## Dark sector particle searches and Directional Detection with Gas Time Projection Chambers

Igal Jaeglé

University of Hawai'i at Mānoa

LAL-Orsay, 18 Février 2014

### Table of contents

#### Personal details

#### Introduction

- SuperKEKB, the intensity frontier
  - Beam commissioning detectors
    - Directional detection
    - TPC characterisation
    - Micro-TPC design
- 5 Belle/Belle II setups
- 6 Radiative channels
  - 7 Higgs-strahlung channels
  - Dark matter directional detection

#### Personal details

|              | Professional Experience                                                   |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------|--|--|--|--|--|
| 2010–present | University of Hawai'i, Honolulu, USA.                                     |  |  |  |  |  |
|              | Post-doc in Experimental Physics.                                         |  |  |  |  |  |
| 2008-2010    | University of Basel, Basel, Switzerland.                                  |  |  |  |  |  |
|              | Post-doc in Experimental Physics.                                         |  |  |  |  |  |
| 2001-2007    | University of Basel, Basel, Switzerland.                                  |  |  |  |  |  |
|              | Graduate student in Experimental Physics.                                 |  |  |  |  |  |
|              | Collaborations                                                            |  |  |  |  |  |
| 2010–present | Belle and Belle II (Tsukuba, Japan).                                      |  |  |  |  |  |
| 2010–present | Directional Dark matter Detector - D <sup>3</sup> (Honolulu, HI, USA).    |  |  |  |  |  |
| 2010-2013    | Dark Matter Time Projection Chamber - DMTPC (Carlsbad, NM, USA).          |  |  |  |  |  |
| 2008-2010    | Crystal Ball and Travel Around Photon Spectrometer - A2 (Mainz, Germany). |  |  |  |  |  |
| 2001–2010    | Crystal Barrel and TAPS - CB-ELSA/TAPS (Bonn, Germany).                   |  |  |  |  |  |
|              | Education                                                                 |  |  |  |  |  |
| 2001-2007    | 7 University of Basel, Basel, Switzerland.                                |  |  |  |  |  |
|              | Ph.D. in Experimental Physics - "SUMMA CUM LAUDE"                         |  |  |  |  |  |
| 1999–2000    | University of Haute-Alsace, Mulhouse, France.                             |  |  |  |  |  |
|              | Diplôme d'Etude Approfondie (DEA) de physique subatomique.                |  |  |  |  |  |
| 1998–1999    | Louis Pasteur University, Strasbourg, France.                             |  |  |  |  |  |
|              | Maîtrise de Chimie-Physique.                                              |  |  |  |  |  |

#### We know there is dark matter / Introduction



• Can Belle/Belle II and/or a directional detection detector contribute to the dark sector particle searches ?

Igal Jaeglé (UH)

#### Dark gauge boson / Introduction

to be distinguished from dark matter or WIMP, coupling to SM fermions via EM current are:

- searched since the late 80's, it may or may not exist but
- many theorists think there is a larger dark sector, hence recent strong interest in dark sector models (Unified DM)
- introduce a vector boson A, and often a dark Higgs h' by a Higgs mechanism

plot below shows astrophysical and cosmological, constraints and experimental limits: kinetic mixing vs. A boson mass J. Jaeckel and A. Ringwald - arXiv:1002.0329v1





Igal Jaeglé (UH)

#### SuperKEKB, the intensity frontier

- Belle/Belle II experiment at KEK/super KEK B-factory in Tsukuba, Japan
- Belle@KEKB L = 977 fb<sup>-1</sup> at  $\Upsilon(1S, 2S, 3S, 4S, 5S)$  and continua
- Belle II@superKEKB  $L_{projected} = 40 \text{ ab}^{-1}$  at  $\Upsilon(1S, 2S, 3S, 4S, 5S, 6S)$  and continua



#### Beam commissiong detectors before Belle

aka BEAST used in 1998 to monitor radiation level and particle rates during KEKB commissioning

• first beam

- Image: state state
- provided important feedback to accelerator group during commissioning, and ensured background levels acceptable before Belle roll-in
- located at IP composed of PIN diodes, MOSFETs, Drift tubes, CsI and two Silicon Strip Ladders
- but did not prevent synchrotron radiation from damaging first beampipe

