theta_{W}}}{c_{\theta_{W}}^{3}} Z_{\mu} J_{Z}^{\mu}+2 e t_{\theta_{W}} Z_{\mu} J_{e m}^{\mu}\right)\left(1+\frac{h}{2 v}\right) \\
& \left.-g^{2} c_{\theta_{W}}^{2}\left(W_{\mu}^{+} W^{-\mu}+\frac{c_{2 \theta_{W}}}{2 c_{\theta_{W}}^{4}} Z_{\mu} Z^{\mu}\right)\left(\frac{5}{2} h^{2}+2 \frac{h^{3}}{v}+\frac{h^{4}}{2 v^{2}}\right)+g^{2} c_{\theta_{W}}^{2} v \Delta\right]
\end{aligned}
$$

2. Beyond the primary Higgs couplings

$$
h Z^{\mu} Z_{\mu}, h Z^{\mu v} Z_{\mu v}, h W^{\mu \nu} W_{\mu v}, h Z^{\mu} f \gamma_{\mu} f, h W^{\mu} f \gamma_{\mu} f, \ldots
$$

\Leftrightarrow no large deviations expected in these couplings

2. Beyond the primary Higgs couplings

$h Z^{\mu} Z_{\mu}, h Z^{\mu v} Z_{\mu v}, h W^{\mu v} W_{\mu v}, h Z^{\mu} f \gamma_{\mu} f, h W^{\mu} f \gamma_{\mu} f, \ldots$
\Rightarrow no large deviations expected in these couplings
BUT worth to explore. Some interesting physical effects in:

VH associated production

Higgs decays:

I. breaking of custodial in $\mathrm{h} \rightarrow \mathrm{ZZ}^{*}, \mathrm{WW}^{*}$:
parametrized by $\lambda_{w z}$

Higgs decays:

I. breaking of custodial in $\mathrm{h} \rightarrow \mathrm{ZZ}^{*}, \mathrm{WW}^{*}$:

$$
\lambda_{\mathrm{WZ}} \stackrel{\approx}{\approx} 0.6 \delta g_{1} \mathrm{z}-0.5 \delta \mathrm{~K}_{\mathrm{Y}}-1.6 \mathrm{KZ} \text { prediction from } \mathfrak{L}_{6} \text { : arXiv: } 1308.2803
$$

Higgs decays:

I. breaking of custodial in $\mathrm{h} \rightarrow \mathrm{ZZ}^{*}, \mathrm{WW}^{*}$:

and similarly for $\mathrm{h} \rightarrow \mathrm{W} f f$, Zff form-factors:

(assuming $\mathrm{m}_{\mathrm{f}}=0$ and CP-conservation)

$$
\begin{aligned}
& \mathcal{M}\left(h \rightarrow V J_{f}\right)=\left(\sqrt{2} G_{F}\right)^{1 / 2} \epsilon^{* \mu}(q) J_{f}^{V}(p)\left[A_{f}^{V} \eta_{\mu \nu}+B_{f}^{V}\left(p \cdot q \eta_{\mu \nu}-p_{\mu} q_{\nu}\right)\right] \\
& A_{f}^{V}=a_{f}^{V}+\widehat{a}_{f}^{V} \frac{m_{V}^{2}}{p^{2}-m_{V}^{2}}, \quad B_{f}^{V}=\widehat{b}_{f}^{V} \frac{1}{p^{2}-m_{V}^{2}}+\overparen{b}_{f}^{V} \frac{1}{p^{2}} \quad\left(\widehat{b}_{f}^{V}=0 \text { for } V=W\right)
\end{aligned}
$$

$\Rightarrow 3$ parameters (apart from a total rescaling; 2 for $V=W$) to be measured in momentum/angle distributions
(order one bounds from SM values expected after the end of LHC run2)

Predictions from \mathscr{L}_{6} :

$$
\begin{aligned}
& \widehat{b}_{f}^{Z}=-2 e Q_{f} t_{\theta_{W}} \boldsymbol{\kappa}_{Z_{\gamma}},
\end{aligned}
$$

all BSM effects can be written as a functions of contributions to other couplings:

Corrections to TGC:
$\delta g_{1}{ }^{z}, \delta \kappa_{\gamma}$
Corrections to Zff:
Corrections to hVV:
$\delta g_{f}{ }^{z}$
Corrections to hZY \& $\mathrm{h} \gamma \mathrm{Y}: \mathbf{K}_{\mathbf{Z}}, \mathbf{K}_{\mathbf{Y \gamma}}$

that tell us that already constrained from EWPT and TGC:
I) No large deviations from universality in $\mathrm{h} \rightarrow$ Wff,Zff allowed
2) Small deviations in the distributions

