ATLAS Higgs to diboson

Marianna Testa LNF-INFN on behalf of the ATLAS collaboration Higgs Hunting 2014

Results from bosonic decays in ATLAS

Discovery of new boson declared on July 2012: - Observed excess driven by yy, ZZ^{*}, WW^{*} decay channels

Since then measurements of the Higgs Boson properties

Mass

NEW

- **Couplings**:
 - H→ZZ*→4I
 - $H \rightarrow \gamma \gamma$, $H \rightarrow WW^*$
- Spin and Parity
- **Differential cross section**
- Width (indirect measurement)

from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*$ boson+fermion channel

new

old result from Moriond 2013 from $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^*$, $H \rightarrow WW^*$ from $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^*$ from $H \rightarrow ZZ^*$

LHC and ATLAS performances

 $Z \rightarrow \mu \mu$ with 25 pile-up vertices

- L_{peak} up to 7.7 × 10³³ cm⁻² s⁻¹ in 2012 at 8 TeV
- L_{delivered} ~ 23 fb⁻¹ (8 TeV) + 6 fb⁻¹ (7 TeV)
- ~ 90% of delivered collisions are used in ATLAS physics analyses
- Pile-up level above design value (50 ns bunch crossing)
- Many challenges to mitigate its impact at all levels: trigger, computing, reco/identification of physics objects

Higgs Boson production at LHC

- Access to top(direct and loop),b,W and Z couplings via production cross section
- NNLO prediction for SM Higgs production cross section in most cases
 - theory uncertainties reduced to < 12%, dominated by QCD-scale and PDF + α_s

Higgs Boson decay at LHC

- Experimentally accessible:
 - b**b**,ττ,WW*,ZZ*,γγ,Zy,μμ
 - Theoretical uncertainty for di-boson decay <5%
- Γ_н(125)~ 4 MeV

• Boson decays have different yield and purity

channel	σ(pp→H)@ 8 TeV	BR (H→VV)	BR(VV→4I)	Evt yield in 20 fb ⁻¹	S/B
н→үү	22.3 pb @m _н =125GeV	0.0023	-	1000	0.03
H→ZZ→4I		0.026	0.0044	50	2
H→WW→lulu		0.22	0.047	4700	0.1-0.4

→Different sensitivity for different analysis

Н→үү

- $\sigma \times BR \sim 50 \text{ fb}$ S/B \sim 3%
- Simple topology
 - Two high p_T isolated photons
 - background: γγ continuum, fakes
- Crucial experimental aspects
- excellent γγ mass resolution:
- $m_{\gamma\gamma} = 2\sqrt{E_1E_2(1-\cos\alpha)}$
- E₁,E₂: Control of Energy scale is crucial New calibration (arXiv:1407.5063) crucial for Higgs Boson mass measurement (see S.Heim talk)

Н→үү

- $\sigma \times BR \sim 50 \text{ fb}$ S/B \sim 3%
- Simple topology
 - Two high p_T isolated photons
 - background: γγ continuum, fakes
- Crucial experimental aspects
- excellent γγ mass resolution:

$m_{\gamma\gamma} = 2VE_1E_2(1-\cos\alpha)$

 E₁,E₂: Control of Energy scale is crucial New calibration (arXiv:1407.5063) crucial for Higgs Boson mass measurement (see S.Heim talk)

• cos α :

- cluster position + primary vertex position
- negligible impact of angular resolution from calorimeter pointing on $m_{\gamma\gamma}$ wrt to energy resolution

Independent Primary vertex position measurement in ATLAS

$H \rightarrow \gamma \gamma$

- S/B~3% σ × BR ~ 50 fb
- Simple topology
 - Two high p_T isolated photons
 - background: yy continuum, fakes
- **Crucial experimental aspects**
- excellent yy mass resolution
- Powerful y ID to suppress yj and jj with $j \rightarrow \pi^0 \rightarrow fake \gamma$ Xsec are 10⁴-10⁷ larger than yy background
- Make use of fine calorimeter segmentation
- yy purity in the selected sample $\approx 80\%$

$H \rightarrow ZZ^* \rightarrow 4I$

- σ × BR ~ 2.5 fb S/B>1
- Small rate but clear topology
 → high purity
- Main background:
 - ZZ* (irreducible)
 - Zbb,Z+jets,tt
 - suppressed with isolation and impact parameters cuts
- Crucial experimental aspects
 - High lepton acceptances, reconstruction & identification efficiency down to low p_T
 - Good energy/momentum resolution
 New muon calibration with Z and J/ψ, checked with Y (arXiv:1407.3935)
 0.05%(0.2%) in barrel (|η|>2)
 New electron calibration