BEAST in the cave

٥

rate

#### Beam commissioning detectors before/during Belle II

- measure instantaneous and integrated radiation dose at position of Belle II subdetectors
- measurements of luminosity and background levels during beam commissioning
- synchrotron and neutron backgrounds were unexpectedly problematic in Belle, we would like to measure
- details understanding and Monte Carlo simulation validation of beam-induced backgrounds
  - Touschek: intra-bunch scattering, electron/positron deviates from beam-bunch by Coulomb scattering
  - Coulomb (beam-gas scattering): electron/position scattering with residual gas-atoms
  - Radiative Bhabha process propagate along beam axis and interact with magnet iron
  - synchroton radiation: emitted by the beam since  $\alpha E_e^2$  and  $B^2$ , High Energy Ring beam dominat
  - also two-photon and beam-beam but not critical background

#### phase 1



- non magnetic support structure (Rosen, Hawaii)
- BGO crystals for luminosity monitoring (Wang, NTU)
- Diodes for radiation monitoring (Cinabro, Wayne / Marinas, Bonn)
- few PXD, SVD modules (MPI, KEK)
- CDC prototype (Uno, KEK)

Igal Jaeglé (UH)

#### Dark sector particle searches and gas-TPC

#### seminar@LAL-Orsay 8 / 60

phase 2



- microTPCs for directional neutron detection, xrays, tracks (Vahsen, Hawaii)
- thermal neutron detection system (Roney, Victoria)

### Gas Time Projection Chambers (TPCs)

#### Time Projection Chamber as fast neutrons/WIMPs detector filled with gas



- fast neutrons not detected directly
- but through their scattering product with
- the gas-nucleus by elastic scattering  $n + A_{rest} \rightarrow n' + A_{recoil}$
- nuclear recoil ionizes gas along track
- electric field moves charges
- amplification (by 2 GEMs)
- readout (FE-I4B pixel chips)
  - 2D charge distribution
  - + timing information
  - + known drift velocity => 3D hit information
  - + known GEMs gain (and QF) => energy

=> we reconstruct the nuclear recoil  $(\theta, \phi, \mathsf{E})$ 

#### Directional detection concept

3D-direction and total ionization energy measurements of nuclear recoil allow

• dE/dx topology (iso-butane at 1 atm)



nuclear recoil "profil"

not energy weighted

with  $\psi_{cm} = 2 \ \psi_{lab.}$ ,  $\psi_{lab}$  opening angle between indicident neutron and nuclear recoil  $(\cos \psi_{lab} = \frac{\vec{n}\vec{A}}{n.A})$ 

Igal Jaeglé (UH)

### pre-prototype-micro-TPC / TPC characterisation

R&D with a pre-prototype TPC: S.E. Vahsen et al. http://arxiv.org/abs/1110.3401

- ${\small \bullet}~$  volume from  $\sim$  0.61  $cm^3$  to  $\sim$  2.5  $cm^3$
- charge amplified by 2 GEMs

NB: white material corresponds to delrin

inside vacuum vessel

detected by ATLAS Pixel Chip FE-I3

D<sup>3</sup>-micro-5



vaccum vessel + neutron source

- stable operation for more than a year, large datasets recorded
  - commissioning w/ Ar:C02:70:30; muons, x-rays, alpha-particles (11,12)
  - detailed calibration & directional neutron detection w/ He:C02:70:30 (Fall 12-now)

### ATLAS Pixel Chip electronics / TPC characterisation

#### High gain + ATLAS Pixel Chip electronics allows full 3D tracking

- track range (position resolution)
- track dE/dx (topology)
- track total ionization energy (energy resolution)
- track direction (angular resolution)
- cosmic-ray trak:  $\sim$  7 mm and 2 keV measured by micro-D<sup>3</sup> prototype



#### • FE-I3 low-noise and low-threshold

- chip size 0.84 cm × 0.76 cm
- pixel size 50 μm × 400 μm
- 18 column x 160 row
- 400 ns time range with 16 graduation
- threshold 3000 e<sup>-</sup>
- 100k e<sup>-</sup> charge range with 128 graduation

