Site and backgrounds		Simulations and sensitivity	Prospects
	000000		

The Stereo Experiment

Search for Sterile Neutrino at ILL reactor

Maxime Péquignot

for the STEREO collaboration

CEA Saclay CEA/Irfu - Service de Physique Nucléaire

June 17th, 2014

- Reevaluation of reactor $\bar{\nu}_e$ spectra, Th. A. Mueller et al., Phys. Rev.C 83, 054615.
- Reanalysis of short baseline experiments, G. Mention et al., Phys. Rev. D 83, 073006

New oscillations toward a sterile neutrino ($\Delta m^2\gtrsim 0.5~\text{eV}^2,~\text{sin}^2(2\theta)\sim 0.1).$

Motivation and specifications of the Stereo experiment

MOTIVATION :

 Observe an unambiguous new oscillation pattern in energy and distance.

SPECIFICATIONS :

- Close to a compact and high flux nuclear reactor core : 10 m from the ILL reactor.
- Relative distortions among identical detector cells : independent from reactor normalization and history (pure ²³⁵U spectrum).
- Accurate detector response : mature technology of Gd-Loaded liquid scintillators.

	Site and backgrounds		Simulations and sensitivity	Prospects
00	000	000000	000	
ILL site				

ADVANTAGES :

- 58 MW research reactor.
- High ²³⁵U enrichment and compact core.
- Overburden with the transfer water channel.
- Strong structure of floor (500 t /slab).

DRAWBACK :

- High neutron and gamma flux because of experimental beam lines.
 - \rightarrow Requires heavy shielding.

Several campaigns with gamma and neutron detectors \rightarrow directional measurements.

Gammas spectrum in PN3

Main gamma sources : H13 and H7.

- 80% of gammas coming from H13.
- High energy n-captures on metals and Compton background.

- High thermal neutron flux because of H13 beam line.
- Fast neutrons from reactor :
 - Lithium in H7 \rightarrow removed.
 - Scattering on H13 collimator \rightarrow CH_2 shielding.

 MCNPX + G4 simulations in agreement with measurements.

	Site and backgrounds		Simulations and sensitivity	Prospects
00	000	000000	000	

Shieldings against muons, gammas and neutrons

• Front wall shielding and H13 reinforcement :

- Dedicated beam plug.
- Additional lead wall.
- Additional neutron shielding : B₄C.

• Shielding surrounding the target :

- 10 cm thick lead.
- 15 cm thick polyethylene.
- 30 cm thick surrounding crown.
- On-site" protection :
 - Water channel.

	Site and backgrounds	Stereo detector	Simulations and sensitivity	Prospec
00	000	00000	000	
Dotoctor	hiolding IADD			

Detector shielding - LAPP

- Strong external struture to hold shielding.
- Installation with reactor crane and move using air pads.
- On-going studies for safety.

- Six cells (40×90×90) cm³ filled with Gd-loaded liquid scintillator.
- Surrounding crown filled with unloaded liquid scintillator.
 - Containment of energy leakage
 - Active veto of external background
- Light collection :
 - Four PMTs per cell and acrylic buffer.
 - Acrylic walls and optical segmentations with VM200.
- Validation with prototype in July 2014.

• $\overline{\nu}_e$ are detected through inverse β decay in Gd-loaded liquid scintillator :

 $\overline{\nu}_e + p \rightarrow n + e^+$

- Liquid studies to maximize light yield and PSD.
- Attenuation length at 430 nm > 4 m.
- Good pulse shape discrimination :

Detection by time coincidence :

- Prompt event = positron ionisation and annihilation
- Delayed event = neutron capture on Gd nucleus

	Site and backgrounds	Stereo detector	Simulations and sensitivity	Prospects
00	000	000000	000	
Calibration	system - LAPP			

OB IECTIVES

- Energy scale and neutron efficiency.
- Fine-tuned simulation.

TOOLS :

- Gamma and neutron sources :
 - Inside cells along vertical axis.
 - Underneath the detector vessel.
 - Around the detector vessel.
- Tagged source :
 - Circulated around the detector vessel at different Z.
 - Absolute calibration at 511 keV.

Floctronics	IDSC			
00	000	000000	000	
	Site and backgrounds	Stereo detector	Simulations and sensitivity	Prospects

- Signal digitization (14 bits FADC 250 MHz) with signal analysis functions : Qtot, Qtail, full trace readout, timming ...
- Trigger on selected configuration of deposit charges + external trigger.
- LED calibration driver.

Current prototypes :

- New PMT base design.
- Front end and trigger boards based on μ TCA technology \rightarrow validated.
- Currently routing the prototype of the 8 channel FE board using μ TCA technology.

	Site and backgrounds	Stereo detector	Simulations and sensitivity	Prospects
00	000	000000	000	
Muon veto -	LPSC			

Requirements

- Fully efficient to cosmic muons.
- Quasi-insensitive to gamma rays.
- Made of non-flammable material \rightarrow water Cerenkov (4.0 x 2.6) m².

Current prototype :

- Almost full size tank $(3 \times 2 \times 0.25)$ m³.
- Optimization of geometry and light collection :
 - Purified water.
 - Wave Lenght Shifter.
 - Tyvek diffuser.
 - 14 PMTs on sides or 12 on top.

• Complete GEANT4 model to simulate the detector response.

- Similar response between center and border cell :
 - RMS/Peak(center cell) = 11.5%
 - RMS/Peak(border cell) = 11.7%.

- Neutron efficiency above 5 MeV :
 - 64.5% \pm 0.5% for center cell
 - 60.1% ± 0.5% for border cell.

00	000	000000	000		
	Site and backgrounds		Simulations and sensitivity	Prospects	

Neutrino response

Response to a neutrino spectrum

 $\bullet~\%$ level agreement of detector cells for detected neutrino spectrum.

	Site and backgrounds		Simulations and sensitivity	Prospects
00	000	000000	000	
Stereo conto	ours			

- 300 days data taking (6 reactor cycles)
- Energy reconstruction systematics : $\delta E_{scale} = 2\%$
- Systematics of the emitted neutrino spectra included
- Normalisation : 4%
- Signal / background = 1.5
- Prompt signal energy > 2 MeV
- Delayed signal energy > 5 MeV
- Expected detection rate = 410 $\overline{\nu}_e$ / day

	Site and backgrounds	Stereo detector	Simulations and sensitivity	Prospects
00	000	000000	000	
Prospects				

- The sensitivity covers the contour of the reactor anomaly.
- Several prototypes are under test to validate the detector response.
- Shielding installation and background reduction check this summer when the reactor restarts.
- Beginning of data taking in Spring 2015.

Back-up

• Neutrino excess at 5 MeV in several experiments : DC, RENO, Chooz, Rovno ...

- Scale with reactor power so
 - bias in the conversion procedure ?
 - bias in the reference electron spectrum ?
 - another neutrino interaction ?
- Which impact on Stereo sensibility ?
- Bump amplitude = 10% of neutrino signal.
- Incertainty = 50% of bump amplitude. \rightarrow No significative impact on the contour.

Kopp, Joachim et al. JHEP 1305 (2013) 050 arXiv:1303.3011