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• Establishing whether the BEH mechanism and its boson is 
SM-like will be of outmost importance for the run of the LHC.

Higgs physics at LHC

• Higgs-boson production modes at the LHC:

Gluon fusion TTH Higgs strahlung VBF

• Current status for the total cross section:

Same sign 
dimuons 

Signal strength 
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!  Grouped by production 
tag and dominant decay: 
! χ2/dof = 10.5/16 
! p-value = 0.84 

(asymptotic) 

!  ttH-tagged 2.0σ above 
SM. 
! Driven by one channel. 

[CMS-PAS-HIG-14-009] 
[D. André @ ICHEP 2014]

➡ Theo. and exp. uncertainties are of the same order.	



➡ Need to improve our theory predictions!
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• The dominant Higgs production mechanism 
at the LHC is gluon fusion.

The gluon fusion cross section

➡ Loop-induced process.

• For a light Higgs boson, the dimension five operator 
describing a tree-level coupling of the gluons to the Higgs 
boson

L = LQCD,5 �
1
4v

C1 H Ga
µ⌫ Gµ⌫

a

• In the rest of the talk, I will only concentrate on the 
effective theory.

• Top-mass corrections known at NNLO.
[Harlander, Ozeren; Pak, Rogal, Steinhauser; Ball, Del Duca, 
Marzani, Forte, Vicini; Harlander, Mantler, Marzani, Ozeren]
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• The gluon fusion cross section is given in perturbation 
theory by

The gluon fusion cross section

• The (partonic) cross section depends up to an overall scale 
only on the ratio

�(p p! H + X) = ⌧
X

ij

Z 1

⌧
dz Lij(z) �̂ij(⌧/z)

z =
m2

ŝ
⌧ =

m2

s

• The inclusive Higgs cross section is known to be ‘plagued’ 
by large perturbative corrections.

• The partonic cross section known at NLO and NNLO.
[Dawson; Djouadi, Spira, Zerwas; Harlander, Kilgore; Anastasiou, Melnikov; 

Ravindran, Smith, van Neerven]
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The gluon fusion cross sectionscales µ = µR = µF simultaneously1. As it has already been realized in the literature,

smaller scales than the Higgs boson mass lead to a faster convergence of the perturbative

expansion [5, 6].
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Figure 2: Scale variation of the gluon fusion cross-section at LO, NLO, and NNLO. The LO, NLO
and NNLO cross-sections at scale µ ∈

[

mH

4
,mH

]

are normalized to the NNLO cross-section at the
central scale µ = mH

2
.

We estimate the theoretical uncertainty from uncalculated higher order corrections by

varying the renormalization and factorization scale in the interval µ ∈
[

mH

4
,mH

]

. In Fig 2

we present the cross-section at LO, NLO and NNLO in this interval, normalized to the

NNLO cross-section at the central scale µ = mH

2
. The NNLO and NLO bands overlap

largely, Corrections beyond NNLO would need to be atypical in order for our uncertainty

estimate to be inaccurate. The cross-section is known to be stable under threshold and

other corrections which can be resummed beyond NNLO [23–25].

3. Parton density function comparison

The Higgs boson cross-section requires parton distribution functions (pdf) as input. In

iHixs we employ all pdf sets that allow for NNLO evolution (MSTW08 [27], JR09 [28],NNPDF

1We use the central MSTW08 PDF set for all results in this section.

– 2 –

LO 9.6 pb ~ 25%
NLO 16.7 pb ~ 20%
N2LO 19.6 pb ~ 7 - 9%
N3LO ??? ~ 4 - 8%

� ��

[Fixed order only]

[Results for 8 TeV]

[Plot from Anastasiou, Bühler, Herzog, Lazopoulos]
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• We need one more order in the perturbative expansion, N3LO.

The gluon fusion cross section

➡ How good are these approximations..?	


➡ Only full computation can tell…

➡ Uncharted territory!	



➡ New conceptual challenges.

➡ Scale variation at N3LO is known.
• So far no complete computation is available.

• Several approximate N3LO results exist.

•                    Never has an N3LO computation been 
performed so far...
Challenge:

[Moch, Vogt; Ball, Bonvini, Forte, Marzani, Ridolfi; Bühler, Lazopoulos]

[Ball, Bonvini, Forte, Marzani, Ridolfi; de Florian, Mazzitelli, Moch, Vogt]



!
!

!
!

Outline

• Higgs production at N3LO

• The soft-virtual cross-section at N3LO.

• Going beyond the soft-virtual approximation.

• Approximate cross-sections at N3LO.
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Higgs production 	


at N3LO
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The gluon fusion cross section

Virtual corrections (‘loops’) Real emission

• Both contributions are individually divergent:

➡ UV divergences are handled by renormalization.

➡ IR divergences cancelled by PDF counterterms.

[Dawson; Djouadi, Spira, Zerwas]
• At          , there are two contributions (~1991):NLO
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The gluon fusion cross section

Double virtual Real-virtual

Double real

[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]
• At             , there are three contributions (2002):   NNLO
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The gluon fusion cross section

Triple virtual

Double real 
virtual

Real-virtual 
squared

Double virtual 
real

Triple real

• At            , there are five contributions:  N3LO
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• The triple virtual corrections are directly related to the

Triple virtual corrections

• The QCD form factor is known
➡ at one loop.

[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; 
Gehrmann, Glover, Huber, Ikizlerli, Studerus]

➡ at two loops.
[Gonsalves; Kramer, Lampe; 
Gehrmann, Huber, Maître]

➡ at three loops.

• It is not the loops that are the problem!

QCD form factor



!
!

!
!

Unitarity
• Optical theorem:

➡ Discontinuities of loop amplitudes are phase space 
integrals.

=
Z

d�Im

1
p2 �m2 + i"

! �+(p2 �m2) = �(p2 �m2) ✓(p0)

• These relations are at the heart of all the unitarity-based 
approaches to loop computations.

• Discontinuities of loop integrals are given by Cutkosky’s 
rule:
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Reverse-unitarity
• Optical theorem:

=
Z

d�Im

• We can read the optical theorem ‘backwards’ and write 
inclusive phase space integrals as unitarity cuts of loop 
integrals.

➡ Rather than computing phase-space integrals, we can 
compute loop integrals with cuts!

[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]

➡ Makes inclusive phase space integrals accessible to all the 
technology developed for multi-loop computations!
‣ Integration-by-parts & differential equations.
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Reverse-unitarity @ N3LO

LO

NLO

NNLO

N3LO

1 diagram

Growth in complexity for real emission

1 integral

10 diagrams 1 integral

381 diagrams 18 integrals

26565 diagrams ~500 integrals
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• ~ 500 master integrals only for triple real
double real NNLO).	