#### • FE-I4 low-noise and low-threshold

- chip size 2 cm x 1.68 cm
- pixel size 50 μm × 250 μm
- 80 column x 336 row
- 1600 ns time range with 64 graduation
- thresold 1400 e<sup>-</sup>
- 100k e<sup>-</sup> charge range with 16 graduation

- virually no noise
- high-single electron efficiency => suitable for low-mass WIMP search

Igal Jaeglé (UH)

### Gain resolution and stability / TPC characterisation

High gain w/o sparking for weeks, measurement w/ pulseheight analyzer

200

00 1000 2000 3000 4000 5000 6000 7000 energy (ABU

gain vs voltage



)  ${}^{55}$ Fe/x-rays source  $\sigma_{gain} = 11$  % at 3 keV  $\sigma_{gain} = 8$  % at 5.9 keV

> 4554 ± 0. 648 2 ± 0. 115 5 ± 0. 2210 ± 2.

5.9 keV x-ray peak vs. time



- sufficient gain to achieve single-electron sensitivity if needed
- good gain resolution for MeV-scale signals, adequate even for few-keV signals!

210 Po/alpha source  $\sigma_{gain} = 5 \%$  at 5 MeV

Igal Jaeglé (UH)

Dark sector particle searches and gas-TPC

energy (ABU)

#### 3D point resolution / TPC characterisation

10k events of cosmics recorded with Ar:CO<sub>2</sub>:70:30 at 1 atm, use such events to measure detector point resolution (< 200  $\mu$ m)





=> based on measured point resolution, expect angular resolution on nuclear recoils  $\sim 1$  degree

### Angular resolution, nuclear recoils / TPC characterisation

 $^{210}\text{Po}$  alpha-source inside vacuum vessel, He:CO\_2:70:30 at 1 atm, plots below show how well we can locate it:

track length vs. total ionization energy



azimuthal angle distribution



polar angle distribution



- selected events clearly point back to a single source
- No BG after good-track selection
- consistent with  $\sigma(\theta,\phi)$  detector  $< 1^{o}$

Igal Jaeglé (UH)

#### neutron setup / TPC characterisation

Detector Setup Schematic for 5 mm gap



4 settings of the source:

- theta = 90 degrees and phi = 0 degrees
- theta = 90 degrees and phi = 45 degrees
- theta = 90 degrees and phi = -45 degrees
- theta = 65 degrees and phi = 45 degrees

#### Directional Neutron Detection / TPC characterisation

DCube-micro-5 (He:CO<sub>2</sub>:70:30 in 1 atm with FE-I3 board) measurement in LAB. with a pseudo neutron beam emitted by  $^{252}Cf$ -source



=> recoil angular distribution points back to the neutron direction

Igal Jaeglé (UH)

### Micro-TPC conceptual design / Micro-TPC design

TPCs positioned to disentangle the different sources of neutrons by measuring the angular distribution of the recoil nucleus.



- surface from  $0.72 \times 0.8$  to  $4 \times 3.36$  cm<sup>2</sup> can be instrumented
- E  $\parallel$  B (0.3 to 0.9 kV/cm [depending of the chip and gas]  $\parallel$  1.5 T)

Dark sector particle searches and gas-TPC

x [cm]

18 / 60

seminar@LAL-Orsay

# Gas choice / Micro-TPC desgin

- good neutron detection efficiency
- attachment coefficient low
- gas gain o(100)
- simulate gas / gas mixture with
  - iC<sub>4</sub>H<sub>10</sub> (flammable and explosive)
  - Ar:CO<sub>2</sub>
  - He:CO<sub>2</sub>
  - He:CF<sub>4</sub>
  - He:CH<sub>4</sub> (flammable, but not explosive)



 Gas parameters calculation by MAGBOLTZ and effect of 1.5 T magnetic field



- B-field has negligie effect (for gases with small drift velocity)
   we want F || B
  - we want E || B
- If not E || B => diffusion and drift velocity more complex form

=> best trade off between safety, efficiency, gas propertires and track length is given to  $\rm He:CO_2:70:30~at~1~atm$ 