Good control of reducible background

PLB726 $m_{H} = 126.8 \pm 0.24 \text{ (stat)} \pm 0.7 \text{ (syst)} \text{ GeV } \mu = 1.55 + 0.23 + 0.28$

- Systematics uncertainty, dominated by γ E-scale , reduced by a factor 2.5
- Observed/expect shift from calibration change: 0.8 GeV/-0.45 ± 0 .35 GeV

Mass measurement Combination

NEW arXiv:1406.3827

Previous result (PLB 726) $m_{H} = 125.6 \pm$

$$m_{_{H}}$$
 = 125.6 \pm 0.2 (stat) $^{+0.5}_{-0.6}$ (syst) GeV

- Total uncertainty reduced by 40%
- Systematic uncertainty reduced by factor ~ 3
- Compatibility between channels11 2.0σ
 - it was 2.5 σ in the previous measurement

see S. Heim talk

Direct Higgs width measurement

2InA

- H → ZZ* →4l and H->γγ analysis to measure Higgs width
- Assumption: no interference with background processes
- $H \rightarrow ZZ^* \rightarrow 4I$
 - Event-by-event convolution of detector response with line-shape
 - Γ_H < 2.5 GeV @ 95% CL (expected 6.2 with μ=1)
- Н->үү
 - Γ_H < 5.0 GeV @ 95% CL (expected 6.2 with μ=1)
- Far away from SM value of 4 MeV
- Alternative approaches possible: Indirect constraint on the Higgs boson width through the measurement of the off-shell signal strength

NEW

arXiv:1406.3827

12

Indirect Measurement of Γ_H from off-shell H -> ZZ decay

 High-mass H→ZZ (m>2m_z) provides constraints on Γ_H

Kauer and Passarino, JHEP 1208 (2012) 116 Caola and Melnikov, PRD 88 (2013) 054024 Campbell, Ellis, and Williams, PRD 89 (2014) 053011

- Peak region with zero-width approximation
 - $\sigma_{on-shell}^{gg \to H^* \to ZZ} \propto \frac{g_{Hgg(on-shell)}^2 g_{HVV(on-shell)}^2}{\Gamma_H / \Gamma_H^S}$ Off-shell region $\sigma_{off-shell}^{gg \to H^* \to ZZ} \propto g_{Hgg(off-shell)}^2 g_{HVV(off-shell)}^2$
 - Assuming on-shell = off-shell couplings
- For $m_{zz}>2m_z$ large and negative interference between $gg \rightarrow H \rightarrow ZZ$ signal and SM $gg \rightarrow ZZ$ background
- Large theory uncertainties $gg \rightarrow ZZ$ known to LO: no (N)NLO K factor Results for $R_H^B = K_{gg \rightarrow ZZ} / K_{gg \rightarrow H \rightarrow ZZ} = [0.5, 2]$
- To increase statistics, both 4l and 2l2v final states exploited

$$\frac{\sigma_{off-shell}^{gg \to H \to ZZ}}{\sigma_{on-shell}^{gg \to H \to ZZ}} \propto \frac{\Gamma_{H}}{\Gamma_{H}^{SM}}$$

$\mu_{off-shell}$ from H \rightarrow ZZ

NEW ATLAS-CONF-2014-042

- Analysis strategy: combination of ZZ→4I and ZZ->2I2v
 - Similar expected sensitivity
- ZZ→4I
 - Offpeak region m₄₁=[220,1000] GeV
 - Matrix element (ME) kinematic discriminant to separate $gg \rightarrow H \rightarrow ZZ$ from $gg \rightarrow ZZ$ and $qq \rightarrow ZZ$
 - fit to ME discriminant shape
 - limit on µ_{off-shell}
 - ZZ→2l2v
 - E_T^{miss}>150 GeV, 76<m_{II}<106 GeV
 - Main backgrounds: $q\overline{q} \rightarrow ZZ + diboson$
 - Off peak Signal region: m_T^{ZZ}>350 GeV
 - limit on $\mu_{\text{off-shell}}$

ME Discriminant

Indirect Measurement of Γ_H ATLAS-CONF-2014-042

- Combination of $ZZ \rightarrow 4I$ and $ZZ \rightarrow 2I2v$ to fit $\mu_{off-shell}$
 - Small dependence on the ratio between gg→ ZZ and gg→H→ZZ k-factors
 - R_{H}^{B} is ~ 1 in the soft collinear approximation
- Include low-mass region (4I) to fit μ_{on-shell}
- Ratio of $\mu_{on-shell}/\mu_{off-shell}$ yields Γ_{H}