➡ Tough nut to crack!

• The gluon fusion cross section depends on one single 
parameter:

z =
m2

s
z̄ = 1� z

• Close to threshold (          ), we can approximate the triple 
real cross section by a power series:

z ⇠ 1

The threshold expansion

�̂(z) = ��1 + �0 + (1� z)�1 +O(1� z)2

•           Compute cross section as a series around threshold!Goal:
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The soft-virtual	


cross section at N3LO
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• The 

• The soft-virtual term receives contributions from a ‘pole’ 
at           :z ⇠ 1

• Plus-distribution terms already known.

The soft-virtual approximation

(1� z)�1+n✏
=

�(1� z)

n ✏
+


1

1� z

�

+

+ n✏


log(1� z)

1� z

�

+

+O(✏2)

�̂(z) = ��1 + �0 + (1� z)�1 +O(1� z)2

[Moch, Vogt

• Complete three-loop corrections are contained the delta 
function term.

➡ The soft-virtual term contains the complete three-loop 
corrections plus the correction from the emission of up to 
three soft gluons.
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• At NLO and NNLO, the soft-virtual term reads (                      )

The soft-virtual approximation

2

an effective theory where the top quark has been inte-
grated out, and the Higgs boson couples directly to the
gluons via the effective operator

Leff = −
1

4v
C(µ2)H Ga

µν G
µν
a , (2)

where v ≃ 246 GeV is the vacuum expectation value of
the Higgs field and C(µ2) is the Wilson coefficient, given
as a perturbative expansion in the MS-renormalized
strong coupling constant αs ≡ αs(µ2) evaluated at the
scale µ2. Up to three loops, we have [11]

C(µ2) = −
αs

3 π

{

1 +
11

4

αs

π
(3)

+
(αs

π

)2
[

19

16
Lt +

2777

288
+NF

(

1

3
Lt −

67

96

)

]

+
(αs

π

)3
[

897943

9216
ζ3 +

209

64
L2
t +

1733

288
Lt −

2892659

41472

+NF

(

−
110779

13824
ζ3 +

23

32
L2
t +

55

54
Lt +

40291

20736

)

+N2
F

(

−
1

18
L2
t +

77

1728
Lt −

6865

31104

)

]

+O(α4
s)

}

,

with Lt = log(µ2/m2
t ) and NF the number of active

flavours.
The partonic cross-section itself admits the perturba-

tive expansion

σ̂ij(m
2
H , ŝ) =

πC(µ2)2

v2 V 2

∞
∑

k=0

(αs

π

)k

η(k)ij (z) , (4)

with z ≡ m2
H/ŝ and V = N2 − 1, where N denotes the

number of colours. The coefficients η(k)ij (z) are known
explicitly through NNLO in perturbative QCD [13].
If all the partons emitted in the final state are soft,

we can approximate the partonic cross-sections by their
threshold expansion,

η(k)ij (z) = δig δjg η̂
(k)(z) +O(1 − z)0 . (5)

Note that the first term in the threshold expansion, the
so-called soft-virtual term, only receives contributions
from the gluon initial state. Soft-virtual terms are linear

combinations of a δ function and plus-distributions,

∫ 1

0
dz

[

g(z)

1− z

]

+

f(z) ≡

∫ 1

0
dz

g(z)

1− z
[f(z)− f(1)] . (6)

Through NNLO, we have [13, 14]

η̂(0)(z) = δ(1 − z) , (7)

η̂(1)(z) = 2CA ζ2 δ(1 − z) + 4CA

[

log(1− z)

1− z

]

+

, (8)

η̂(2)(z) = δ(1 − z)

{

C2
A

(

67

18
ζ2 −

55

12
ζ3 −

1

8
ζ4 +

93

16

)

+NF

[

CF

(

ζ3 −
67

48

)

− CA

(

5

9
ζ2 +

1

6
ζ3 +

5

3

)]

}

+

[

1

1− z

]

+

[

C2
A

(

11

3
ζ2 +

39

2
ζ3 −

101

27

)

(9)

+NF CA

(

14

27
−

2

3
ζ2

)

]

+

[

log(1− z)

1− z

]

+

[

C2
A

(

67

9
− 10 ζ2

)

−
10

9
CA NF

]

+

[

log2(1− z)

1− z

]

+

(

2

3
CA NF −

11

3
C2

A

)

+

[

log3(1− z)

1− z

]

+

8C2
A .

In this expression ζn denotes Riemann’s zeta function,
and CA = N and CF = N2

−1
2N are the Casimirs of the

adjoint and fundamental representations of SU(N). For
simplicity we have set the renormalization and factorisa-
tion scales equal to the Higgs mass, µR = µF = mH .

The main result of this Letter is the next term in the
perturbative expansion, N3LO, of the cross-section for
the threshold production of a Higgs boson. Indeed, all the
ingredients necessary to compute η̂(3)(z) have recently
become available. Individually, each of these contribu-
tions is divergent. Adding up all the contributions, and
including the counterterms necessary to remove the ul-
traviolet and infrared divergences, all the poles in the
dimensional regulator ϵ cancel. The finite term in the
Laurent expansion, however, does not cancel, and for
µR = µF = mH the finite remainder is given by,

η̂(3)(z) = δ(1− z)

{

C3
A

(

−
2003

48
ζ6 +

413

6
ζ23 −

7579

144
ζ5 +

979

24
ζ2 ζ3 −

15257

864
ζ4 −

819

16
ζ3 +

16151

1296
ζ2 +

215131

5184

)

(10)

+NF

[

C2
A

(

869

72
ζ5 −

125

12
ζ3 ζ2 +

2629

432
ζ4 +

1231

216
ζ3 −

70

81
ζ2 −

98059

5184
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N3LO status: soft-virtual

Triple virtual

Double real 
virtual

Real-virtual 
squared

Double virtual 
real

Triple real

✓ +

✓a ✓a ✓a

✓a ✓a
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• The computation of the first term has been completed!

The soft-virtual approximation

➡ 22 three-loop.	



➡ 3 double-virtual-real.	



➡ 7 real-virtual-squared.	



➡ 10 double-real-virtual.	



➡ 8 triple real.
➡ three-loop splitting functions.	



➡ three-loop beta function.	



➡ three-loop Wilson coefficient.

