

Analytical chemistry: from data (pre)-treatment optimization to data mining, data fusion and big data

EA4041, Groupe de Chimie Analytique de Paris-Sud 'GCAPS'

Four principle themes

Different analytical tools

Schedule

10h00-10h30:

«Analytical chemistry: cell membrane lipidomics and data analysis», Sana Tfaili

10h30-11h00:

«Analytical chemistry and chemometrics: a tool for skin physiological and physiopathological charecterization», Ali Tfayli

11h00-11h10:

«Analytical chemistry: from data (pre)-treatment optimization to data mining, data fusion and big data», S&A Tfai(y)li

Sana Tfaili

Lipidomics

- Recent comparing to other omics
- Borrows heavily from metabolomics
- Specific analysis of lipids

Primer

Lipidomics: New Tools and Applications Markus R. Wenk^{1, 2,} ,

Infectious diseases

•Leishmaniasis

 Impact of treatment on the lipid composition of membranes Leishmania donovani

Collaboration UMR BioCIS / Ph. Loiseau

Hereditary diseases and RBCs

•Lipid composition and sickle cell disease

Olivier Blanc-Brude Paris Centre de Recherche Cardiovasculaire (PARCC)

•Lipid composition and Gaucher disease (LETIAM)

Institut National de Transfusion Sanguine (Pr. Le Van Kim et Dr. M Franco) Service de Neuro-Pédiatrie de l'Hôpital Trousseau (Pr. T. Billette de Villemeur et Dr C. Mignot)

Lipidomics macrophages & Atherosclerosis

•Impact of membrane incorporation of w3 PUFA on cholesterol efflux from macrophages

•Intracellular trafficking of cholesterol from macrophages:study of the inhibition of Rab7 and the role of oxysterols

Collaboration EA4529 (cross-cutting theme in the future unit Lip (Sys)²)

Chromatography

Lipids and polarity

Lipides de foie de rat

Colonne: Spherisorb 3µm 150x5mm

Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light-scattering) detection. W W Christie, 1985 The Journal of Lipid Research, 26, 507-512.

Lipids are separated according to their polar moeties.

Digalactosyldiglycéride

Colonne Hypercarb®

Deschamps F, Gaudin K, Baillet A & Chaminade P. Wheat digalactosyldiacylglycerol molecular species profiling using porous graphitic carbon stationary phase. *JOURNAL OF SEPARATION SCIENCE* (2004) **27**: p. 1322.

Lipids are separated according to their chain length & number and position of double bonds

Mass spectrometry MS

Laurent Imbert, PhD thesis, GCAPS, EA4041, 2012, Univ. Paris Sud

Lipid molecular species

Nature Reviews | Molecular Cell Biology

Lipidomics: coming to grips with lipid diversity

Andrej Shevchenko & Kai Simons

Nature Reviews Molecular Cell Biology 11, 593-598 (August 2010)

LC-MS data matrix

Data = 3D matrix need to concatenate and "unfold" files In the data matrix: Objects (lines) = sample Variables (columns) = couple (Tr, m/z)

Univariate statistical analysis using XCMS online:

Paired Student t-test between the two groups of signals

Evident significant difference between the intensities of the ions.

Alignment tools using MzMine

XML	ID	A	verage	ID	4	verage	ID	Avera	age	Ident	D	ak ahana	20131009_EFS	30_neg1.r	m [20131009_EFS	32_neg1.	m
XML		m/z	Ret.time	U	m/z	Ret.tim		m/z	Ret.time 🔺	Ident		eak shape	Status	Height		Status	Height	
	178	747.5173	11.6	185	747.5163	11.6	175	746.5135	11.6				•	2.4E5	5	•	4.5E5	1
	180	748.5299	11.6	187	748.5286	11.6	178	747.5168	11.6				•	9.6E4	2	•	2.0E5	5
	182	PHO 5224	11.6	192	150 5500	11.6	180	748.5293	11.6				•	6.7E5	1	•	9.4E5	2
	184	750.5454	11.6	207	764.5235	11.6	205	201 5011	11.6				•	6.5E5	1	•	7.6E5	2
	185	751.5487	11.6	214	766.5391	11.6	213	766.5398	11.6				•	1.1E6	3	•	9.5E5	2
	187	752.5584	11.6	218	767.5425	11.6	217	767.5431	11.6				•	4.9E5	1	•	4.0E5	1
	205	764.5247	11.6	354	827.5175	11.6	700	1500.0829	11.6				•	5.0E4	1	•	6.7E4	1