Γ _Η /Γ _{SM}	Observed	Expected µ=1
R _H ^B =0.5	4.8	7.0
R _H ^B =1	5.7	8.5
R _H ^B =2	7.7	12.0

Fiducial and differential cross section

- Probe several properties of the Higgs boson
 - Kinematics, spin and parity, jet activity, production modes, BSM
- Analyses designed to minimize model-dependence
 - Fiducial region definition
 - Compare several theoretical predictions
- $d\sigma/dX$ with X = p_T^H , y_H , cos θ^* , m_{34} , p_T^{jet} , njets, VBF enriched,...
- Signal extraction:
- $H \rightarrow ZZ \rightarrow 4I$: Cut-and-count method
 - Bin-by-bin yields estimated by subtracting expected background and correcting for detector efficiency and resolution effects
- $H \rightarrow \gamma \gamma$: Fit to $m_{\gamma \gamma}$ in each bin
- m_H fixed to the combined $\gamma\gamma$ +4l value m_H = 125.4 GeV

ATLAS-CONF-2014-044 arXiv:1406.4222

NEW

$H \rightarrow ZZ^* \rightarrow 4I$ Fiducial and differential fiducial x-section

Cut in p_T(I), η_I m_{II} truth quantities

to mimic reco level selection cuts and m₄₁=[118-129] GeV

 $\sigma_{\rm fid} = 2.11^{+0.53}_{-0.47}$ (stat) ± 0.08(syst) fb

• SM prediction

 $\sigma_{\rm fid}^{\rm SM}$ = 1.30 ± 0.13 fb

Differential x-section in fiducial region

NEW ATLAS-CONF-2014-044

$H \rightarrow \gamma \gamma$ fiducial x-section

NEW arXiv:1406.4222

- Analysis cuts: Two isolated photons with $p_{T1,2}/m_{\gamma\gamma} > 0.35(0.25)$ in $|\eta_{\gamma}| < 2.37$
- 7 fiducial regions: inclusive,1,2,3 jets, VBF enhanced,1 lepton, E_T^{miss} > 80 GeV

$$\sigma_{fid}(pp \rightarrow H \rightarrow \gamma\gamma) = 43.2 \pm 9.4(stat)^{+3.2}_{-2.9}(syst) \pm 1.2(lumi) \text{ fb}$$

$H \rightarrow \gamma \gamma$ differential x-section

NEW arXiv:1406.4222

- dσ/dX with X= p_T^H, y_H, cos θ^{*}, φ_{jj}, p_T^{jet}, njets, ..12 differential distributions
- Reasonable agreement with SM prediction

Ratio of 1st moment relative to data 19

$H \rightarrow WW^* \rightarrow |v|v$

- $\sigma \times BR \sim 200 \text{ fb}$ S/B = 0.1-0.4
- Signature : opposite-sign leptons (e,μ) and large missing transverse energy
- Large background:
 - Irredubile:Continuum WW
 - Reducible: W+jets, , Wγ^(*),top,Z/γ
- Poor mass resolution (~ 20%)

$$m_T^2 = \left(\sqrt{m_{ll}^2 + |\vec{p}_{T_{ll}}|^2} + E_T^{\text{miss}}\right)^2 - \left(\vec{p}_{T_{ll}} + \vec{E}_T^{\text{miss}}\right)^2$$

- Crucial experimental aspects
- Missing transverse energy deterioration with PileUp
 - Resolution increases with VN_{interactions}
 - use tracks from the primary vertex

$H \rightarrow WW^* \rightarrow IvIv:$ cross section and signal strength

- Two high p_T leptons (ee, μμ, eμ, μe)
- Large Missing E_T
- Crucial to understand background and normalize to control regions
- Binned in jet multiplicity

- N_i = 0,1 optimized for ggF

 $\mu = 0.99 \pm 0.21(\text{stat}) \pm 0.21(\text{sys})$

$$(\sigma \cdot BR)_{obs,8TeV} = 6.0 \pm 1.1(stat.) \pm 0.8(theo.) \pm 0.7(\exp t.) \pm 0.3(lumi.)pb$$

= 6.0 ± 1.6 pb
 $(\sigma \cdot BR)_{\exp,8TeV} = 4.8 \pm 0.7 pb$

• Systematic uncertainty dominated by signal Xsec

Agreement with SM prediction

$H \rightarrow WW^* \rightarrow |v|v$:

Updates will come soon!