(assuming no new-physics in $h \rightarrow Z \gamma$)

Towards the high-energy regime

GOOD: some BSM effects are enhanced at high-energy E:
Example: $\mathbf{p p} \rightarrow \mathbf{V}^{*} \rightarrow \mathbf{V h} \quad$ (same parametrization of the amplitude as in $\mathrm{h} \rightarrow \mathrm{Vff}$)

$$
\mathcal{M} \sim \mathcal{M}_{S M}+\text { CeSS } \mathbf{E}^{2} / \Lambda^{2}
$$

 contact interactions:
$h^{\mathbf{V}}{ }^{\mu} \mathbf{q} \gamma_{\mu} \boldsymbol{q}$

Towards the high-energy regime

GOOD: some BSM effects are enhanced at high-energy E:
Example: $\mathbf{p p} \rightarrow \mathbf{V}^{*} \rightarrow \mathbf{V h} \quad$ (same parametrization of the amplitude as in $\mathrm{h} \rightarrow \mathrm{Vff}$)

$$
\mathcal{M} \sim \mathcal{M}_{S M}+\text { CBSM } \mathbf{E}^{2} / \Lambda^{2}
$$

BSM-effects enhanced at the tail of distributions:

$$
\begin{aligned}
& 0.25=\square c_{W}=0.16\left(\Lambda^{2} / m_{W}^{2}\right), c_{B}=-0.09\left(\Lambda^{2} / m_{W}^{2}\right) \\
& c_{W}=0
\end{aligned}
$$ contact interactions: $h \mathbf{V}^{\mu} \mathbf{q} \gamma_{\mu} \boldsymbol{q}$

Data is coming...

BUT: Not being yet well measured (bounds of order one $\Delta \mathcal{M}_{\mathrm{BSM}} / \mathcal{M}<O(\mathrm{I})$), one has to be sure is not out of the EFT validity:

- Validity of EFT: $\varepsilon \equiv \mathrm{E}^{2} / \Lambda^{2} \ll 1$ (expansion parameter)
- Experimental bound: CBSM $\mathrm{E}^{2 /} \Lambda^{2}<\mathrm{O}(\mathrm{I})$
at present we can only bound theories with large CBSM
ω strongly-coupled BSM where CBSM $\sim 16 \pi^{2}$

In this (and only this) case, hV-production put important constraints:

only one combination of contact-interaction not so well-measured at LEPI
in competition with TGC (similar high-energy behaviour!):
e.g.

Invisible Higgs decay

Possible in certain models:

(or $\chi \chi=$ gravitino + neutrino, as in models in which the Higgs is the susypartner of the neutrino) arXiv:I2|I. 4526

Bounds on invisible Higgs decay

stable particle

missing $E_{T}+l^{+} l^{-}$

ATLAS (4.7+13.0 fb-1):

- $\operatorname{Br}(H \rightarrow \chi \chi)<65 \% ~(84 \% ~ e x p) ~ @ ~ 95 \% ~ C L,$. $\mathrm{m}_{\mathrm{H}}=125 \mathrm{GeV}$
CMS (5+20 fb-1):
- $\operatorname{Br}(\mathbf{H} \rightarrow \chi \chi)<\mathbf{7 5 \%}$ (91\% exp.) @ 95\% CL, $m_{H}=125 \mathrm{GeV}$

Conclusions

With the Higgs
\Leftrightarrow No need for anything else (at least) up to around the Planck scale
... but very unnatural theory!
Expected "deformations" from SM properties in natural theories
To see them, we must test the Higgs couplings very well
If deviations are not found... Fine-tuned SM (Multiverse?)
If we find them in $h \rightarrow$ ff only probably MSSM
We find smaller couplings probably Composite Higgs
Model-independent analysis 8 primary couplings! (one-family \& CP-even) $\mathrm{h} \rightarrow \mathrm{Z} \gamma$ offers best (last?) chance for large deviations
Other Higgs couplings related to other observables = Predictions!
Near future measurements: Probe of contact-interaction qqhV in $\mathrm{PP} \rightarrow \mathrm{Vh}$ at high-energies (in competition with $\mathrm{pP} \rightarrow \mathrm{VV}$)

