Status of the LUCIFER experiment: results and prospects

CLAUDIA RUSCONI

GDR NEUTRINO 2014

Orsay – 17th June 2014

The bolometric technique

Bolometer = absorber + sensor

- ✓ The energy released in the absorber creates phonons. Low energy needed to producing a phonon → high energy resolution
- ✓ The resolution is limited by the statistical fluctuations of the phonons exchanged with the bath through the thermal conductance G → $\Delta E_{rms}^{\sim}(K_BT^2C)^{1/2}$
- ✓ $\Delta T(t) = E/Ce^{-t/\tau}$ with $\tau = C/G$ thermal decay time → slow signals (~0.5 s)

Bolometers

Bolometers have proven to be very good detectors for $0v\beta\beta$ experiments aiming to investigate the inverted hierarchy region of neutrino masses ($m_{\beta\beta}$ < 50meV)

- ✓ ability to sustain large source masses
 - \rightarrow large amount of the appropriate $0v\beta\beta$ candidate isotope
- ✓ excellent energy resolution (FWHM ~0.2-0.5 % above 2.5MeV)
 - \rightarrow to separate the 0v $\beta\beta$ peak from the background, in particular the one coming from the 2v $\beta\beta$

Bolometers

Bolometers have proven to be very good detectors for $0v\beta\beta$ experiments aiming to investigate the inverted hierarchy region of neutrino masses ($m_{\beta\beta}$ < 50meV)

- ✓ ability to sustain large source masses
 - \rightarrow large amount of the appropriate $0\nu\beta\beta$ candidate isotope
- ✓ excellent energy resolution (FWHM ~0.2-0.5 % above 2.5MeV)
 - \rightarrow to separate the 0v $\beta\beta$ peak from the background, in particular, the one coming from the 2v $\beta\beta$

CUORE-0 preliminary*

	0vββ region cnts/(keV kg y)	2700-3900 keV	ε(%)
Cuoricino	0.153 ± 0.006	0.110 ± 0.001	83
CUORE-0	0.063 ± 0.006	0.020 ± 0.001	78

O. Cremonesi, 06/06/2014, Neutrino 2014 @Boston, USA

Bolometers

Bolometers have proven to be very good detectors for $0v\beta\beta$ experiments aiming to investigate the inverted hierarchy region of neutrino masses ($m_{\beta\beta}$ < 50meV)

- ✓ ability to sustain large source masses
 - \rightarrow large amount of the appropriate $0v\beta\beta$ candidate isotope
- ✓ excellent energy resolution (FWHM ~0.2-0.5 % above 2.5MeV)
 - \rightarrow to separate the 0v $\beta\beta$ peak from the background, in particular the one coming from the 2v $\beta\beta$
- ✓ possibility to exploit the simultaneous collection of heat and light
 - → low backgrounds in the region of interest

Scintillating bolometers

The release of energy in a scintillating crystal follows two channels

Different light output produced by α or β/γ events with same energy

$$QF = \frac{\alpha \ light}{\beta/\gamma \ light}$$

Simultaneous readout of the energy deposed in the main crystal and the scintillation light allows the discrimination of signal events from the α bkg

The LUCIFER experiment

Low-background Underground Cryogenic Installation for Elusive Rates

A scintillating bolometers array to search for the $0\nu\beta\beta$ decay of candidates with a Q_{value} higher than 2.6 MeV

 α and β/γ event discrimination thanks to the double read-out

outside the natural γ radioactivity range: αs are the dominant disturbing background sources

LUCIFER will search for the $0\nu\beta\beta$ of $^{82}Se/^{100}Mo$ using $ZnSe/ZnMoO_4$ scintillating compounds

A complete elimination of αs for these candidates can lead to specific bkg levels of $\sim 10^{-3}$ c/(keV·kg·y) or lower

The LUCIFER detector

- ✓ LUCIFER baseline: 36 ZnSe crystals enriched at 95% for ~15kg of total isotope mass
- ✓ light detectors sandwiched between two crystal floors
- ✓ in the CUORE-0 cryostat @ LNGS
- ✓ R&D on ZnMoO₄ crystal for a 10kg experiment in collab* with LUMINEU

*MoU between INFN, IN2P3 & ITEP

	ZnSe	ZnMoO ₄
0vββ isotope	⁸² Se	¹⁰⁰ Mo
Q-value [kev]	2995	3034
Useful material	56%	44%
$LY_{\beta/\gamma}[keV/MeV]$	6.5	1.5
QF_{α}	4.2	0.2