Step 1: file by file, detection of ions (> threshold) scan by scan

Step 2: ion chromatogram generation, file by file

Step 3: file by file, peak detection table (ion; rt, intensity) (data file)

Step 4: Alignment: Setting a tolerance window (m/z, rt) based in general on the first chromatogram. (data set)

Principal component analysis Unsupervised method Data mining

PLS Discriminant analysis

http://fiehnlab.ucdavis.edu/staff/kind/Statistics/Concepts/OPLS-PLSDA

LC-MS data matrix processing

Orthogonal PLS-DA (OPLS-DA)

Maximizes the discrimination between two classes in its first component

S-Plot expresses the relationship between the original variables (rt, m/z) and scores on the selected axis.

> Published in: Susanne Wiklund; Erik Johansson; Lina Sjöström; Ewa J. Mellerowicz; Ulf Edlund; John P. Shockcor; Johan Gottfries; Thomas Moritz; Johan Trygg; Anal. Chem. 2008, 80, 115-122.

O-PLS and S-plot using SimcaP

-3 SD = -30237.3 -2 SD = -14489.3 Average = 17006.7 2 SD = 48502.7 3 SD = 64250.7

SIMCA-P+ 12.0.1 - 2014-03-14 20:48:10 (UTC+1)

S-plot / Selection of discriminate variables

SIMCA-P+ 12.0.1 - 2014-03-14 20:56:57 (UTC+1)

	General List [M2]				- • ×
	1	2	3	4	5
1	Var ID (Primary)	Var ID (row m/z)	Var ID (row retention time)	M2.p[1]	M2.p(corr)[1]
2	294	807.588	18.7738	-0.0416959	-0.850459
3	305	804.61	18.7946	-0.0399648	-0.815149
4	838	830.627	18.6037	-0.0395783	-0.807266
5	1198	730.576	18.8086	-0.0407172	-0.830496
6	1302	834.608	18.6162	-0.0414102	-0.844632
7	1363	730.576	18.813	-0.0438618	-0.894635
8	1384	1449.98	7.70241	-0.0441028	-0.899551
9	1763	1452	7.71264	-0.0421506	-0.859734
10	1774	730.575	18.8107	-0.0406005	-0.828116
11	1830	780.567	18.8099	-0.0419063	-0.85475
12	2023	1449.98	7.70241	-0.0414215	-0.844861

5
.p(corr)[1]
0.927955
0.912305
0.862809
0.856616
0.888057
0.8592
0.86881
0.855716

[9:03:35 PM]: Finished opening project C:\Users\P.CH\Documents\Globules rouges\Manips 15 octobre\7 mars 2014\mass det et chrom builder OK.mzmine

