Sébastien Binet

LAL/IN2P3

2013-12-18

S. Binet (LAL) Go 2013-12-18 1/26

http://golang.org

Google

http://golang.org

S. Binet (LAL) Go 2013-12-18 2/26

http://golang.org

@ Statically typed languages are efficient, but typically bureaucratic
and overly complex.

@ Dynamic languages can be easy to use, but are error-prone,
inefficient, and break down at scale.

@ Concurrent programming is hard (threads, locks, headache.)

@ “Speed, reliability, or simplicity: pick two.” (sometimes just one)
@ Can’t we do better ?

S. Binet (LAL) Go 2013-12-18 3/26

@ Go is a modern, general purpose language J

@ Compiles to native machine code (32/64-bit x86, ARM)
@ Statically typed

@ Lightweight syntax

@ Simple type system

@ Garbage collected

@ Concurrency primitives

S. Binet (LAL) Go 2013-12-18 4/26

Tenets of Go’s design

@ Simplicity

» Each language feature should be easy to understand
@ Orthogonality

» Go’s features should interact in predictable and consistent ways.
@ Readability

» What is written on the page should be comprehensible with little
context.

S. Binet (LAL) Go 2013-12-18 5/26

“Consensus drove the design. Nothing went into the language until
[Ken Thompson, Robert Griesemer and myself] all agreed that it was
right. Some features didn’t get resolved until after a year or more of
discussion.”

Rob Pike

S. Binet (LAL) 2013-12-18 6/26

Hello, World

package main
import "fmt"
func main () {
fmt .Println ("Hello, World")

S. Binet (LAL) Go 2013-12-18 7126

Hello, World - 2.0

Serving “Hello, world” athttp://localhost:8080/world

package main

import (
n fmt n
"net/http"

func handler (w http.ResponseWriter, r xhttp.Request) |{
fmt .Fprint (w, "Hello, "+r.URL.Path[1l:])

func main () {
http.HandleFunc ("/", handler)
http.ListenAndServe (":8080", nil)

v

S. Binet (LAL) Go 2013-12-18 8/26

A simple type system

Go is statically typed, but type inference saves repetition.
@ Java:
» Integer 1 = new Integer (l);
@ C/C++:
» int 1 = 1;)
i:=1 // type int
pi := 3.142 // type float64
greeting := "Hello, you" // type string
// type func(int, int) int
mul := func(x, y int) int { return x * y } |

S. Binet (LAL) Go 2013-12-18 9/26

Types and methods

You can define methods on any type:

type Point struct {
X, Y float64

func (p Point) Abs () float64 {
return math.Sgrt (p.X*p.X + p.Y¥*xp.Y)

p := Point{4, 3} // type Point
X := p.Abs() // == 5.0

http://play

S. Binet (LAL) 2013-12-18

http://play.golang.org/p/YkrPejP6K5

Types and methods

You can define methods on any type:
type MyFloat float64

func (m MyFloat) Abs() float64d ({
f := float64 (m)
if £ < 0 {
return -f
}

return f

f := MyFloat (-42)
f.Abs () // == 42.0

X

http://play
Go “objects” are just values. There is no “box”.

S. Binet (LAL) 2013-12-18

http://play.golang.org/p/VqsA2-VNok

Interfaces

Interfaces specify behaviors. An interface type defines a set of
methods:
type Abser interface ({
Abs () float64
}
A type that implements those methods implements the interface:

func PrintAbs (a Abser) {
fmt.Printf ("Absolute value: %.2f\n", a.Abs())

PrintAbs (MyFloat (=10))
PrintAbs (Point {3, 4})

http://play
Types implement interfaces implicitly. There is no “implements”
declaration.

S. Binet (LAL) 2013-12-18

http://play.golang.org/p/HIE2e5XOR1

Concurrency

In UNTX, we think about processes connected by pipes:
find ~/go/src/pkg | grep _test.go$ | xargs wc -1
Each tool designed to do one thing and to do it well.

@ The Go analogue: goroutines connected by channels.

S. Binet (LAL) 2013-12-18 13/26

Concurrency: goroutines

Goroutines are like threads:
@ they share memory.
But cheaper:
@ Smaller, segmented stacks

@ Many goroutines per operating system thread.

Start a new gorountine with the go keyword:
i := pivot (s)

go sort(s[:1])

go sort(s[i:])

S. Binet (LAL)

2013-12-18

14 /26

Concurrency: channels

Channels are a typed conduit for:
@ Synchronization.
@ Communication.