• Many different contributions are needed:

[Anastasiou, CD, Dulat, Furlan, Gehrmann, Herzog, Mistlberger]

[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; 
Gehrmann, Glover, Huber, Ikizlerli, Studerus]

[CD Gehrmann, Li, Zhu]
[Anastasiou, CD, Dulat, Herzog, Mistlberger; 

Kilgore]
[Anastasiou, CD, Dulat, Furlan, Herzog, Mistlberger; 

Li, von Manteuffel, Schabinger, Zhu]

[Anastasiou, CD, Dulat, Mistlberger]

[Moch, Vermaseren, Vogt]
[Tarasov, Vladimirov, Zharkov; 

Larin, Vermaseren]
[Chetyrkin, Kniehl, Steinhauser; Schroeder, 

Steinhauser; Chetyrkin, Kuhn, Sturm]
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The integralsleading-order cross sections for H plus five partons. More details about the construction of

the amplitude in this limit will be given in Section 7. Here it suffices to say that we have

computed the squared amplitude and we have checked that in the limit where we only keep

the first two terms in the threshold expansion, all the phase space integrals can be reduced

to linear combinations of the following ten soft master integrals,

1
2

1
2

=

∫
dΦS

4 = ΦS
4 (ϵ) , (6.1)

1

2

1
2

=

∫
dΦS

4

(s13 + s15)s34
= ΦS

4 (ϵ)F2(ϵ) , (6.2)

2

1

2

1

=

∫
dΦS

4

s14s23s34
= ΦS

4 (ϵ)F3(ϵ) , (6.3)

1

2

1

2

=

∫
dΦS

4

s13s15s34s45
= ΦS

4 (ϵ)F4(ϵ) , (6.4)

2
1

2

1

=

∫
dΦS

4

(s14 + s15)s23s345
= ΦS

4 (ϵ)F5(ϵ) , (6.5)
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We have normalized all the integrals to the soft phase space volume for H+3g defined

in eq. (3.16). In the remainder of this section we give the dimensional recurrence relations

satisfied by the master integrals and present the analytic results for each master integral

as a Laurent expansion in the dimensional regulator ϵ. Technical details about how to

compute the master integrals analytically will be given in Section 8.

6.2 Dimensional recurrence relations

Using the technique described in Section 4, we can derive dimensional recurrence relations

for all the master integrals defined in the previous section. The knowledge of these recur-

rence relations provides us with a strong check on our results. In addition, it turns out

that the master integral F9(D) is easier to compute in D = 6− 2ϵ dimensions, where it is

finite, and the dimensional recurrence relations allow us to relate the six-dimensional and

four-dimensional results in an easy way.

The recurrence relation for the soft phase space volume is trivial to obtain from the

recurrence relation for the Γ function,

ΦS
4 (D + 2) =

(D − 4)(D − 3)(D − 2)3

72(D − 1)(3D − 5)(3D − 4)(3D − 2)(3D − 1)

Γ(D − 4)

64π3Γ(D − 1)
ΦS
4 (D) . (6.11)

As we have defined all our master integrals relative to the phase space volume ΦS
4 , we can

simplify their recurrence relations by factoring out the above result. We therefore define

the ratio

R =
ND

3

ND+2
3

ΦS
4 (D + 2)

ΦS
4 (D)

=
(D − 4)(D − 3)(D − 2)3

72(D − 1)(3D − 5)(3D − 4)(3D − 2)(3D − 1)
, (6.12)

where N was defined in eq. (4.4). We give the results for the remaining master integrals
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remaining pieces of the latter two integrals were subsequently obtained in [41]. In [40], it

was pointed out that for each of these three integrals one can find an integral from the same

topology with an irreducible scalar product, which has homogeneous transcendentality.

These integrals were named A9,1n, A9,2n and A9,4n, and are defined in [40]. Compared

to [40] we increased the numerical precision of the remaining coefficients, both for A9,2 and

A9,4, by means of conventional packages like MB.m [56]. We reproduce thirteen significant

digits of the analytic result of [41] in the case of A9,2, and fourteen in the case of A9,4.

We also converted our numerical results for these two integrals into the corresponding

integrals of homogeneous transcendentality, A9,2n and A9,4n. On the coefficients of these

integrals, a PSLQ [57] determination was attempted. For the pole coefficients, the PSLQ

algorithm converged to a unique solution in agreement with [41]. For the finite coefficients,

the numerical precision that we obtained is yet insufficient for PSLQ to yield a unique

solution.

An analytic result for A9,2 and A9,4, derived by purely analytic steps and without

fitting rational coefficients to numerical values, is still a desirable task, and remains to be

investigated in the future. This goal is definitely within reach in the case of A9,4, whereas

the situation is less clear for A9,2.

Expansions of all master integrals to the order in ϵ where transcendentality six first

appears are listed in the Appendix.
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the situation is less clear for A9,2.

Expansions of all master integrals to the order in ϵ where transcendentality six first
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master integrals. We would like to remark that such expansions can also be performed at

the integrand of loop-amplitudes before any reduction to master integrals has taken place.

Combined with the method of reverse-unitarity [9] we have a powerful algebraic technique

for the simultaneous threshold expansion of integrals over loop and external momenta.

4.2 Reverse unitarity and differential equations

In this section we evaluate the real-virtual squared cross-sections using the reverse-unitarity

approach [12–15]. Reverse unitarity establishes a duality between phase-space integrals and

loop integrals. Specifically, on-shell and other phase-space constraints are dual to “cut”

propagators

δ+(q
2) →

[
1

q2

]

c

=
1

2πi
Disc

1

q2
=

1

2πi

[
1

q2 + i0
− 1

q2 − i0

]

. (4.17)

A cut-propagator can be differentiated similarly to an ordinary propagator with respect to

its momenta. It is therefore possible to derive integration-by-parts (IBP) identities [55, 56]

for phase-space integrals in the same way as for loop integrals. The only difference is an

additional simplifying constraint that a cut-propagator raised to a negative power vanishes:
[
1

q2

]−ν

c

= 0, ν ≥ 0 . (4.18)

In this approach, we are not obliged to perform a strictly sequential evaluation of the loop

integrals in the amplitude followed by the nested phase-space integrals. Rather, we combine

the two types of integrals into a single multiloop-like type of integration by introducing cut-

propagators and then derive and solve IBP identities for the combined integrals. We solve

the large system of IBP identities which are relevant for our calculation with the Gauss

elimination algorithm of Laporta [47]. We have made an independent implementation of

the algorithm in C++ using also the GiNaC library [57]. In comparison to AIR [48],

which is a second reduction program used in this work, the C++ implementation is faster

and more powerful, storing all identities in virtual memory rather than in the file system.