Igal Jaeglé (UH)

### Gas system / Micro-TPC design

- gas
- regulator
- gas in/out
- exhaust
- mechanical overpressure release
  - gas system designed by Michael Hedges



#### Design (Flow Chart)

#### => all parts ordered

Igal Jaeglé (UH)

# Field cage (FC) / Micro-TPC design

FC encircles sensitive volume and produced the electric field, it is composed of:

- an anode plane, field-shaping rectangular rings and a cathode
- connected to a resistor chain creating a linearly degrading potential ۰
- full structure
  - 7 mm/10 mm gap between each rectangular rings
  - \* 15 cm drift gap
  - \* rings are 1 cm from the vessel wall

cathode



rectangular ring



anode: rectangular ring at which is glued a mesh ۰



Igal Jaeglé (UH)

Dark sector particle searches and gas-TPC

21 / 60

# Field cage (FC) / Micro-TPC design



 $\begin{array}{c|c} v_{drift} \; [\mu m/ns] & \mathsf{D}_t \; [\mu m/\sqrt{cm}] & \mathsf{E} \; [\mathsf{kV}/\mathsf{cm}] & \mathsf{V}_{anode} \; [\mathsf{kV}] \\ 10 & 124.3 & 0.53 & 7.95 + \mathsf{V}_{GEM_2^{top}} \end{array}$ 

### HV bias / Micro-TPC desgin

circuit diagram



- $R = 4 M\Omega \pm 0.1 \% => R^{total} = 64 M\Omega$
- GEM HV range between 900 V and 2000 V

• 
$$V_{anode}^{max} = 10.48 \text{ kV}$$

- I = 132.5 μA
- $\bullet \ R' = 15.16 \ M\Omega$
- 15.16  $\leq$  R' + R<sub>potentiometer</sub>  $\leq$  45 M $\Omega$
- $V_{cathode} = V_{GEM_2^{top}} + 530 \text{ V/cm} \times 0.06 \text{ cm}$

• 
$$V_{anode} = V_{cathode} + 530 \text{ V/cm} \times 16 \text{ cm}$$

• 
$$V_{cathode} = \frac{R' + R_{potentiometer}}{R' + R_{potentiometer} + R} V_{anode}$$

- procedure to set the field:
  - set first GEM HV
  - tune offline R<sub>potentiometer</sub> to the desired value
  - connect potentiometer box cables and switch on UHV
  - set V<sub>anode</sub>

#### HV bias check / Micro-TPC design



field measurement at 15 kV 

- $V_{anode}$  . 0.171  $\leq V_{cathode} \leq V_{anode}$  . 0.386
- sparking at Feedthrough level above 15 kV •
- field homogeneity below 3%, measurement limited by voltometer precision ۰

Igal Jaeglé (UH)

## Radial displacement $(\Delta r)$ / Micro-TPC design

Electric field should be as uniform as possible to minimize distortions of the reconstructed tracks

- $\Delta r(x,y) = \int_{z=0}^{z_{max}/2} \frac{E_r(x,y,z)}{E(x,y,z)} dz$  with
  - z drift distance
  - E<sub>r</sub> radial field
  - E field
- Finite Element Method (FEM) used to study the uniformity (in COMSOL)



x/y [cm]

- point resolution in r $\phi <$  125  $\mu m$  in the 15 cm drift gap
- point resolution in z < 250  $\mu m$  in the 15 cm drift gap

Igal Jaeglé (UH)

### Gain gas optimization / Micro-TPC design

To achieve the highest possible detection of the primary ionization, GEMs are used to amplify the signal.