Online databases

	: LIPID	MAPS	Lipid × 🖉 Identification of phospholipid	specie ×	C Microsoft P	owerPoint - EB	_April_2013 ×	+		
Home Lip Overview Pu	idon		D Metabolites and Pathways Str Didomics (Update Resources Mee Classification Standards Data	rategy (L Gat tings a Datab	IPID MAPS) CEW6 Tutorials bases Path	Searc Protoce ways To	th the Lipic ols Abo ols Servic	lomics Ga but es Links	teway Sea	irch ?
Mace S	nor	tro	motry							
Wass S	pec		meny							
Possible	Card	dioli	oin Structures							
Exact Mass:	144	9.98	Mass Tolerance: +/- 1 m/	∕z -	Refine Se	earch Ne	w Search			
C=Number of	f Carb	ons; l	DB=Number of double bonds; sn1('1),s	sn2=MS/	MS Product Ic	ons (neutral l	oss)			
C=Number of Mass	f Carb C	ons; I DB	DB=Number of double bonds; sn1('1),s Abbreviation	sn2=MS/	MS Product Ic sn1(1')	ons (neutral l sn2(1')	oss) sn1(2')	sn2(2')	Formula	lon
C=Number of Mass 1449.9806	f Carb C 72	ons; I DB 7	DB=Number of double bonds; sn1('1),s Abbreviation <u>18:1(9Z)/18:2(9Z,12Z)/18:2(9Z,12Z)</u> /18:2(9Z,12Z)	8n2=MS/	MS Product Ic sn1(1') 1167.7248	ons (neutral l sn2(1') 1169.7404	oss) sn1(2') 1169.7404	sn2(2') 1169.7404	Formula <u>C81H143O17P2</u>	lon [M-H]-
C=Number of Mass 1449.9806 1449.9806	f Carb C 72 72	ons; I DB 7 7	DB=Number of double bonds; sn1('1),s Abbreviation <u>18:1(9Z)/18:2(9Z,12Z)/18:2(9Z,12Z)</u> /18:2(9Z,12Z) <u>18:2(9Z,12Z)/18:2(9Z,12Z)/18:2(9Z,12Z)</u> /18:1(9Z)	sn2=MS/I 2 <u>Z)</u>	MS Product lo sn1(1') 1167.7248 1169.7404	ons (neutral I sn2(1') 1169.7404 1169.7404	oss) sn1(2') 1169.7404 1169.7404	sn2(2') 1169.7404 1167.7248	Formula <u>C81H143O17P2</u> <u>C81H143O17P2</u>	lon [M-H]- [M-H]-
C=Number of Mass 1449.9806 1449.9806 1449.9806	f Carb C 72 72 72	00005; 1 DB 7 7 7 7	DB=Number of double bonds; sn1('1),s Abbreviation 18:1(9Z)/18:2(9Z,12Z)/18:2(9Z,12Z) /18:2(9Z,12Z) 18:2(9Z,12Z)/18:2(9Z,12Z)/18:2(9Z,12Z)/18:2(9Z,12Z)/18:2(9Z,12Z)/18:1(9Z) 18:2(9Z,12Z)/18:2(9Z,12Z)/18:1(9Z) /18:2(9Z,12Z)	sn2=MS/I 2 <u>27)</u>	MS Product lo sn1(1') 1167.7248 1169.7404 1169.7404	ons (neutral I sn2(1') 1169.7404 1169.7404 1169.7404	oss) sn1(2') 1169.7404 1169.7404 1167.7248	sn2(2') 1169.7404 1167.7248 1169.7404	Formula C81H143O17P2 C81H143O17P2 C81H143O17P2 C81H143O17P2	Ion [M-H]- [M-H]- [M-H]-
C=Number of Mass 1449.9806 1449.9806 1449.9806 1449.9806	f Carb 72 72 72 72 72	ons; I DB 7 7 7 7	DB=Number of double bonds; sn1('1),s Abbreviation 18:1(9Z)/18:2(9Z,12Z)/18:2(9Z,12Z) /18:2(9Z,12Z) 18:2(9Z,12Z)/18:2(9Z,12Z)/18:2(9Z,12Z) /18:1(9Z) 18:2(9Z,12Z)/18:2(9Z,12Z)/18:1(9Z) /18:2(9Z,12Z)/18:1(9Z)/18:2(9Z,12Z) /18:2(9Z,12Z)	sn2=MS/I 2 <u>27)</u>	MS Product lo sn1(1') 1167.7248 1169.7404 1169.7404 1169.7404	ons (neutral I sn2(1') 1169.7404 1169.7404 1169.7404 1167.7248	oss) sn1(2') 1169.7404 1169.7404 1167.7248 1169.7404	sn2(2') 1169.7404 1167.7248 1169.7404 1169.7404	Formula <u>C81H143O17P2</u> <u>C81H143O17P2</u> <u>C81H143O17P2</u> <u>C81H143O17P2</u>	lon [M-H]- [M-H]- [M-H]-
C=Number of Mass 1449.9806 1449.9806 1449.9806 1449.9806 1449.9806 Total of 4 Records	f Carb 72 72 72 72 72	DB 7 7 7 7	DB=Number of double bonds; sn1('1),s Abbreviation 18:1(9Z)/18:2(9Z,12Z)/18:2(9Z,12Z) /18:2(9Z,12Z) 18:2(9Z,12Z)/18:2(9Z,12Z)/18:2(9Z,12Z) /18:1(9Z) 18:2(9Z,12Z)/18:2(9Z,12Z)/18:1(9Z) /18:2(9Z,12Z)/18:1(9Z)/18:2(9Z,12Z) /18:2(9Z,12Z)/18:1(9Z)/18:2(9Z,12Z) /18:2(9Z,12Z)	sn2=MS/I	MS Product lo sn1(1') 1167.7248 1169.7404 1169.7404 1169.7404	ons (neutral I sn2(1') 1169.7404 1169.7404 1169.7404 1167.7248	oss) sn1(2') 1169.7404 1169.7404 1167.7248 1169.7404	sn2(2') 1169.7404 1167.7248 1169.7404 1169.7404	Formula C81H143O17P2 C81H143O17P2 C81H143O17P2 C81H143O17P2	lon [M-H]- [M-H]- [M-H]-