All integrals that appear in the real-virtual squared cross section are reduced to linear

combinations of 19 master integrals, which we choose as follows:

M1 =

1

2

2

1

=

∫

dΦ2 Bub(s23) Bub
∗(s13). (4.19)

M2 =
1

2

1

2

=

∫

dΦ2 Bub(s12) Bub
∗(s12). (4.20)

M3 =

1

2

1

2

=

∫

dΦ2 Bub(s13) Bub
∗(s12). (4.21)
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M4 =

1

2

1

2

=

∫

dΦ2 Bub(s13) Bub
∗(s13). (4.22)

M5 =

2

12

1

=

∫

dΦ2Tri(s12 + s23) Bub
∗(s23). (4.23)

M6 =

2

1

2

1

=

∫

dΦ2Tri(s12 + s13) Bub
∗(s23). (4.24)

M7 =

1

2

1

2

=

∫

dΦ2Tri(s12 + s23) Bub
∗(s12). (4.25)

M8 =

1

2 1

2

=

∫

dΦ2 Bub(s23) Box
∗(s12, s23, s13). (4.26)

M9 =
1

2

1

2

=

∫

dΦ2 Bub(s12) Box
∗(s13, s23, s12). (4.27)

M10 =

2

1

2

1

=

∫

dΦ2 Bub(s23) Box
∗(s12, s13, s23). (4.28)

M11 =

1

2

2

1

=

∫

dΦ2 Bub(s13) Box
∗(s13, s23, s12). (4.29)

M12 =

1

2

2

1

=

∫

dΦ2Tri(s12 + s13) Box
∗(s13, s23, s12). (4.30)
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1
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M13 =

2

1

2

1

=

∫

dΦ2Tri(s12 + s13) Box
∗(s12, s13, s23). (4.31)

M14 =

2

1

1

2

=

∫

dΦ2Tri(s12 + s13) Box
∗(s12, s23, s13). (4.32)

M15 =

2

1

1

2

=

∫

dΦ2 Box(s12, s13, s23) Box
∗(s12, s23, s13). (4.33)

M16 =

2

1

2

1

=

∫

dΦ2 Box(s12, s13, s23) Box
∗(s13, s23, s12). (4.34)

M17 =

1

2

1

2

=

∫

dΦ2 Box(s12, s23, s13) Box
∗(s12, s23, s13). (4.35)

M18 =

2

1

2

1

=

∫

dΦ2 Box(s13, s23, s12) Box
∗(s13, s23, s12). (4.36)

M19 =

2

1

1

2

=

∫

dΦ2 Bub(M
2
h) Box

∗(s12, s23, s13)
1

s23
. (4.37)

Single solid lines represent scalar massless propagators. The phase-space integration

is represented by the dashed line and the cut-propagators are the lines cut by the dashed

line. The cut propagator of the Higgs boson is depicted by the double-line. Every master

integral has a one-loop integral on the left- and a complex-conjugated one-loop integral

on the right-hand side of the cut. In each side of the cut, we find scalar bubble, box or

triangle integrals, where the latter is defined by

Tri(s12) =

∫
dDk

i(π)D/2

1

k2(k + q1)2(k + q1 + q2)2
,

Tri(p21, p
2
2) =

∫
dDk

i(π)D/2

1

k2(k + p1)2(k + p1 + p2)2
,

(4.38)
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FIG. 6: Master integrals encountered in the computation. Eikonal approximations are
taken on the directions p1 and p2.

diagrams in Fig. 4. After the evaluation of color factor and kinematical factor, the resulting
loop integrals are reduced to three master integrals in Fig. 6. To that end, we use the tech-
niques of Integration-By-Parts (IBP) [55, 56], implemented in the MATHEMATICA package
FIRE [57] using the Laporta algorithm [58]. The reduction to master integrals has also been
cross checked using a different MATHEMATICA package LiteRed [59]. The results after
the IBP reduction procedure can be written as

S(2)
12 (q) = g4s

p1 · p2
(q · p1)(q · p2)

×

{

CANf

[

2(−7 + 2D)(12− 6D +D2)

(−6 +D)(−3 +D)(−2 +D)(−1 +D)
I1

−
6(−4 +D)2

(−6 +D)(−2 +D)(−1 +D)
I2

]

+ CANs

[

−
(−7 + 2D)(−4− 4D +D2)

2(−6 +D)(−2 +D)(−1 +D)
I1

+
3(−4 +D)2

(−6 +D)(−2 +D)(−1 +D)
I2

]

+ C2
A

[

+
8

3
I3

−
(2(−156 +D(72 +D(11 + (−9 +D)D)))− 3(−4 +D)3Ds)

(−6 +D)(−4 +D)(−2 +D)(−1 +D)
I2

+

(

(−7 + 2D)(504− 1308D + 874D2 − 213D3 + 17D4)

3(−6 +D)(−4 +D)(−3 +D)(−2 +D)(−1 +D)

−
(−7 + 2D)(−4− 4D +D2)Ds

2(−6 +D)(−2 +D)(−1 +D)

)

I1

]}

, (6)

The parameter Ds selects the particular variant of dimensional regularization. For Ds =
4 − 2ϵ the scheme is the conventional dimensional regularization scheme, while for Ds = 4
it is the four-dimensional helicity scheme (FDH) [60, 61].
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loop integrals are reduced to three master integrals in Fig. 6. To that end, we use the tech-
niques of Integration-By-Parts (IBP) [55, 56], implemented in the MATHEMATICA package
FIRE [57] using the Laporta algorithm [58]. The reduction to master integrals has also been
cross checked using a different MATHEMATICA package LiteRed [59]. The results after
the IBP reduction procedure can be written as

S(2)
12 (q) = g4s

p1 · p2
(q · p1)(q · p2)

×

{

CANf

[

2(−7 + 2D)(12− 6D +D2)

(−6 +D)(−3 +D)(−2 +D)(−1 +D)
I1

−
6(−4 +D)2

(−6 +D)(−2 +D)(−1 +D)
I2

]

+ CANs

[

−
(−7 + 2D)(−4− 4D +D2)

2(−6 +D)(−2 +D)(−1 +D)
I1

+
3(−4 +D)2

(−6 +D)(−2 +D)(−1 +D)
I2

]

+ C2
A

[

+
8

3
I3

−
(2(−156 +D(72 +D(11 + (−9 +D)D)))− 3(−4 +D)3Ds)

(−6 +D)(−4 +D)(−2 +D)(−1 +D)
I2

+

(

(−7 + 2D)(504− 1308D + 874D2 − 213D3 + 17D4)

3(−6 +D)(−4 +D)(−3 +D)(−2 +D)(−1 +D)

−
(−7 + 2D)(−4− 4D +D2)Ds

2(−6 +D)(−2 +D)(−1 +D)

)

I1

]}

, (6)

The parameter Ds selects the particular variant of dimensional regularization. For Ds =
4 − 2ϵ the scheme is the conventional dimensional regularization scheme, while for Ds = 4
it is the four-dimensional helicity scheme (FDH) [60, 61].
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The double line denotes the Higgs boson, and the dashed line represents the phase-

space cut. All other internal uncut lines are scalar propagators. Note that, by construction,

the loop momentum is always soft, and so we work in the eikonal approximation. The soft

phase-space measure is given by [?]

dΦS
3 =
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2
12 − 2p12 · p34)

dDp3
(2π)D−1

dDp4
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δ+(p
2
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2
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! CD: check normalisation.