Light Detectors

LUCIFER light detectors = Ge slabs, operating as bolometers

- ✓ Opaque semiconductors

 → sensitive over a wide
 range of y wavelengths
- ✓ Radiopure crystals

- ✓ () = 44 mm
- ✓ thickness = 180 μ m
- ✓ grown using Czochralski technique
- ✓ NTD Ge

 thermistor as
 temperature
 sensor

Light collection increased with a SiO₂ dark layer deposited on the surface of the Ge crystal (JW Beeman, et al. NIM-A, vol. 709, pp 22-28, 2013)

Several tests were carried on to investigate the performances of Ge light detectors in terms of signal amplitude, energy resolution and signal time development to identify the best working conditions

Light detectors

To allow proper calibration of the LD a ⁵⁵Fe source, producing two X-rays at 5.9 and 6.5 keV, is used

 \rightarrow comparable with tipical light signals produced in scintillating bolometers (order of \sim 10 keV)

Light detectors

- ✓ LD performances dependence on the applied bias current Best values: 2−7nA. At higher currents signal to noise ratio limited by preamplifier noise
- ✓ LD performances uninfluenced by the value of the load resistance
 → LDs not affected by Johnson noise
- ✓ LD performances influenced by the working temperature at ~20mK FWHM is significantly better with respect to that observed at ~ 10mK, the standard working temperature of bolometers for rare events searches

Crystal absorber - ZnMoO₄

Bolometric test with a 330 g ZnMoO₄ crystal

JW Beeman et al, Eur. Phys. J. C 72:2142 (2012)

Excellent particle discrimination using light
 vs heat or the shape of the <u>heat</u> pulses

First bolometric measurement of 2vββ of ¹⁰⁰Mo with a ZnMoO₄ crystal array

L Cardani et al 2014 J. Phys. G: Nucl. Part. Phys. 41 075204

- ✓ 3 natural ZnMoO₄ crystals
- ✓ Total exposure 1.3 kg*d of ¹⁰⁰Mo

 $T^{2v}_{1/2} = [7.15 \pm 0.37_{(stat)} \pm 0.66_{(syst)}] \times 10^{18} \text{ y}$

In agreement with the NEMO3 result

Crystal absorber - ZnSe

Characterisation of the largest ZnSe bolometer ever realized (431 g crystal) (JW Beeman et al, 2013 JINST8 P05021)

- ✓ FWHM energy resolution of 12.2±0.8 keV at 1461 keV and 13.4±1.3 keV at 2615 keV
- ✓ Excellent particle discrimination using Light vs. Heat or the shape of the <u>light</u> pulses

Crystal absorber - ZnSe

Low background measurement (t=524h)

From α spectrum:

- ✓ internal contamination: 3×10^{-4} c/keV/kg/y 238 U and 3×10^{-3} c/keV/kg/y 232 Th @ROI From β/γ spectrum:
- ✓ natural contamination of ⁴⁰K and ²⁰⁸Tl
- ✓ contaminations in ⁷⁵Se and ⁶⁵Zn for the cosmogenic activation of of ⁷⁴Se and ⁶⁴Zn, not affecting the bkg in the <u>DBD region</u> for their short half-lives and low Q-values
- ✓ Single event above 2615 keV, likely produced by a <u>muon interaction</u>

1 event in ROI in 5yrs with a 20kg detector

zero-background is achievable

Conclusions

- \checkmark Bolometers have proved to be excellent detectors for 0vββ search
- \checkmark Discrimination of α and β/γ events makes a background free detector possible
- \checkmark LUCIFER is a next generation 0vββ experiment demonstrator using the scintillating bolometer technique
- ✓ LUCIFER goals are: bkg $\leq 10^{-3}$ c/keV/kg/y and FWHM ≤ 10 keV @ ROI
- ✓ LUCIFER baseline is a detector with 15kg enriched ZnSe crystal
- ✓ Further option: a 10kg enriched ZnMoO₄ search in collab. with LUMINEU & ITEP
- ✓ Several detector components have been defined and characterized
- ✓ LUCIFER will start in 2015

Crystal	Live time [y]	T ^{0v} _{1/2} [10 ²⁶ y]	<m<sub>ββ> [meV]</m<sub>
ZnSe	5	0.6	65-194
	10	1.2	46-138
ZnMoO ₄	5	0.3	60-170
	10	0.6	42-120