Higgs boson production and couplings

- Two high p_T leptons (ee, μμ,eμ, μe)
- Large Missing E_T
- Crucial to understand background and normalize to control regions
- Binned in jet multiplicity
 - N_i = 0,1 optimized for ggF
 - N_i >= 2 optimized for VBF
- 2D simultaneous ggF vs VBF fit:

$$\mu_{ggF} = 0.8 \pm 0.2(\text{stat}) \pm 0.3(\text{sys})$$
$$\mu_{VBF} = 1.7 \pm 0.7(\text{stat}) \pm 0.4(\text{sys})$$

• Uncertainty on μ_{VBF} dominated by statistics

Agreement with SM prediction

$H \rightarrow ZZ^* \rightarrow 4I$: Higgs boson production and couplings

- **Events are assigned to 4 mutually exclusive** categories based on production modes
- **New wrt to previous results (PLB 726)**
 - Based on the new inclusive H4I analysis used for the mass measurement
 - 2 VH categories, leptonic and hadronic
 - **BDT discriminant against ZZ^{*} for ggF**
 - **BDT discriminants for VBF and VH categories**
 - FSR extended to non collinear photons
 - Reducible II+jet and tt bkg determination improved

ATLAS Preliminary $H \rightarrow ZZ^* \rightarrow 4l$

$H \rightarrow ZZ^* \rightarrow 4I$: inclusive analysis **NEW for Higgs-Hunting 2014** To be submitted to PRD and categories results 3DT_{ZZ*} output **Inclusive analysis ATLAS** Preliminary • $H \rightarrow ZZ^* \rightarrow 4l$ -0.1 - **Observed 37** with m₄₁= [120-130] GeV Vs = 7 TeV Ldt = 4.5 fb⁻¹ Signal (m_ = 125 GeV µ = 1.51) √s = 8 TeV Ldt = 20.3 fb⁻¹ total expected = 26.5 ± 1.7 , 16.2 ± 1.6 from SM Higgs 0.08 0.06 0.5 Local p_o-value: 0.04 0 **Observed** (expected) = 8.1σ (6.2) at m_H=125.36 GeV -0.5 0.02 **Categories:** -1 110 115 120 125 130 135 140 - Observed 1 VBF-like with high BDT_{VBF} with m_{4/} [GeV] m_{41} = 123.4 GeV, total expected = 1.26 ± 0.15 No VH candidate is found in m_{al}[120-130] GeV -0.0012 output m_H=125 GeV output ATLAS Preliminary 0.007 ATLAS Preliminary m_⊔=125 GeV ATLAS Preliminary 0.007 $H \rightarrow ZZ^* \rightarrow 4l$ Data Data $H \rightarrow ZZ^* \rightarrow 4l$ $H \rightarrow ZZ^* \rightarrow 4l$ 0.001 √s = 7 TeV ∫Ldt = 4.5 fb⁻¹ 0.006 VBF √s = 7 TeV Ldt = 4.5 fb⁻¹ 0.006 ggF √s = 7 TeV ∫Ldt = 4.5 fb⁻¹

$H \rightarrow ZZ^* \rightarrow 4I$: results on couplings

NEW for Higgs-Hunting 2014 To be submitted to PRD

Production mechanism grouped into femionic (ggF,bbH,ttH) and bosonic (VBF,VH)

$t\bar{t}H \rightarrow \gamma\gamma$: test production mechanism

NEW ATLAS-CONF-2014-043

- Direct access to top couplings
- Analysis strategy:
 - Di-photon trigger
 - Hadronic tt category
 - Leptonic tt category
- Statistically limited

95% CL observed (expected) limit: 6.5 ×SM (4.9 ×SM) for m_H = 125.4 GeV

$t\bar{t}H \rightarrow \gamma\gamma$: top Yukawa coupling strength

NEW ATLAS-CONF-2014-043

- Results on tt
 H x-sec can be interpreted as limits on the strength parameter k_t=Y_t/Y_tSM of the top-Higgs Yukawa coupling
- tH processes also sensitive to Y_t

 destructive interference between diagrams with Higgs emitted from W or top
- In BSM theories Y_t and g_{HWW} relative sign can be flipped
- If k_t<0, tH contribution increases
- k_t changes x-sec of all production mode and BR(H→γγ)
- Set limit on inclusive x-sec as a function of k_t

95% CL lower and upper observed (expected) limits on k_t: -1.3 and +8.1 (-1.2 and +7.9)