Note that we work with the rescaled momenta pi, defined by [?]

qi = z̄ pi . (6.4)

The virtual one-loop integral appearing inside the master integrals are defined as follows:

We know that the soft virtual term of the RRV cross section can only receive contributions

from the tree-level and one-loop soft-currents for the emission of two soft gluons, where

the soft limit is defined by the scaling (6.4). The one-loop correction to the soft-current

only receives contributions from eikonal virtual gluons, which correspond to the soft region

of the loop momentum, k ∼ z̄. The loop-integration measure then scales like dDk ∼ z̄−2ϵ.

Hence, the virtual integrals correspond to the leading term of region with scaling z̄−2ϵ. We

use the code [?, ?] to identify regions in Feynman parameter space corresponding to the

scaling (6.4), and we only keep the leading term of the region with overall scaling z̄−2ϵ. In

all cases, the result is a parametric integral the is trivial to perform. In the following we

summarise the virtual integral that enter our master integrals. We only present the result
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because the virtual integral is scaleless for a soft loop momentum. In addition, we have

the following relations:

M2 = M7[p1 ↔ p2; p3 ↔ p4][k → −k − p3] ,

M4 = M8[k → k + p3] ,

M6 = M16[p1 ↔ p2][k → k + p3]

= M18[p3 ↔ p4][k → −k − p3] ,

M12 = M13[p1 ↔ p2; p3 ↔ p4][k → −k]

= M25[p3 ↔ p4][k → k − p3] ,

M15 = M20[p1 ↔ p2][k → −k − p4] ,

M19 = M21[p1 ↔ p2; p3 ↔ p4][k → −k] ,

M23 = M30[p3 ↔ p4][k → k − p3 + p4] .

(6.2)

This leaves us with the following 10 master integrals to compute:
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• Caveat! 

Higgs soft-virtual @ N3LO

• Source of ambiguity:
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Equation (10) is the main result of this Letter. While the
terms proportional to plus-distributions were previously
known [4], we complete the computation of η̂(3)(z) by the
term proportional to δ(1−z), which includes in particular
all the three-loop virtual corrections.
Before discussing some of the numerical implications

of Eq. (10), we have to make a comment about the va-
lidity of the threshold approximation. As we will see
shortly, the plus-distribution terms show a complicated
pattern of strong cancelations at LHC energies; the for-
mally most singular terms cancel against sums of less sin-
gular ones. Therefore, exploiting the formal singularity
hierarchy of the terms in the partonic cross-section does
not guarantee to furnish a fast converging expansion for
the hadronic cross-section. Furthermore, the definition of
threshold corrections in the integral of Eq. (1) is also am-
biguous, because the limit of the partonic cross-section
at threshold is not affected if we multiply the integrand
by a function g such that limz→1 g(z) = 1, i.e., we are
formally allowed to modify the integrand of Eq. (1) by
multiplying the parton luminosity,

∫

dx1 dx2 [fi(x1) fj(x2)g(z)] σ̂ij(s, z)|threshold . (11)

It is obvious that eq. (11) has the same formal accuracy in
the threshold expansion, provided that limz→1 g(z) = 1.
As we will see in the following, this ambiguity has a sub-
stantial numerical implication, and thus presents an ob-
stacle for obtaining precise predictions. We note however

that by including in the future further corrections in the
threshold expansion, the ambiguity will be reduced.
Bearing this warning in mind, we present some of the

numerical implications of our result. For N = 3 and
NF = 5, the coefficients of the distributions in eq. (10)
take the numerical values

η̂(3)(z) ≃ δ(1− z) 1124.308887 . . . (→ 5.1%)

+

[

1

1− z

]

+

1466.478272 . . . (→ −5.85%)

−

[

log(1 − z)

1− z

]

+

6062.086738 . . . (→ −22.88%)

+

[

log2(1− z)

1− z

]

+

7116.015302 . . . (→ −52.45%)

−

[

log3(1− z)

1− z

]

+

1824.362531 . . . (→ −39.90%)

−

[

log4(1− z)

1− z

]

+

230 (→ 20.01%)

+

[

log5(1− z)

1− z

]

+

216 . (→ 93.72%)

In parentheses we indicate the corrections that each term
induces to the hadronic cross-section normalized to the
leading order cross-section at a center of mass energy of
14 TeV. The ratio is evaluated with the same parton den-
sities [15] and αs at scales µR = µF = mH in the numer-
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Equation (10) is the main result of this Letter. While the
terms proportional to plus-distributions were previously
known [4], we complete the computation of η̂(3)(z) by the
term proportional to δ(1−z), which includes in particular
all the three-loop virtual corrections.
Before discussing some of the numerical implications of

Eq. (10), we have to make a comment about the validity
of the threshold approximation. As we will see shortly,
the plus-distribution terms show a complicated pattern
of strong cancelations at LHC energies; the formally most
singular terms cancel against sums of less singular ones.
Therefore, exploiting the formal singularity hierarchy of
the terms in the partonic cross-section does not guaran-
tee a fastly converging expansion for the hadronic cross-
section. Furthermore, the definition of threshold correc-
tions in the integral of Eq. (1) is also ambiguous, because
the limit of the partonic cross-section at threshold is not
affected if we multiply the integrand by a function g such
that limz→1 g(z) = 1, i.e., we are formally allowed to
modify the integrand of Eq. (1) by modifying the parton
luminosity,

∫

dx1 dx2 [fi(x1) fj(x2)zg(z)]

[

σ̂ij(s, z)

zg(z)

]

threshold

.

(11)
It is obvious that eq. (11) has the same formal accuracy in
the threshold expansion, provided that limz→1 g(z) = 1.
As we will see in the following, this ambiguity has a sub-
stantial numerical implication, and thus presents an ob-

stacle for obtaining precise predictions. We note however
that by including in the future further corrections in the
threshold expansion, this ambiguity will be reduced.
Bearing this warning in mind, we present some of the

numerical implications of our result. For N = 3 and
NF = 5, the coefficients of the distributions in eq. (10)
take the numerical values

η̂(3)(z) ≃ δ(1− z) 1124.308887 . . . (→ 5.1%)
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+
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In parentheses we indicate the corrections that each term
induces to the hadronic cross-section normalized to the
leading order cross-section at a center of mass energy of
14 TeV. The ratio is evaluated with the same parton den-

improvement via the calculation of sub-leading terms or even the full, unexpanded cross-section.
In this proceedings we study this uncertainty in the case of the gluon fusion Higgs production
cross-section at N3LO. We consider lower orders in perturbative QCD to study the convergence
behaviour of the expansion for the Higgs cross-section and inspect the impact of the ambigu-
ity due to the truncation of the threshold expansion. Furthermore, we demonstrate that the
ambiguity for the SV approximation at N3LO is large.