Online databases

HMDB: MS Search	× 🕹 Identific	cation of phospholipic	d specie × C Microsoft Powe	erPoint - EB_April_2013 1	× +				
Home	Browse » Sea	rch » Al	bout » Download	ds 🦸 TMIC	Contact Us				
	Search HMI	DB	for Matabolitae		Advanced Search				
MS Search	MS/MS Search GC/MS	S Search 1D N	IMR Search 2D NMR s	HMDB: MS Search	× 🖉 Identification of phospholipid specie	Microsoft PowerP	oint - EB_April_2013 ×	+	
				MS search for 14	49.98 m/z Delta = abs(query mass - adduct ma	ass)			
		Ма	ss Spectrum Sear	Show 10	▼ entries		Search	1:	
	Query Masses (Da)		Molecular Weigh	Compound \$	Name	Adduct \$	Adduct MW (Da)	Compound MW (Da)	Delta
	Esta esta esta esta la	(0.05	HMDB57086	CL(18:0/16:1(9Z)/22:5(7Z,10Z,13Z,16Z,15 /16:1(9Z))	9Z) M-H	1449.9806	1450.987876	0.0006
	150 query masses per	request)	Molecular Specie	HMDB10246	CL(18:2(9Z,12Z)/18:2(9Z,12Z)/18:2(9Z,12 /18:1(11Z))	Z) _{M-H}	1449.9806	1450.987876	0.0006
	1449.98		Negative Mode	HMDB57699	CL(16:1(9Z)/20:4(5Z,8Z,11Z,14Z)/18:1(9Z /18:1(11Z))	⁾ М-Н	1449.9806	1450.987876	0.0006
				HMDB57636	CL(16:1(9Z)/18:1(9Z)/20:4(5Z,8Z,11Z,14Z /18:1(11Z))	⁾ М-Н	1449.9806	1450.987876	0.0006
				HMDB56436	CL(16:0/16:0/18:1(9Z) /22:6(4Z,7Z,10Z,13Z,16Z,19Z))	M-H	1449.9806	1450.987876	0.0006
				HMDB57280	CL(18:0/22:5(4Z,7Z,10Z,13Z,16Z)/16:1(9Z /16:1(9Z))	^{Z)} M-H	1449.9806	1450.987876	0.0006
				HMDB57328	CL(18:0/22:5(7Z,10Z,13Z,16Z,19Z)/16:1(/16:1(9Z))	9Z) M-H	1449.9806	1450.987876	0.0006
				HMDB56586	CL(16:0/18:1(11Z) /16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))	M-H	1449.9806	1450.987876	0.0006
				HMDB57998	CL(18:1(11Z)/18:1(11Z)/20:4(5Z,8Z,11Z,14 /16:1(9Z))	^{4Z)} M-H	1449.9806	1450.987876	0.0006
				HMDB58388	CL(18:1(9Z)/16:1(9Z)/18:1(9Z) /20:4(5Z,8Z,11Z,14Z))	M-H	1449.9806	1450.987876	0.0006
				Showing 1 to 10 of	125 entries			Previ	ious Next