- GEMs are gate-less, can operate continuously and have intrasic ion feedback suppression
- gain has to be adapted to the amount of ionization



Average electron number per pixel and optimal gain for He:CO<sub>2</sub>:70:30 and C<sub>4</sub>H<sub>10</sub> at 1 atm.

| gas                       | He in He:CO <sub>2</sub> :70:30 | H in C <sub>4</sub> H <sub>10</sub> |  |
|---------------------------|---------------------------------|-------------------------------------|--|
| electron number per pixel | 171                             | 1294                                |  |
| optimal gain              | 2800                            | 600                                 |  |

Table:

### Electronics / Micro-TPC design

We will use FE-I4B with a single chip for the first prototype:

board



#### Nice picture I / Micro-TPC design



# Nice picture II / Micro-TPC design



#### Nice picture III / Micro-TPC design



#### Left to right: Gas System, Speaker, Machine Shop and USBpix-DAQ/LV/HV

Igal Jaeglé (UH)

### Recoil angle rate distribution in forward TPC

MC simulation with 1 chip and  $\text{He:CO}_2{:}70{:}30$  at 1 atm

- RBB LER dominates at end of phase2
- with single beams
  - no RBB
  - measure Touschek
  - with vacuum bump Coulomb can be measured





### Recoil angle re-normalized distribution in forward TPC

MC simulation with 1 chip and  $He:CO_2:70:30$  at 1 atm

- re-normalized distributions
- clear difference visible





#### Recoil angle rate distribution in backward TPCs

MC simulation with 1 chip and  $\mbox{He:CO}_2{:}70{:}30$  at 1 atm

- RBB LER dominates at end of phase2
- with single beams
  - no RBB
  - measure Touschek
  - with vacuum bump Coulomb can be measured





### Recoil angle re-normalized distribution in backward TPCs

MC simulation with 1 chip and  $He:CO_2:70:30$  at 1 atm

- re-normalized distributions
- clear difference visible





Igal Jaeglé (UH)

#### Belle/Belle II setups

KL and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, Inner 2 barrel layers)

EM Calorimeter: <u>Csl</u>(Tl), waveform sampling (barrel) Pure <u>Csl</u> + waveform sampling (end-caps)

#### electrons (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C2H6(50%), small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

#### positrons (4GeV)

#### Radiative channels

Belle may have or/and Belle II may produce dark matter,  $\chi$ , dark photon (dark gauge boson), A; and dark Higgs h' as long as the mass of each is low in the following channels:

Radiative decay:

• 
$$e^+e^- \rightarrow \gamma X$$

•  $e^+e^- \rightarrow \Upsilon(nS) \rightarrow \gamma X$ 

• 
$$X = \chi \bar{\chi}$$

- $A \rightarrow I^+I^-$  or hadrons or dark matter
- ★ two body decays

★ upsilon decays



NB: dark photon or dark gauge boson has no normalized name and letter:  $\gamma'$ , A ,A' or U

#### Radiative channels, $\gamma A$

6 experiments have been approved/commissioned and will cover region between 1  $MeV/c^2$  and 1  $GeV/c^2$ 

- all experiments will look for a prompt decay and  $A \rightarrow l^+l^-$  by detecting the leptons
- HPS will also look for a displaced vertex.
- Belle/Belle II could set a limit between 200 MeV/c<sup>2</sup> and 10 GeV/c<sup>2</sup>
- predicted sensitivity



▶ VEPP3/Russia (new setup),  $e^+ + p \rightarrow \gamma A$ ▶ APEX/USA-JLAB (new setup),  $e^- + nucleus \rightarrow \gamma A$ ▶ HPS/USA-JLAB,  $e^- + nucleus \rightarrow \gamma A$ ▶ DarkLight/USA-JLAB (new setup),  $e^- + H \rightarrow \gamma A$ ▶ A1-MAMI/Germany,  $e^- + nucleus \rightarrow \gamma A$ ▶ MESA/Germany (new accelerator and setup),  $e^- + nucleus \rightarrow \gamma A$ 

A not necessarely prompt

#### Radiative channels, $\gamma A$

6 experiments have been approved/commissioned and will cover region between 1  $MeV/c^2$  and 1  $GeV/c^2$ 

- all experiments will look for a prompt decay and  $A \rightarrow l^+l^-$  by detecting the leptons
- HPS will also look for a displaced vertex.
- Belle/Belle II could set a limit between 200 MeV/c<sup>2</sup> and 10 GeV/c<sup>2</sup>
- predicted sensitivity



 plot shows lifetime of A as a function of its mass m<sub>A</sub> and e R. Essig et al, arXiv:0903.3941



Igal Jaeglé (UH)

#### MC simulation of signal signature / Radiative decay

Dark matter can be produced in two modes:

