
Go

Sébastien Binet

LAL/IN2P3

2013-12-18

lal

S. Binet (LAL) Go 2013-12-18 1 / 26

go

http://golang.org

http://golang.org
Thursday, July 22, 2010

S. Binet (LAL) Go 2013-12-18 2 / 26

http://golang.org

Why Go ?

Statically typed languages are efficient, but typically bureaucratic
and overly complex.
Dynamic languages can be easy to use, but are error-prone,
inefficient, and break down at scale.
Concurrent programming is hard (threads, locks, headache.)

“Speed, reliability, or simplicity: pick two.” (sometimes just one)
Can’t we do better ?

S. Binet (LAL) Go 2013-12-18 3 / 26

What is Go ?

Go is a modern, general purpose language

Compiles to native machine code (32/64-bit x86, ARM)
Statically typed
Lightweight syntax
Simple type system
Garbage collected
Concurrency primitives

S. Binet (LAL) Go 2013-12-18 4 / 26

Tenets of Go’s design

Simplicity
I Each language feature should be easy to understand

Orthogonality
I Go’s features should interact in predictable and consistent ways.

Readability
I What is written on the page should be comprehensible with little

context.

S. Binet (LAL) Go 2013-12-18 5 / 26

“Consensus drove the design. Nothing went into the language until
[Ken Thompson, Robert Griesemer and myself] all agreed that it was
right. Some features didn’t get resolved until after a year or more of

discussion.“

Rob Pike

S. Binet (LAL) Go 2013-12-18 6 / 26

Hello, World

package main
import "fmt"
func main() {

fmt.Println("Hello, World")
}

S. Binet (LAL) Go 2013-12-18 7 / 26

Hello, World - 2.0

Serving “Hello, world” at http://localhost:8080/world

package main

import (
"fmt"
"net/http"

)

func handler(w http.ResponseWriter, r *http.Request) {
fmt.Fprint(w, "Hello, "+r.URL.Path[1:])

}

func main() {
http.HandleFunc("/", handler)
http.ListenAndServe(":8080", nil)

}

S. Binet (LAL) Go 2013-12-18 8 / 26

A simple type system

Go is statically typed, but type inference saves repetition.
Java:

I Integer i = new Integer(1);

C/C++:
I int i = 1;

i := 1 // type int
pi := 3.142 // type float64
greeting := "Hello, you" // type string

// type func(int, int) int
mul := func(x, y int) int { return x * y }

S. Binet (LAL) Go 2013-12-18 9 / 26

Types and methods

You can define methods on any type:
type Point struct {

X, Y float64
}

func (p Point) Abs() float64 {
return math.Sqrt(p.X*p.X + p.Y*p.Y)

}

p := Point{4, 3} // type Point
x := p.Abs() // == 5.0

http://play

S. Binet (LAL) Go 2013-12-18 10 / 26

http://play.golang.org/p/YkrPejP6K5

Types and methods

You can define methods on any type:
type MyFloat float64

func (m MyFloat) Abs() float64 {
f := float64(m)
if f < 0 {

return -f
}
return f

}

f := MyFloat(-42)
x := f.Abs() // == 42.0

http://play
Go “objects” are just values. There is no “box”.

S. Binet (LAL) Go 2013-12-18 11 / 26

http://play.golang.org/p/VqsA2-VNok

Interfaces

Interfaces specify behaviors. An interface type defines a set of
methods:
type Abser interface {

Abs() float64
}

A type that implements those methods implements the interface:
func PrintAbs(a Abser) {

fmt.Printf("Absolute value: %.2f\n", a.Abs())
}

PrintAbs(MyFloat(-10))
PrintAbs(Point{3, 4})

http://play
Types implement interfaces implicitly. There is no “implements”
declaration.

S. Binet (LAL) Go 2013-12-18 12 / 26

http://play.golang.org/p/HIE2e5XOR1

Concurrency

In UNIX, we think about processes connected by pipes:
find ~/go/src/pkg | grep _test.go$ | xargs wc -l

Each tool designed to do one thing and to do it well.

The Go analogue: goroutines connected by channels.

S. Binet (LAL) Go 2013-12-18 13 / 26

Concurrency: goroutines

Goroutines are like threads:
they share memory.

But cheaper:
Smaller, segmented stacks
Many goroutines per operating system thread.

Start a new gorountine with the go keyword:
i := pivot(s)
go sort(s[:i])
go sort(s[i:])

S. Binet (LAL) Go 2013-12-18 14 / 26

Concurrency: channels

Channels are a typed conduit for:
Synchronization.
Communication.

The channel operator <- is used to send and receive values:
func compute(ch chan int) {

ch <- someComputation()
}

func main() {
ch := make(chan int)
go compute(ch)
result := <-ch
fmt.Printf("result= %d\n", result)

}

S. Binet (LAL) Go 2013-12-18 15 / 26

Concurrency: synchronization

Look back at the sort example: how to tell when it’s done ? Use a
channel to synchronize goroutines:

done := make(chan bool)
doSort := func(s []int) {

sort(s)
done <- true

}

i := pivot(s)
go doSort(s[:i])
go doSort(s[i:])
<-done
<-done

Unbuffered channels operations are synchronous; the send/receive
happens only when both sides are ready.