Online databases

🐗 MassBank Statistics 🛛 🗙 🖉 Ide	entification of phospholipid spe	cie × +							
MassBank			High Qu	uality Mass S	pectral Database				
Database Service	I Statistics	5, 2014 Total Number of Spectra : ^{*1} 40,889 ᠬ᠌᠌							
Statistics	Statistics								
	Last updated Mar 5, 2014 Total Number of Spectra : *1 40,889 new								
bownload	Research Groups (Contact Name)	Prefix of ID	Analysis Equipment (Analysis Method)	Number of Spectra	Number of Compounds				
Manuals		КОХ	LC-ESI-QTOF (MS2)	^{※2} 839					
	01. <u>IAB, Kelo U</u> (≸ Dr.		LC-ESI-QQ (MS2)	4,265	672				
About MassBank	Tomoyoshi Soga)	КО	LC-ESI-IT (MS2,MS3,MS4)	515					
Contact			GC-EI-TOF (MS)	241					
Consortium Members	02. <u>PSC, RIKEN</u> (≱ Dr.	PR	LC-ESI-QTOF (MS,MS2)	1,371	653				
	Masanori Arita)		LC-ESI-QQ (MS2)	87					
Site Map			CE-ESI-TOF (MS)	20					
Use Restrictions	03. <u>Nihon</u> Waters K.K.	WA	LC-ESI-Q (MS)	2,719	575				
Convright	(PDr. Katsutoshi Nagase)		LC-ESI-QQ (MS2)	273					

Chemometric tools for LC-MS lipidomics profiles analysis.

Analytical chemistry and chemometrics: a tool for skin physiological and physiopathological characterization

Ali Tfayli

General structure of the skin

Largest organ in human body

Epidermis

- Stratum Basale
- Struatum Spinosum
- Stratum Granulosum
- Stratum Corneum

Dermis

- Superficial
- Deep

Skin Barrier function

Skin Barrier function

Skin Barrier function

Dermatology

Characterization of skin barrier

-Physiological status -Physiopathological status

Skin aging

Skin hydration and dry skin diseases

Mechanical stress

Analyses of skin barrier

Organization, lateral packing

Composition and profiling

Separative techniques - mass

Vibrational spectroscopies: Infrared and Raman

$$\mu_{\text{tot}} = \mu_{p(0)} + \sum_{n=1}^{3N-6} \left(\frac{d\mu_{p}}{dQ_{n}}\right) Q_{0} \cos\nu_{n} t + \alpha_{0} (\mathbf{E}_{0} \cos\nu_{0} t) + \frac{1}{2} \mathbf{E}_{0} \sum_{n=1}^{3N-6} \left(\frac{d\alpha_{0}}{dQ_{n}}\right) Q_{0} \left[\cos(\nu_{0} - \nu_{n})t + \cos(\nu_{0} + \nu_{n})t\right] = \frac{1}{34} \sum_{n=1}^{3N-6} \left(\frac{d\alpha_{n}}{dQ_{n}}\right) Q_{0} \left[\cos(\nu_{0} - \nu_{n})t + \cos(\nu_{0} + \nu_{n})t\right] = \frac{1}{34} \sum_{n=1}^{3N-6} \left(\frac{d\alpha_{n}}{dQ_{n}}\right) Q_{0} \left[\cos(\nu_{0} - \nu_{n})t + \cos(\nu_{0} + \nu_{n})t\right] = \frac{1}{34} \sum_{n=1}^{3N-6} \left(\frac{d\alpha_{n}}{dQ_{n}}\right) Q_{0} \left[\cos(\nu_{0} - \nu_{n})t + \cos(\nu_{0} + \nu_{n})t\right] = \frac{1}{34} \sum_{n=1}^{3N-6} \left(\frac{d\alpha_{n}}{dQ_{n}}\right) Q_{0} \left[\cos(\nu_{0} - \nu_{n})t + \cos(\nu_{0} + \nu_{n})t\right] = \frac{1}{34} \sum_{n=1}^{3N-6} \left(\frac{d\alpha_{n}}{dQ_{n}}\right) Q_{0} \left[\cos(\nu_{0} - \nu_{n})t + \cos(\nu_{0} + \nu_{n})t\right] = \frac{1}{34} \sum_{n=1}^{3N-6} \left(\frac{d\alpha_{n}}{dQ_{n}}\right) Q_{0} \left[\cos(\nu_{0} - \nu_{n})t + \cos(\nu_{0} + \nu_{n})t\right] = \frac{1}{34} \sum_{n=1}^{3N-6} \left(\frac{d\alpha_{n}}{dQ_{n}}\right) Q_{0} \left[\cos(\nu_{0} - \nu_{n})t + \cos(\nu_{0} + \nu_{n})t\right] = \frac{1}{34} \sum_{n=1}^{3N-6} \left(\frac{d\alpha_{n}}{dQ_{n}}\right) Q_{0} \left[\cos(\nu_{0} - \nu_{n})t + \cos(\nu_{0} + \nu_{n})t\right]$$