Rare decays: $H \rightarrow Z\gamma \rightarrow II\gamma$

- σ × BR ~ 2.3 fb S/B<1%
- In SM, $H \rightarrow Z\gamma$ proceed though loops
 - Sensitive to BSM contributions
- Main background:
 - Zγ (82%), Z+jets (17%)
 - Modeled by analytical functions
- Categories:
 - ее,µµ
 - Δη(Ζγ)*,* p_τ
- Results
 - 95% CL at $m_H = 125.5$ Obs. $\sigma(H \rightarrow Z\gamma)/\sigma_{SM}(H \rightarrow Z\gamma) < 11$ Exp. $\sigma(H \rightarrow Z\gamma)/\sigma_{SM}(H \rightarrow Z\gamma) < 9$

Conclusions

- 2 years after the discovery, the properties of the Higgs boson measured with increased precision
- Most of the measurements are dominated by boson decay channels:
 - Mass measured at the 3 per mill level
 - Evidence for V-mediated and VBF production
 - Evidence for scalar nature 0⁺
 - Coupling test compatible with SM prediction
- In 2015 LHC will increase E_{CM} to 13 TeV and Luminosity to 10³⁴ cm⁻²s⁻¹
 - increase sensitivity of all the measurement above to test SM predictions
 - Search of rare production modes VH,ttH and rare decays (Ζγ,..)

Back-up

H \rightarrow γγ: mass measurement: Improved calibration for electron and photons

- Critical for m_H measurement in $H \rightarrow \gamma \gamma$
- EM cluster energy via MVA regression \rightarrow 10% improvement on m_{yy} resolution
- layers intercalibration using Z→μμ:
 →1-2 % for EM layers 1-2
- Accurate knowledge of material in front of the EM calorimeter: 2-10 % X₀
- Energy scale and resolution from $Z \rightarrow ee$:
 - scale accuracy: few 10⁻⁴
 - resolution accuracy: few 10⁻³
- Linearity and extrapolation to photons -0.01^{-1} checked with Z \rightarrow ee vs E_T(e), J / $\psi \rightarrow$ ee, Z \rightarrow II γ -0.015 ATLAS
 - 0.03-0.05% for 40 GeV E_T electons
 - 0.2-0.5% for photons

NEW

Test of Boson and Fermion Couplings

• Follow recommendation from LHC HXSWG, assuming:

-1 resonance + zero width approximation+SM lagrangian tensor structure

$$\sigma \cdot BR(ii \to H \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{hh}}{\Gamma_H}$$

See N. Andari talk

 test SM predictions exploiting correlation between production and decay modes with current precision

- Test deviation from SM:
 - κ= g/g_{sM}
- Assume $\kappa_v (=\kappa_z = \kappa_w), \kappa_F (=\kappa_b = \kappa_t = ...)$
- $\kappa_{g,\gamma}$ loop scaling = $\kappa_{g,\gamma}(\kappa_F, \kappa_W)$

 $\kappa_V = 1.15 \pm 0.08$ $\kappa_F = 0.99^{+0.17}_{-0.15}$

Spin-Parity Determination from Higgs to dibosons

- **SM Prediction:** $J^{P} = 0^{+}$, tested against alternative specific models: 0⁻,1⁺,1⁻,2⁺_m (graviton-like tensor)
- $H \rightarrow ZZ^* \rightarrow 4I$: 2 masses (MZ1,MZ2) and 5 angles combined with a BDT. Test $J^{P}=0^{+}$ and 2^{+}_{m}
- $H \rightarrow \gamma \gamma$: decay angle cos θ^* , Test J^P= 0⁺ and 2⁺_m
- $H \rightarrow WW^* \rightarrow IvIv: \Delta \phi_{IV} M_{IV}$...combined with a BDT. Test $J^{P} = 0^{+}, 1^{\pm}$ and 2^{+}_{m}

= 0⁺ Expected

0.9

 $|\cos \theta^*|$

Bkg. syst. uncertainty

J^P = 0⁺ Data

Combination:

250₁

150

100

50

0

0.1

0.2

0.3

0.4

ATI AS

 $200 \vdash \sqrt{s} = 8 \text{ TeV} \quad L \text{ dt} = 20.7 \text{ fb}^{-1}$

Events / 0.1

0⁻,1⁺,1⁻,2⁺_m models excluded at >95%CL

 $H \rightarrow \gamma \gamma$

0.5

0.6

0.7

0.8

$H \rightarrow ZZ^* \rightarrow 4I$ Differential fiducial cross-sections

Combination: test Higgs production mechanism

- Disentangle production modes:
 -Vector-boson mediate (VBF+VH) from fermion mediated (ggH,ttH)
- Fit to μ_{VBF+VH}/μ_{gg+ttH} in different channels (BRs cancel out)
- VBF observed at 4.10σ
- VB mediated production compatible with SM prediction