S. Binet (LAL) Go 2013-12-18 16 / 26

Concurrency: communication

A common task: many workers feeding from a task pool. Traditionally,
worker threads contend over a lock for work:

type Task struct { /* some state */ }
type Pool struct {

Mu sync.Mutex
Tasks []Task

}

func worker(pool *Pool) { // many of these run conc.
for {
pool.Mu.Lock()
task := pool.Tasks[0]
pool.Tasks = pool.Tasks[1:]
pool.Mu.Unlock()
process(task)

}
}

S. Binet (LAL) Go 2013-12-18 17 / 26

Concurrency: communication

A Go idiom: many worker goroutines receive tasks from a channel.

type Task struct { /* some state */ }
func worker(in, out chan *Task) {
for {
task := <-in
process(task)
out <- task

}
}
func main() {

pending, done := make(chan *Task), make(chan *Task)
go sendWork(pending)
for i := 0; i < 10; i++ {go worker(pending, done)}
consumeWork(done)

}

S. Binet (LAL) Go 2013-12-18 18 / 26

Concurrency: philosophy

Goroutines give the efficiency of an asynchronous model, but you
can write code in a synchronous style.
Easier to reason about: write goroutines that do their specific jobs
well, and connect them with channels.

I in practice, this yields simpler and more maintainable code.

Think about the concurrency issues that matter:

“Don’t communicate by sharing memory.
Instead, share memory by communicating.

S. Binet (LAL) Go 2013-12-18 19 / 26

Go: tooling

Great support for locating, retrieving, building and installing a package
or command (and its dependencies) from any DVCS repository:

$ go get github.com/sbinet/igo
now, igo can be used
$ igo

VERY fast compile/edit/run cycle (faster than C/FORTRAN/python !)

S. Binet (LAL) Go 2013-12-18 20 / 26

Go: tooling

Running tests is also integrated within the go tool:
$ cd github.com/hwaf/hwaf
$ go test -v
=== RUN TestHwafBoost
--- PASS: TestHwafBoost (3.20 seconds)
=== RUN TestHwafBoostBogusConfigureCmd
--- PASS: TestHwafBoostBogusConfigureCmd (2.51 seconds)
=== RUN TestHwafBoostEmptyLib
--- PASS: TestHwafBoostEmptyLib (2.03 seconds)
[...]
=== RUN TestWorchVcs
--- PASS: TestWorchVcs (14.88 seconds)
=== RUN TestWorchAutoconf
--- PASS: TestWorchAutoconf (27.36 seconds)
PASS
ok github.com/hwaf/hwaf 143.850s

S. Binet (LAL) Go 2013-12-18 21 / 26

Go: tooling

Want to quickly test a program ?
$ cat foo.go

package main
import "fmt"
func main() {

fmt.Println("Hello, World")
}

$ time go run foo.go
Hello, World

0.25s user 0.10s system 95% cpu 0.362 total

S. Binet (LAL) Go 2013-12-18 22 / 26

Rich library support

Diverse, carefully-constructed, consistent standard library
I More than 150 packages
I Constantly under development, improving every day
I Well documented: http://golang.org/pkg

Many great external libraries too
I documented on http://godoc.org
I searchable on http://go-search.org
I MySQL, MongoDB, SQLite3 database drivers,
I SDL bindings, OpenGL, OpenAL,
I Protocol Buffers,
I OAuth,
I HDF5, (and ROOT) bindings
I . . .

S. Binet (LAL) Go 2013-12-18 23 / 26

http://golang.org/pkg
http://godoc.org
http://go-search.org

Go: what is it good for ?

initially called a systems language.
unexpected interest from users of scripting languages.

I Attracted by an easy, reliable language that performs well.
Diverse uses across the community:

I scientific computing,
I web applications,
I graphics and sound,
I network tools,
I . . .

Go: a general purpose language

S. Binet (LAL) Go 2013-12-18 24 / 26

Go is Open Source

Development began at Google in 2007 as a 20% project.
Released under a BSD-style license in November 2009.
Since its release, more than 200 non-Google contributors have
submitted over 1000 changes to the Go core.
>10 Google employees work on Go full-time.

S. Binet (LAL) Go 2013-12-18 25 / 26

Resources

http://golang.org

http://golang.org/pkg

http://golang.org/doc

http://play.golang.org

http://tour.golang.org

http://blog.golang.org

http://godoc.org

http://go-search.org

S. Binet (LAL) Go 2013-12-18 26 / 26

http://golang.org
http://golang.org/pkg
http://golang.org/doc
http://play.golang.org
http://tour.golang.org
http://blog.golang.org
http://godoc.org
http://go-search.org

	Main Talk
	mysection