2 Threshold Expansion for the Higgs boson cross-section

The probability distribution of a gluon occurring in a proton is steeply falling with its energy
and suggests the possibility of performing a fast converging threshold expansion of the gluon
fusion Higgs cross-section. Already at NNLO a threshold expansion was performed7 and was
shown to be rapidly converging towards the full result6.

Here we study the strong coupling expansion of the heavy top effective theory. In this note
we are interested in the effect complementing existing lower order calculations with a threshold
expansion at NnLO. The threshold approximations and expansions which we will discuss will
always contain the full (non-expanded) dependence on terms which enter the result at lower
orders in the strong coupling expansion. We will also include the full NnLO dependence on
renormalisation and factorisation scales as well as the full dependence on those NnLO corrections
which are generated from higher order corrections to the Wilson coefficient.

Parametrising the expansion with the variable z =
m2

H

x1x2s
leads to a series of the partonic

cross-section in (1− z).

[σ̂ij(s, z)]threshold = σSV
ij + (1− z)0σ(0)

ij + (1− z)σ(1)
ij + . . . . (2)

If a series expansion is truncated at a given finite order an unavoidable ambiguity is introduced
due to missing higher order terms. To study the impact of truncating the threshold expansion
of the Higgs boson cross-section we spuriously insert a function g(z) satisfying lim

z→1
g(z) → 1 into

eq. 1 such that

σ =
∑

i,j

∫

dx1 dx2 [fi(x1) fj(x2)zg(z)]
[

σ̂ij(s, z)

zg(z)

]

threshold

. (3)

For all choices of g(z) the expansion truncated at O ((1− z)n) thus leads to formally equivalent
results up to O

(

(1− z)n+1
)

.
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Figure 1 – Threshold approximation for the Higgs boson cross-section at 13 TeV at the LHC
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Figure 3 – The gluon-fusion cross-section at 13 TeV at the LHC as a function of µ = µR = µF up to LO (black),
NLO (red), NNLO (green) and soft-virtual N3LO (blue). The N3LO SV approximation is modified with different
functions g(z).

to sub-leading terms at N3LO. Given the experience at lower orders we expect that only a few
sub-leading terms in the threshold expansion are required to obtain a significant improvement
to an approximation of the N3LO cross-section and consequently to the predictions for LHC
observables.

3 Conclusion

The rapidly increasing experimental precision of Higgs cross-section measurements raises an
urgent demand for the improvement of the theoretical prediction for the inclusive Higgs boson
cross-section at the LHC. With the recent publication of the first term in the threshold expansion
of the N3LO gluon-fusion QCD cross-section an important step in this direction was taken. In
this proceedings we have analysed the quality of the threshold expansion. We find that the
expansion is converging fast at lower orders in QCD perturbation theory and expect to find
similar behaviour at N3LO. We studied the uncertainty introduced due to the truncation of
the threshold expansion at NLO, NNLO and N3LO and conclude that at least several terms in
the expansion are necessary in order to infer reliable predictions for LHC measurements and
improve upon the current status. We conclude that the calculation of further terms in the
threshold expansion and even the full Higgs boson cross-section at N3LO is highly desirable.
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• Can we go beyond the soft-virtual approximation..?

• Can we improve the soft-virtual result and do phenomenology..?

Going beyond soft-virtual

➡ More terms in the expansion..?	



➡ Result in full kinematics..?

➡ Recent approximate N3LO results..?

➡ How good are these approximations..?

[Ball, Bonvini, Forte, Marzani, Ridolfi; de Florian, Mazzitelli, Moch, Vogt]
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Approximate cross 
sections at N3LO
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• Ball, Bonvini, Forte, Marzani, Ridolfi:

Approximate N3LO results

➡ Soft-virtual term at N3LO.	



➡ High-energy behaviour, including top-mass effects 
at N3LO.	



➡ Analyticity.

!

• Recently, approximate results at N3LO have been presented 
that include terms beyond the soft-virtual approximation   
(gluons only).

!

• de Florian, Mazzitelli, Moch, Vogt:
➡ Soft-virtual term at N3LO.	



➡ First three logarithms from the next term in the 
expansion, + numerical guesses for the missing 
logarithms.
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Mellin-space vs. z-space
!

�̂(N) =

Z 1

0
dz zN�1 �̂(z) �̂(z) =

Z c+i1

c�i1

dN

2⇡i
z�N �̂(N)

!

• Experience from lower orders: numerical convergence of soft 
expansion better in Mellin-space.

Soft / threshold limit: 

High-energy limit:

Mellin-spacez-space

!

• Mellin-space is the natural language for resummation.

z ! 1

z ! 0

N ! 1

‘small’N
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The high-energy limit

➡ In the infinite top-mass limit.	



➡ Including finite top-mass effects.

• The leading behaviour of the cross section at small N is known 
at N3LO.

• Infinite top-mass not compatible with the high-energy limit

➡ Tension between              and           .  s � 1mt � 1

➡ To be compared to ~6% from expanding resummation to 
N3LO.

• If one includes the correct high-energy limit (and requires the 
correct analytic behaviour in z-space), we find ~16% increase 
compared to NNLO (8 TeV,                 , gluons only).µR = mH

[Hautmann]

[Ball, Del Duca, Forte, 
Marzani, Vicini]

[Ball, Bonvini, Forte, Marzani, Ridolfi]
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Subleading soft terms
• Recently, the first three next-to-soft terms were published:

  

Results in z-space 

Javier Mazzitelli – Constraints on the Higgs N3LO XS from the physical kernel Javier Mazzitelli – Constraints on the Higgs N3LO XS from the physical kernel 

And also for the N4LO cross section:

Small numerical impact

03/11 03/11 

�̂(z) = ��1 + �0 + (1� z)�1 +O(1� z)2

• In Mellin-space:

LO NLO NNLO N3LO

constant 100 77.4 32.2 8.04
(delta) (100) (35.1) (1.72) (5.07)
lnN 14.8 12.0 5.14
ln2N 7.16 7.56 4.04
ln3N 1.07 1.09
ln4N 0.18 0.27
ln5N 0.025
ln6N 0.002
SV 100 99.4 53.0 18.6

C2(m2H) 100 19.6 2.05 0.12

Table 1: The individual contributions of the lnk N terms in the N-space coefficient functions c(n≤3)gg at
µR = µF = mH to the Higgs production cross section for mH = 125 GeV, Ecm = 14 TeV, and the central
gluon density and five-flavour αs of Ref. [53]. All results are given as percentages of the LO contribution.
Also shown, in the same manner, is the expansion of the prefactor function [C(µ2R = m2H ]2), calculated in the
on-shell scheme for the top mass with m2t = 3.00 ·104 GeV2.