The channel operator <- is used to send and receive values:

func compute (ch chan int) {
ch <- someComputation ()

func main () {
ch := make(chan int)
go compute (ch)
result := <-ch
fmt .Printf ("result= %d\n", result)

S. Binet (LAL)

2013-12-18

Concurrency: synchronization

Look back at the sort example: how to tell when it's done ? Use a
channel to synchronize goroutines:

done := make (chan bool)
doSort := func (s []int) {
sort (s)

done <- true

i := pivot (s)

go doSort(s[:1])
go doSort (s[i:])
<—-done

<—done

Unbuffered channels operations are synchronous; the send/receive
happens only when both sides are ready.

S. Binet (LAL) 2013-12-18 16/26

Concurrency: communication

A common task: many workers feeding from a task pool. Traditionally,
worker threads contend over a lock for work:

type Task struct { /* some state */ }
type Pool struct ({

Mu sync.Mutex

Tasks []Task

func worker (pool *Pool) { // many of these run conc.

for {
pool.Mu.Lock ()
task := pool.Tasks[0]

pool.Tasks = pool.Tasks([1:]
pool.Mu.Unlock ()
process (task)

S. Binet (LAL)

2013-12-18 17/26

Concurrency: communication

A Go idiom: many worker goroutines receive tasks from a channel.

type Task struct { /% some state x/ }
func worker (in, out chan xTask) ({
for {

task := <-in
process (task)
out <- task

}

func main () {

pending, done := make (chan *Task), make (chan =*Task)
go sendWork (pending)

for i := 0; i < 10; i++ {go worker (pending, done) }
consumeWork (done)

S. Binet (LAL)

2013-12-18 18/26

Concurrency: philosophy

@ Goroutines give the efficiency of an asynchronous model, but you
can write code in a synchronous style.

@ Easier to reason about: write goroutines that do their specific jobs
well, and connect them with channels.

» in practice, this yields simpler and more maintainable code.
@ Think about the concurrency issues that matter:

“Don’t communicate by sharing memory.
Instead, share memory by communicating.

S. Binet (LAL) 2013-12-18

Great support for locating, retrieving, building and installing a package
or command (and its dependencies) from any DVCS repository:

$ go get github.com/sbinet/igo
now, igo can be used
$ igo

VERY fast compile/edit/run cycle (faster than ¢/FORTRAN/python !)

<

S. Binet (LAL)

2013-12-18 20/26

Running tests is also integrated within the go tool:

S cd github.com/hwaf/hwaf
S go test -v

RUN TestHwafBoost
PASS: TestHwafBoost (3.20 seconds)
RUN TestHwafBoostBogusConfigureCmd

PASS: TestHwafBoostBogusConfigureCmd (2.51 second

RUN TestHwafBoostEmptyLib
PASS: TestHwafBoostEmptyLib (2.03 seconds)

-]

RUN TestWorchVcs

PASS: TestWorchVecs (14.88 seconds)

RUN TestWorchAutoconf

PASS: TestWorchAutoconf (27.36 seconds)

github.com/hwaf/hwaf 143.850s

on

S. Binet (LAL) 2013-12-18

21/26

Want to quickly test a program ?
S cat foo.go

package main
import "fmt"
func main () {
fmt .Println ("Hello, World")
}

$ time go run foo.go
Hello, World

0.25s user 0.10s system 95% cpu 0.362 total

S. Binet (LAL) 2013-12-18 22/26

Rich library support

@ Diverse, carefully-constructed, consistent standard library
» More than 150 packages
» Constantly under development, improving every day
» Well documented: http://golang.org/pkg

@ Many great external libraries too

» documented on http://godoc.org
searchable on http://go-search.org
MySQL, MongoDB, SQLite3 database drivers,
SDL bindings, OpenGL, OpenAL,

Protocol Buffers,

OAuth,

HDF5, (and ROOT) bindings

vV VvV vV VvV VY

S. Binet (LAL) 2013-12-18

http://golang.org/pkg
http://godoc.org
http://go-search.org

Go: what is it good for ?

@ initially called a systems language.
@ unexpected interest from users of scripting languages.
» Attracted by an easy, reliable language that performs well.
@ Diverse uses across the community:
» scientific computing,
web applications,

graphics and sound,
network tools,

vV vy vYyy

Go: a general purpose language)

S. Binet (LAL) 2013-12-18

Go is Open Source

@ Development began at Google in 2007 as a 20% project.
@ Released under a BSD-style license in November 2009.

@ Since its release, more than 200 non-Google contributors have
submitted over 1000 changes to the Go core.

@ >10 Google employees work on Go full-time.

S. Binet (LAL) 2013-12-18 25/26

Resources

http://golang.org
http://golang.org/pkg
http://golang.org/doc
http://play.golang.org
http://tour.golang.org
http://blog.golang.org
http://godoc.org

http://go-search.org

S. Binet (LAL) 2013-12-18

http://golang.org
http://golang.org/pkg
http://golang.org/doc
http://play.golang.org
http://tour.golang.org
http://blog.golang.org
http://godoc.org
http://go-search.org

	Main Talk
	mysection