- off-shell i.e.  $e^+e^- \rightarrow \gamma \chi \bar{\chi}$
- on-shell i.e.  $e^+e^- \rightarrow \gamma A, A \rightarrow \chi \bar{\chi}$
- simulated photon spectra for  $W(e^+e^-) = 10 \text{ GeV/c}^2$
- off-shell case

$$eV/c^2$$
 on-shell case,  $m_A = 1 \text{ GeV}/c^2$ 



• off-shell signature => broad energy distribution

• on-shell signature => mono-photon, as displaced vertex decaying into leptons

Igal Jaeglé (UH)

#### Belle II predicted sensitivity / Radiative decay

Determined by R. Essig et al. arXiv:1309.5084 for 50  $ab^{-1}$ 

- Belle II Standard with prescaled trigger of 100
- Belle II Converted Mono-photon (a,b) no prescaled trigger but  $\varepsilon(\gamma \to e^+e^-) = 5$  % instead of 1 %



At start of Belle II physics run, photon trigger (not prescaled) might be implemented furthermore luminosity much lower than at designed luminosity

Igal Jaeglé (UH)

#### Higgs-strahlung channels

Belle may have or/and Belle II may produce dark matter,  $\chi$ , dark photon (dark gauge boson), A; and dark Higgs h' as long as the mass of each is low in the following channels:

- Higgs-strahlung:
- $e^+e^- \rightarrow Ah'$

• if 
$$m(h') > 2m(A)$$
,  $h' \to AA$ 

- if m(A) < m(h') < 2m(A),  $h' \rightarrow l^+ l^-$  or hadrons
- if m(h') < m(A),  $h' \rightarrow \text{dark matter}$
- $A \rightarrow l^+ l^-$  or hadrons or dark matter
- Higgs-strahlung decays



- α<sub>D</sub> coupling between the dark Higgs and the dark photon
- $\alpha' = \frac{g'^2}{4\pi}$  fine structure for the dark photon
- g' coupling of the dark photon to electrons (or SM)

• 
$$\epsilon = \frac{g'}{e}$$
 and  $\epsilon^2 = \frac{\alpha'}{\alpha}$ 

•  $\alpha = \frac{e^2}{4\pi} \sim \frac{1}{137}$  the electromagnetic coupling

#### Search for the dark photon and dark Higgs at Belle

Presented today: A and h' prompt and  $m_{h'} > 2m_A$ for  $0.1 < m_A < 3.5 \text{ GeV/c}^2$  and  $0.2 < m_{h'} < 10.5 \text{ GeV/c}^2$ 



 $\alpha_D$ : dark sector constant  $\epsilon^2$ : kinetic mixing

channels presented today

- Se<sup>+</sup>3e<sup>−</sup>, 3µ<sup>+</sup>3µ<sup>−</sup>, 2e<sup>+</sup>2e<sup>−</sup>µ<sup>+</sup>µ<sup>−</sup>, 2µ<sup>+</sup>2µ<sup>−</sup>e<sup>+</sup>e<sup>−</sup>
- $3\pi^+3\pi^-$ ,  $2\pi^+2\pi^-e^+e^-$ ,  $2\pi^+2\pi^-\mu^+\mu^-$
- ►  $2e^+2e^-\pi^+\pi^-$ ,  $2\mu^+2\mu^-\pi^+\pi^-$ ,  $e^+e^-\mu^+\mu^-\pi^+\pi^-$
- $2e^+2e^-X$ ,  $2\mu^+2\mu^-X$ ,  $e^+e^-\mu^+\mu^-X$

- if A coupling to h' unity
- Higgs-strahlung channel most sensitive to A since QED background low
- than other decays e.g.:  $e^+e^- \rightarrow A\gamma$  with huge QED background

#### Analysis strategy / Higgs-strahlung channels

Full reconstruction of exclusive six-lepton/hadron final states from  $e^+e^- 
ightarrow Ah' 
ightarrow AAA$ 

- final state identification
  - 6 charged tracks
  - 3 pairs of opposite charge
- signal reconstruction
  - impact parameters and  $\chi^2$  vertex fit cuts
  - require energy conservation