This situation is, in fact, expected from related studies of the DY process [24] and Higgs-
exchange DIS [25]. It is particularly interesting to consider the latter case as the coefficient func-
tions are completely known to N3LO. Thus, in order to estimate the size of the N−1 logarithms
not determined in Eq. (2.15), we compare with Ref. [25] and expand the gluon coefficient function
c(n)DIS(N) of Higgs-exchange DIS up to O(N−1) at both NNLO and N3LO. We find

c(2)DIS
∣∣∣
N−1 lnk N

∝ ln3N+5.732 ln2N+8.244 lnN−3.275 ,

c(3)DIS
∣∣∣
N−1 lnk N

∝ ln5N+12.65 ln4N+52.56 ln3N+92.01 ln2N+18.13 lnN−24.30 (3.1)

for CA = 3, CF = 4/3 and nf = 5, where we have normalized the expressions such that the coeffi-
cient of the leading logarithm is equal to 1. The analogous expressions for Higgs production are

c(2)gg
∣∣∣
N−1 lnk N

∝ ln3N+2.926 ln2N+5.970 lnN+2.007 ,

c(3)gg
∣∣∣
N−1 lnk N

∝ ln5N+5.701 ln4N+
(
17.86+0.00333ξ(3)H

)
ln3N+O(ln2N) . (3.2)

Comparing Eqs. (3.1) and (3.2) an interesting pattern emerges: the size of the coefficients of the
non-leading logarithms for Higgs production is always smaller than that of their analogues for
Higgs-exchange DIS; the ratio is a factor of about 1/2 or (much) less except for the ln1N terms.
Thus we suggest as a conservative estimate of the complete N−1 contribution

c(3)gg
∣∣∣
estimate

N−1 lnk N
∝ ln5N+5.701 ln4N+18.9 ln3N+46 ln2N+18 lnN+9 , (3.3)

where we have used ξ(3)H = 300 as roughly indicated by the physical-kernel coefficients in Ref. [24].

9

Estimated/guessed from DY

• Leads to an increase of ~10-13% (14TeV,                 , gluons 
only). 

µR = mH

⇠(3)H ' 300 [de Florian, Mazzitelli, Moch, Vogt]
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Validity of approximation
• “ … approximation works well at lower orders…”

  

Phenomenology 

Javier Mazzitelli – Constraints on the Higgs N3LO XS from the physical kernel Javier Mazzitelli – Constraints on the Higgs N3LO XS from the physical kernel 

Does this also hold for the cross section?                

Depends on which are 
the relevant values of N

Closer to threshold:
Larger N

Further from threshold:
Smaller N

Will fail as we increase 
the collider energy

The exact result is always between the two approximations for E<20TeV

We will use the SV and 1/N results to constrain the N3LO result in that region

06/11 06/11 

  

Phenomenology 

Javier Mazzitelli – Constraints on the Higgs N3LO XS from the physical kernel Javier Mazzitelli – Constraints on the Higgs N3LO XS from the physical kernel 

Does this also hold for the cross section?                

Depends on which are 
the relevant values of N

Closer to threshold:
Larger N

Further from threshold:
Smaller N

Will fail as we increase 
the collider energy

The exact result is always between the two approximations for E<20TeV

We will use the SV and 1/N results to constrain the N3LO result in that region

06/11 06/11 

[Plots from de Florian, Mazzitelli, Moch, Vogt]



!
!

!

Going beyond the 	


soft-virtual 

approximation
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State of the art at N3LO

• gg

• gq

• qqbar

• qq

• qQ

Soft-virtual

First 3 next-to-soft logs

First next-to-soft log

Full next-to-soft

Full next-to-soft

Full first three logs (exact)

Full first three logs (exact)

Full first three logs (exact)

Full first three logs (exact)

Full first three logs (exact)

[Moch, Vogt; Anastasiou, CD, Dulat, Furlan, 
Gehrmann, Herzog, Mistlberger]

[de Florian, Mazzitelli, Moch, Vogt]

[Almasy, Lo Presti, Vogt]
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Towards full kinematics
• We have the full contribution from

➡ Emission of one parton at one loop, all channels.

➡ UV and PDF counterterms, all channels.

➡ Emission of one parton at two loops, all channels.

• We know that all the poles must cancel when we combine 
ALL contribution. 

➡ The knowledge of the previous contributions is enough 
to fix the first three logarithm in all channels.

[Anastasiou, CD, Dulat, Herzog, Mistlberger; Kilgore]

[Dulat, Mistlberger; CD, Gehrmann]

[Höschele, Hoff, Pak, Steinhauser, Ueda; Bühler, Lazopoulos]

[Anastasiou, CD, Dulat, Furlan, Gehrmann, Herzog, Mistlberger]
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Next-To-Soft Contribution (gg)
malization group and DGLAP evolution. We find:
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∣
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[Anastasiou, CD, Dulat, Furlan, Gehrmann, Herzog, Mistlberger]
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Next-To-Soft Contribution

• We can compute the full contribution to the second term in 
the threshold expansion

➡ Receives contribution from both gg and gq channels.

�̂(z) = ��1 + �0 + (1� z)�1 +O(1� z)2

• Needed some rethinking of our technology for double-real 
emission at one loop.
➡ There are now contributions from collinear virtual 

gluons.

• We find full agreement with known results for leading 
logarithms.