Vibrational spectroscopies

Jablonski diagram

Vibrational signal collection

Individual spectral collection

In depth spectral collection

Vibrational signal collection

2D spectral mapping

3D spectral mapping

Data pre-processing

- -Dark current
- -CCD response correction
- -Optical components contribution
- -Smoothing
- -Baseline correction
- -Normalization

Physiological / Physiopathological status

Raman descriptors of SC barrier

Physiological / Physiopathological status

Skin aging

Physiological / Physiopathological status

Skin aging

TFAYLI A. et al. EJD 2012

Physiological / Physiopathological status

Skin aging

Physiological / Physiopathological status

Skin hydration / dry skin diseases

Ex vivo

ANR CARE

Conformation des chaînes lipidiques

Structure secondaire de la kératine: bande Amide I

Physiological / Physiopathological status

Hydration and mechanical stress

Ex vivo

Physiological / Physiopathological status

Hydration and mechanical stress

Ex vivo

Conformation des lipides

Structures secondaires des protéines

SC mechanical strains

Ex vivo

SC mechanical strains

Compacité des lipides

Structure secondaire des protéines

VYUMVUHORE R. et al. J. Raman spectroscopy, 2013

Physiological status

"QR code" of the skin

ANR CARE

In vivo

Analyse multi-paramétrique du SC

Patients

рН	: pH mètre	
PIE	: Tewl-mètre	âgés de 57 à 62 ans
Hydratation globale du SC	: Cornéomètre	Analyse sur bras et
Composition lipidique	: Chromatographies	mollet
Information moléculaire + profo	ndeur: Raman	

1. Identification des relations entre les différents paramètres

du Stratum Corneum

2. Développement d'un outil multi-informationnel

Physiological status

"QR code" of the skin

ANR CARE

Evaluation des peaux

Validité en tant que substits

Les classes lipidiques majoritaires sont présentes

Perméabilité PLUS ÉLEVÉE

Comparaison de la composition et de l'organisation des lipides

Composition des lipides

Composition globale

-Taille de l'image: 600*600 μm² -Taille du pixel: 4 μm -Pas: 20 μm

Distribution hétérogène des lipides

Coupes de SC: imagerie Raman + NCLS

56

Analytical chemistry: from data (pre)-treatment optimization to data mining, data fusion and big data

Sana et Ali Tfai(y)li

Laurent Imbert, PhD thesis, GCAPS, EA4041, 2012, Univ. Paris Sud

Perspectives:

Data fusion between:

- RPLC and NPLC in chromatography
- Different ionization modes in mass spectrometry
- Increase the separation dimensionality LCxLC MS... (new treatment approach)
- Between Separation techniques, coupled mass spectrometry
- Between several techniques: Raman, IR, separative techniques
- Multi-block analysis (specific algorithms for data processing and fusion)?

Additional analysis will increase the time for data processing: other approaches for data processing ?

Virtual data project (LAL): work on a cloud and save the image Buy cores (possible demand through a project in process)

Data storage

Perspectives:

DATA ARE NOT CENTRALIZED.

- centralize data
- Data storage and management
- Results storage and management
- •Generate our own databases