  - keep combinations with three masses "equal"
  - ▶ plots below show signal Monte Carlo simulation events surviving selection with  $m_{h'} = 5 \text{ GeV}/c^2$  and  $m_A = 2.19 \text{ GeV}/c^2$



Igal Jaeglé (UH)

#### Detection efficiency / Higgs-strahlung channels

e.g.  $e^+e^- \rightarrow Ah' \rightarrow AAA \rightarrow 3e^+3e^-$ 



#### Background estimation strategy / Higgs-strahlung channels

#### Data driven background estimation

- estimate background using "same sign" events  $e^+e^- \rightarrow Ah' \rightarrow A(l^+l^+)A(l^+l^+)A(l^-l^-)$
- order masses of lepton pairs  $m_{II}^1>m_{II}^2>m_{II}^3$  and plot  $m_{II}^1-m_{II}^3$  vs.  $m_{II}^1$
- select region in m<sub>ll</sub> and predict background there using same sign

• 
$$e^+e^- \rightarrow 3e^+3e^-$$



• opposite sign = signal, signal box blinded (red)

Igal Jaeglé (UH)

#### Background estimation method / Higgs-strahlung channels

- sideband used to normalize same sign to opposite sign
- background estimated from the number of counts in the signal region of the same sign distributions
  - projection on  $m_{||}^1 m_{||}^3$  for  $m_{||}^1 = 1.9 \text{ GeV/c}^2$



#### MC simulation test / Higgs-strahlung channels

MC simulation of  $e^+e^- 
ightarrow 
ho^0 l^+ l^-$  or hadrons produced in phase space

- red opposite sign
- blue same sign



=> background estimation method verified successfully with MC

Igal Jaeglé (UH)

#### Background estimation results / Higgs-strahlung channels

Data control sample with the 4 boxes already open:

- red opposite sign
- blue same sign



### Background estimation results / Higgs-strahlung channels

Comparison between predicted Belle background and Belle number of events measured

| Final state    | бе              | $6\mu$          | 4µ2e | 4π2e    |
|----------------|-----------------|-----------------|------|---------|
| Belle expected | $4.75 \pm 1.31$ | $1.64 \pm 1.12$ | 0    | 7.4 ± 4 |
| Belle measured | 1               | 0               | 1    | 5       |

#### => Number of events measured consistent with background expectation







background: Standard Model  $2\gamma$  processes with  $\rho$ 's or  $\omega$ 's in the final state

Igal Jaeglé (UH)

### Belle limits / Higgs-strahlung channels



- upper limit (90 % CL) determined by Bayesian inference method with the use of Markov Chain Monte Carlo A. Caldwell et al., CPC 180 (2009) 2197-2209
- Belle limit scales nearly linearly with integrated luminosity

Igal Jaeglé (UH)

#### Belle limit / Higgs-strahlung channels

Compare to BaBar limits BaBar Collaboration - arXiv:1202.1313

• 
$$e^+e^- \to 2\pi^+2\pi^-e^+e^-$$

• 
$$e^+e^- \rightarrow 2\mu^+ 2\mu^- e^+ e^-$$



=> Belle II will scales nearly linearly with integrated luminosity or with square root of integrated luminosity in presence of background

Igal Jaeglé (UH)

Dark sector particle searches and gas-TPC

seminar@LAL-Orsay 51 / 60

#### Combined sensitivity to the product of $\alpha_D \epsilon^2$

Belle combined sensitivity compared to BaBar combined limit

• dark photon 90 % CL sensitivity

dark Higgs 90 % CL sensitivity



Branching fractions and couplings versus cross section, dark photon and dark Higgs masses fallow B. Batell et al. arXiv:0903.0363 (2009)

Igal Jaeglé (UH)

#### Annual modulation ?

- DM can explain observed anomalies in astrophysical data and dark matter experiments
  - annual modulation due to the Earth's orbit around the Sun as the Sun orbits the galactic center ? DAMA/LIBRA, Eur. Phys. J. C 56: 333-355 (2008)