➡ In particular 

[Almasy, Lo Presti, Vogt; de Florian, Mazzitelli, Moch, Vogt]

⇠(3)H =
896

3
' 298.666 . . .
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Ambiguity in z-space
• Ambiguity:

• Is this ambiguity also present in Mellin-space..?

the hadronic cross-section in the form:

σ = τ1+α
∑

ij

(

f (α)
i ⊗ f (α)

j ⊗
σ̂ij(z)

z1+α

)

(τ) (3.4)

where

f (α)
i (x) ≡

fi(x)

xα
. (3.5)

σ is independent of the arbitrary parameter α as long as the partonic cross-section is known

exactly. If only a finite number of terms in the threshold expansion for are known,

σ̂ij(z)

z1+α
≃ σ̂ij(z)|(1−z)−1 + σ̂ij(z)|(1−z)0 + α(1− z) σ̂ij(z)|(1−z)−1 +O(1− z)1

then the convolution integral is still sensitive to varying α. Historically, different but equally

legitimate choices have been made for α at NNLO [] corresponding to expanding around

threshold an 1/z flux-factor with the partonic cross-section or evaluating it unexpended

together with the partonic luminosity. These lead to important numerical differences in

the corresponding predictions for the hadronic cross-section. A similar ambiguity appears

to be responsible [] for the bulk of the difference in the numerical predictions for the Higgs

cross-section in various approaches and implementations of threshold resummation [].

4. Results in Mellin-space

It is often preferred in the literature to perform a soft expansion in Mellin-space. The

Mellin transform of a function f(x) is definen as:

M [f ](w) =

∫ 1

0
dxxw−1f(x). (4.1)

For example,

M
[

xa(1− x)b
]

(w) =
Γ(w + a)Γ(1 + b)

Γ(1 + a+ b+ w)
. (4.2)

The inverse Mellin-transform is defined as:

M−1 [g] (x) =
1

2πi

∫ c+i∞

c−i∞

dwg(w)x−w, (4.3)

where the real part of c is chosen such that the poles of g(N) lie to the left of the integration

contour.

5. Coefficients of Logs in Full Kinematic

We obtain the partonic cross-section of eq. (2.3) by summing over all required partonic

sub-channels with different numbers of patrons in the final state, χpartonic, and combining

them with the required ultra-violet and infra-red counter terms δct.

η(z) = δct(z, ϵ) + χpartonic(z, ϵ). (5.1)
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• Truncating the soft expansion introduces a dependence 
on    :↵

the hadronic cross-section in the form:
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f (α)
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➡ Full hadronic cross section cross section is independent 
order-by-order of    .↵

➡ Soft-expansion introduces an ambiguity, which can have 
numerical impact.
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Ambiguity in Mellin-space

• Multiplying by      in  z-space corresponds to shifting                   	



                   in Mellin-space.

z↵

N ! N + ↵

�̂(N) =

Z 1

0
dz zN�1 �̂(z)

• The threshold limit               is obviously insensitive to this!N ! 1

• In order to quantify the validity of approximate cross 
sections via threshold expansion, we study the dependence 
of the  result on    .↵



!
!

!
!

Soft-virtual NNLO

improvement via the calculation of sub-leading terms or even the full, unexpanded cross-section.
In this proceedings we study this uncertainty in the case of the gluon fusion Higgs production
cross-section at N3LO. We consider lower orders in perturbative QCD to study the convergence
behaviour of the expansion for the Higgs cross-section and inspect the impact of the ambigu-
ity due to the truncation of the threshold expansion. Furthermore, we demonstrate that the
ambiguity for the SV approximation at N3LO is large.

2 Threshold Expansion for the Higgs boson cross-section

The probability distribution of a gluon occurring in a proton is steeply falling with its energy
and suggests the possibility of performing a fast converging threshold expansion of the gluon
fusion Higgs cross-section. Already at NNLO a threshold expansion was performed7 and was
shown to be rapidly converging towards the full result6.

Here we study the strong coupling expansion of the heavy top effective theory. In this note
we are interested in the effect complementing existing lower order calculations with a threshold
expansion at NnLO. The threshold approximations and expansions which we will discuss will
always contain the full (non-expanded) dependence on terms which enter the result at lower
orders in the strong coupling expansion. We will also include the full NnLO dependence on
renormalisation and factorisation scales as well as the full dependence on those NnLO corrections
which are generated from higher order corrections to the Wilson coefficient.

Parametrising the expansion with the variable z =
m2

H

x1x2s
leads to a series of the partonic

cross-section in (1− z).

[σ̂ij(s, z)]threshold = σSV
ij + (1− z)0σ(0)

ij + (1− z)σ(1)
ij + . . . . (2)

If a series expansion is truncated at a given finite order an unavoidable ambiguity is introduced
due to missing higher order terms. To study the impact of truncating the threshold expansion
of the Higgs boson cross-section we spuriously insert a function g(z) satisfying lim

z→1
g(z) → 1 into

eq. 1 such that

σ =
∑

i,j

∫

dx1 dx2 [fi(x1) fj(x2)zg(z)]
[

σ̂ij(s, z)

zg(z)

]

threshold

. (3)

For all choices of g(z) the expansion truncated at O ((1− z)n) thus leads to formally equivalent
results up to O

(

(1− z)n+1
)

.
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(a) Full result up to NNLO and NNLO SV term
with different choices for g(z) as function of µ
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Figure 1 – Threshold approximation for the Higgs boson cross-section at 13 TeV at the LHC

[Herzog, Mistlberger]
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Soft-virtual N3LO
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Figure 3 – The gluon-fusion cross-section at 13 TeV at the LHC as a function of µ = µR = µF up to LO (black),
NLO (red), NNLO (green) and soft-virtual N3LO (blue). The N3LO SV approximation is modified with different
functions g(z).

to sub-leading terms at N3LO. Given the experience at lower orders we expect that only a few
sub-leading terms in the threshold expansion are required to obtain a significant improvement
to an approximation of the N3LO cross-section and consequently to the predictions for LHC
observables.

3 Conclusion

The rapidly increasing experimental precision of Higgs cross-section measurements raises an
urgent demand for the improvement of the theoretical prediction for the inclusive Higgs boson
cross-section at the LHC. With the recent publication of the first term in the threshold expansion
of the N3LO gluon-fusion QCD cross-section an important step in this direction was taken. In
this proceedings we have analysed the quality of the threshold expansion. We find that the
expansion is converging fast at lower orders in QCD perturbation theory and expect to find
similar behaviour at N3LO. We studied the uncertainty introduced due to the truncation of
the threshold expansion at NLO, NNLO and N3LO and conclude that at least several terms in
the expansion are necessary in order to infer reliable predictions for LHC measurements and
improve upon the current status. We conclude that the calculation of further terms in the
threshold expansion and even the full Higgs boson cross-section at N3LO is highly desirable.
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Dependence on the truncation
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Dependence on the truncation
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Conclusion

• The computation of the Higgs cross section at N3LO moves 
forward at a steady pace!
➡ Soft-virtual contribution known.	



➡ Next-to-soft contribution known (noth gg & gQ).	



➡ First three logs known exactly for all channels.	



➡ Contribution form single-real emission fully known.

• Approximate results should be taken with a grain of salt!

➡ Only full result for N3LO cross section will be the 
final judge!

• Stay tuned!


