In order to choose the best f/D value for cylinder, I change some parameters of the feed made by institute 54 . The different f / D values of cylinder is as follows:

(1) $\mathbf{f} / \mathrm{D}=\mathbf{0 . 2 6 5}$

The reflector focal length on diameter ratio (f/D) is 0.265 which corresponds to a subtended half-angle $\left(\theta_{h a}\right)$ of 86.6 degrees calculated from Equation 1.1. The subtended half-angle refers to an angle subtended by the reflector edges at the focal point and is illustrated in Figure1.1.

$$
\begin{gather*}
\frac{f}{D}=\frac{1}{4} \cot \frac{\theta_{h a}}{2} \tag{1.1}\\
\theta_{h a}=2 \tan ^{-1}\left[\frac{1}{4(f / D)}\right] \tag{1.2}
\end{gather*}
$$

Figure 1.1 Cross-sectional view of the cylinder in the transverse plane
When the radius of reflection cavity is 100 mm as depicted in Figure1.2, we can get a subtended half-angle $\left(\theta_{h a}\right)$ of 86.6 degrees for cylinder.

Figure 1.2 The feed for cylinder when radius of cavity is 100 mm
The cylinder has an aperture length of 40 m , diameter(D), of 15 m and focal length(f), of 4 m in CST software. Figure 1.3 show the farfield pattern for cylinder.

Figure1.3 The farfield pattern for cylinder

(2) $\mathrm{f} / \mathrm{D}=\mathbf{0 . 3 2}$

The reflector focal length on diameter ratio (f/D) is 0.32 which corresponds to a subtended half-angle $\left(\theta_{h a}\right)$ of 70 degrees calculated from Equation 1.1.

When the height of reflection cavity is 90 mm as depicted in Figure2.1, we can get a subtended half-angle $\left(\theta_{h a}\right)$ of 70 degrees for cylinder.

Figure2.1 The feed for cylinder when height of cavity is 90 mm
The cylinder has an aperture length of 40 m , diameter(D), of 15 m and focal length(f), of 4.8 m in CST software. Figure 2.2 show the farfield pattern for cylinder.

Figure2.2 The farfield pattern for cylinder

(3) $\mathrm{f} / \mathrm{D}=0.357$

The reflector focal length on diameter ratio (f / D) is 0.357 which corresponds to a subtended half-angle $\left(\theta_{h a}\right)$ of 74 degrees calculated from Equation 1.1.

When the height of reflection cavity is 70 mm as depicted in Figure3.1, we can get a subtended half-angle $\left(\theta_{h a}\right)$ of 74 degrees for cylinder.

Figure3.1 The feed for cylinder when height of cavity is 70 mm
The cylinder has an aperture length of 40 m , diameter(D), of 15 m and focal length(f), of 5.4 m in CST software. Figure3.2 show the farfield pattern for cylinder.

Figure3.2 The farfield pattern for cylinder

(4) $f / D=0.38$

The reflector focal length on diameter ratio (f/D) is 0.38 which corresponds to a subtended half-angle $\left(\theta_{h a}\right)$ of 66 degrees calculated from Equation 1.1.

When the height of reflection cavity is 40 mm as depicted in Figure4.1, we can get a subtended half-angle $\left(\theta_{h a}\right)$ of 66 degrees for cylinder.

Figure4.1 The feed for cylinder when height of cavity is 40 mm
The cylinder has an aperture length of 40 m , diameter(D), of 15 m and focal length(f), of 5.8 m in CST software. Figure 4.2 show the farfield pattern for cylinder.

Figure4.2 The farfield pattern for cylinder
(5) Comparing the different \mathbf{f} / D values of cylinder

Figure5.1 Theta scan(perpendicular to antenna length) for cylinder in different f/D values

Figure5.2 Phi scan(parallel to antenna length) for cylinder in different f/D values