LIPID MAPS	00		D Metat	bolites and P	Pathwa	ys Strateg S G			ay	the Linio	domics Ga	teway Sea	arch
ome Lip verview Pu	idon Iblicat	nics ions	Updat Classi	e Resou fication Sta	andards	Meeting Data D	gs Tu Databas	utorials ses Path	Protoco ways To	ols Abc	but bes Links	Downloads	
Mass S Possible	pec Caro	c tro dioli	metry	/ ructures									
Exact Mass:	144	9.98		Mass Tolerar	nce: +/	- 1 m/z	•	Refine Se	earch	ew Search			
C=Number o	f Carb	ons;	DB=Numl	ber of double I	bonds; s	n1('1),sn2=	=MS/MS	S Product lo	ons (neutral l	oss)			
C=Number o Mass	f Carb C	ons; DB	DB=Numi Abbrevi	ber of double l iation	bonds; s	n1('1),sn2=	=MS/MS	S Product lo sn1(1')	ons (neutral sn2(1')	oss) sn1(2')	sn2(2')	Formula	Ion
C=Number o Mass 1449.9806	f Carb C 72	ons; DB 7	DB=Num Abbrevi <u>18:1(9Z)</u> /18:2(9Z	ber of double t iation /18:2(92,122) ;122)	bonds; s)/18:2(9Z	n1('1),sn2= , <u>12Z)</u>	=MS/MS s 1	6 Product lo sn1(1') 1167.7248	ons (neutral sn2(1') 1169.7404	loss) sn1(2') 1169.7404	sn2(2') 1169.7404	Formula <u>C81H143O17P2</u>	Ion [M-H]-
C=Number o Mass 1449.9806 1449.9806	f Carb C 72 72	DB 7 7	DB=Numl <u>Abbrevi</u> <u>18:1(92)</u> <u>/18:2(92</u> <u>18:2(92,</u> <u>/18:1(92</u>	ber of double I iation //18:2(92,122) .122) 122)/18:2(92,)	bonds; s)/18:2(9Z 12Z)/18:	n1('1),sn2= , <u>12Z)</u> 2(9Z,12Z)	=MS/MS s 1	S Product Ic sn1(1') 1167.7248 1169.7404	ons (neutral I sn2(1') 1169.7404 1169.7404	oss) sn1(2') 1169.7404 1169.7404	sn2(2') 1169.7404 1167.7248	Formula C81H143O17P2 C81H143O17P2	Ion [M-H]- [M-H]-
C=Number o Mass 1449.9806 1449.9806 1449.9806	f Carb 72 72 72	DB 7 7 7	DB=Numl Abbrevi 18:1(92) /18:2(92, /18:2(92, /18:1(92, 18:2(92, /18:2(92, /18:2(92,	ber of double l iation /18:2(9Z,12Z) ,12Z) 12Z)/18:2(9Z,) 12Z)/18:2(9Z, ,12Z)	bonds; si)/18:2(9Z 12Z)/18: 12Z)/18:	n1('1),sn2 ,12Z) 2(9Z,12Z) 1(9Z)	=MS/MS s 1 1	S Product lo sn1(1') 1167.7248 1169.7404 1169.7404	ons (neutral l sn2(1') 1169.7404 1169.7404 1169.7404	oss) sn1(2') 1169.7404 1169.7404 1167.7248	sn2(2') 1169.7404 1167.7248 1169.7404	Formula C81H143O17P2 C81H143O17P2 C81H143O17P2	Ion [M-H]- [M-H]-
C=Number o Mass 1449.9806 1449.9806 1449.9806	f Carb 72 72 72 72 72	0 ns; DB 7 7 7 7 7	DB=Numi Abbrevi 18:1(92) /18:2(92, /18:1(92) 18:2(92, /18:2(92, /18:2(92, /18:2(92, /18:2(92)	ber of double l iation /18:2(9Z,12Z) /12Z)/18:2(9Z,) 12Z)/18:2(9Z, ,12Z) 12Z)/18:1(9Z) ,12Z)	bonds; si)/18:2(9Z 12Z)/18: 12Z)/18:)/18:2(9Z	n1('1),sn2= ,12Z) 2(9Z,12Z) 1(9Z) ,12Z)	=MS/MS 1 1 1 1	S Product lo sn1(1') 1167.7248 1169.7404 1169.7404 1169.7404	ons (neutral sn2(1') 1169.7404 1169.7404 1169.7404 1167.7248	oss) sn1(2') 1169.7404 1169.7404 1167.7248 1169.7404	sn2(2') 1169.7404 1167.7248 1169.7404 1169.7404	Formula <u>C81H143O17P2</u> <u>C81H143O17P2</u> <u>C81H143O17P2</u> <u>C81H143O17P2</u>	Ion [M-H]- [M-H]- [M-H]-