- scattering cross section  $\sigma \propto \frac{1}{(q^2 M_*^2)^2}$  with q: momentum transfer  $(q^2 = 2m_{nucleus} E_{recoil}^{nucleus})$  and  $M_*$ : carrier particle = A or W, Z
  - ▶  $M_* \to 0$  then  $\sigma \propto \frac{1}{q^4}$ , long range interaction =>  $\frac{d\sigma}{dE_{recoil}^{nucleus}} \propto \frac{1}{(m_{nucleus}E_{recoil}^{nucleus})^2}$ ▶  $M_* \gg q$  then  $\sigma \propto \frac{1}{M_*^4}$ , contact term interaction
- for  $M_{WIMP} = 10 \text{ GeV}/c^2$  and  $m_{Na(I)} = 22(129) \text{ GeV}/c^2$ ,  $q^{max} \sim 30(100) MeV/c^2$ =>  $m_A \ll 1 \text{ GeV}/c^2 \ll M_{WIMP}$  and modulation amplitude enhanced

#### Daily oscillation / Dark matter directional detection

If annual modulation observed by DAMA/LIBRA is caused by WIMPs due to:

- Earth's orbit around the Sun as the Sun orbits the galactic centre
- since Earth's rotatation a daily oscillation in the mean direction of the WIMPs must be observed as well
  - passing from TPC coordinate to galactic coordinate enforce daily osciallation
  - at least 10 recoil events to measure WIMP direction => strong constrain, no known background with this signature



=> use daily oscillation to clean and identify the WIMP signal

### Current projects / Dark matter directional detection

Time Projection Chamber as WIMP detector filled with gas



- Iow target mass, normally need very large gas volume
- but low track reconstruction threshold changes situation for low-mass WIMPs with only 1-10 m<sup>3</sup> volume
- several groups attempting directional detection with gas TPC. Advantages of our approach are:
  - 3D tracking => better DM identification & alpha BG rejection
  - single electron efficiency => expect very low track-recons. threshold
  - basically free of noise

#### Low-pressure operation / Dark matter directional detection

#### To measure low WIMP mass, eg 10 $GeV/c^2\colon$

- gas with target nucleus close to wanted WIMP mass and TPC friendly
   => Fluorine as target and gas CF<sub>4</sub> or gas mixtures CF<sub>4</sub>:CHF<sub>3</sub> or CF<sub>4</sub>:CS<sub>2</sub>
- operate at extremely low-pressure, increase track length,  $L(at P) = L(at P_0) \times \frac{P_0}{P}$ ,

but diffusion  $\sigma(at P) = \sigma(at P_0) \times \sqrt{\frac{P_0}{P}}$ 

• find best trade off between the target mass and track length so that the directional sensitivity is maximized I. Jaegle et al. http://arxiv.org/abs/1110.3444



### Future plan / Dark matter directional detection

#### Building this year a 10l volume detector

build and run smoothly

building this year









- to reduce the readout price
  - larger pixel chips
  - electrostatic focusing of drift charge
- existing ATLAS DAQ
- negative ion drift or gas w/ slow drift velocity



## Reach plot for 3 years and 3 $m^3$

Preliminary reach plot shows advantages of low track energy threshold and possible golden scenario

- observe annual modulation
- sub-sample of data for daily oscillation search





Igal Jaeglé (UH)

#### Conclusion

Belle and Belle II can contribute to the dark sector particles searches for the prompt and displaced vertex cases

- radiative decays
  - with 50 ab<sup>-1</sup>, Belle II might reach sensitivity to rule out a prompt dark photon and dark Higgs decays into leptons or hadrons
  - expected background in Belle II is not known
- search in Belle data set for dark photon and dark Higgs in the mass ranges:
  - $0.1 < m_A < 3.5 \text{ GeV}/c^2$
  - $0.2 < m_{h'} < 10.5 \text{ GeV}/c^2$
  - we found that:
    - ★ background is small, implying
    - $\star$  limit scales nearly linearly with integrated luminosity
    - ★ Belle II expected to scale nearly linearly with integrated luminosity or square root of integrated luminosity

TPC:

- TPC characterisation shows very promising results
- MC simulation
  - beams-induced background, different background can be disentangled
  - measurement of WIMPs direction might be possible at low pressure

Thanks for your attention.