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The Inverse Seesaw (ISS) idea

Enlarge the SM field content with:
- right handed neutrino fields, 𝝼R;
- fermionic sterile singlets, s.

In the basis nL≣(𝝼L, 𝝼RC, s)T the ISS neutrino mass terms read:

content) of the Inverse Seesaw model [1, 2, 3], compatible with the low energy
neutrino data. We consider a natural theory to be one that respects both
the different definitions of naturalness given by Weinberg and ’t Hooft:

• once the gauge symmetries and the field content of the theory are speci-
fied, the Lagrangian must be the most general local one consistent with
renormalization, gauge and Lorentz invariance conditions [4];

• the parameters in the Lagrangian must be of the same order of mag-
nitude. A physical parameter ↵ (or a set of physical parameters ↵i) is
allowed to be some order of magnitude smaller than the others only if
the limit ↵i ! 0 increases the symmetries of the Lagrangian2 [5].

We work in the framework of the Standard Model, with an SU(3)C ⌦
SU(2)L⌦U(1)Y gauge group, but we increase the particle field content by one
or more generations of right-handed neutrinos ⌫R and additional fermionic
singlets s; we also assume that the Lagrangian does not contain a mass term
like �m⌫c

Ls + h.c.. In other words, the singlets do not couple with the SM
neutrinos ⌫L: this does not spoil the naturalness of the Lagrangian, because it
is a hypothesis concerning the nature of the s field, then a hypothesis on the
field content of the theory. The last assumption may be justified assuming
some extra-SM symmetry, as in [1], but to be conservative we prefer to work
with a minimal number of assumptions about physics beyond the SM.

bf here organisation of the paper

2 The basic inverse seesaw idea

2.1 Nonzero Majorana mass terms for right-handed neu-
trino fields

In the basis nL ⌘ (⌫L, ⌫c
R, s)

T the Inverse Seesaw neutrino mass terms for one
generation of leptonic fields read [1]:

�Lm⌫ =

1

2

nT
L C M nL + h.c., (3)

2In the following when we compare the magnitude of complex numbers we actually
refer to the values of their moduli.
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t’Hooft naturalness criterium: terms violating L are “small”, i.e.
 |m|,|𝝁|<< |n|,|d|

Lightest mass eigenvalue in the limit |𝝁|<< |d|<< |n|:

One could link the smallness of 𝜇 with the one of mν (mechanism viable with large Yukawas), 
thus interesting phenomenology

Presence of sterile states (𝞶 anomalies or DM candidates)
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Methodology

𝝼R and s, are gauge singlets

Define:

- #𝝼R ≣ number of 𝝼R fields (≠ 0);

- #s   ≣ number of s fields (≠ 0);

Let us call each model realisation (#𝝼R,#s) ISS

We studied realisations obtained with #𝝼R, #s = 1,2,3

No interactions with gauge bosons
No contribution to anomalies
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What is the minimal number of 𝝼R and s in order to accommodate neutrino data 
while complying with all experimental requirements?



Perturbative approach

where d,m, n, µ are complex numbers. This matrix is symmetric but not
hermitian, so it cannot be diagonalized by a unitary transformation. How-
ever, as showed in [6], it is possible to diagonalize the matrix M by the
transformation

UTMU = diag[m1,m2,m3], (7)

where U is a unitary matrix and m1,2,3 are real numbers corresponding to
the physical masses.

To find the matrix U it is convenient to work with the hermitian combi-
nation M †M (or MM †) rather than M . In fact

diag[m2
1,m

2
2,m

2
3] =

�

UTMU
�† �

UTMU
�

= U †M †MU, (8)

so that the matrix U diagonalizing the hermitian matrix M †M is the same
one as given in eq. (7). Notice that the eigenvalues of M †M are the squared
physical masses.

We propose to diagonalize the squared mass matrix M †M by using the
time-independent perturbation theory for linear operators. Here some further
analysis is required to ensure that this approach is indeed valid. We start by
decomposing the mass matrix M as

M =

0

@

0 d 0

d 0 n
0 n 0
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0

@

0 0 0

0 m 0
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�M

, (9)

where M0 is the zeroth order matrix and �M is the perturbation. Conse-
quently we have

M †M = M †
0M0

| {z }

M2
0

+�M †M0 +M †
0�M

| {z }

M2
I

+�M †
�M

| {z }

M2
II

, (10)

where we have renamed M2
0 the zeroth order squared mass matrix, i.e. the

matrix whose eigenvalues give the correct physical squared masses in the
limit �M ! 0. M2

I and M2
II are the components of the perturbation that are

respectively homogenous functions of degree 1 and 2 in the small parameters
{m,µ}, and that go to zero as �M ! 0.
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Heavy states:
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Mass spectra and mixing
Analytical diagonalization Numerical diagonalization

(2,2) ISS: minimal realisation to account for the 3 flavour mixing

(2,3) ISS: minimal realisation to account for the (3+1) mixing
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ISS viable only if  #s ≥ #𝝼R

# new
fields #⌫R # s

#m2
i = 0

when
�M = 0

#

0

@

m2
i = 0

# �M 6= 0

m2
i 6= 0

1

A

# of
different
light mi

⌫’s
mass

spectrum

PMSN
matrix

2 1 1 3 1 2
3 1 2 4 2 3 (s)
3 2 1 2 1 2
4 1 3 5 3 4 (a)
4 2 2 3 2 3 (s)
4 3 1 1 1 1
5 2 3 4 3 4 (a)
5 3 2 2 2 2
6 3 3 3 3 3 (s)

Table 1: Tree level neutrino mass spectra for different choices of the number
of generations for the ⌫R and s fields.

to the second point of our guidelines, requiring that the generations are in
the minimal number in order to be able to accommodate the experimental
neutrino mass spectrum: the different situations for the tree level neutrino
mass squared spectrum, depending on the number of (⌫R, s) generations, are
summarized in Table (1).

The fourth column shows how many massless eigenstates has the zeroth
order mass matrix, in the absence of accidental cancellations between its (a
priori independent) entries. The fifth column shows, always in the absence of
accidental cancellations, how many massless eigenstates acquire mass once
the perturbation �M is taken into account: these states are light in the
sense that their masses are proportional to the m,µ entries, while other
massive states have at zeroth order their masses proportional to the d, n
entries. The last column shows how many different light (i.e. either massless
or proportional to the µ,m matrices entries) mass eigenvalues in the neutrino
sector are predicted by the models.

If there are less than 3 different light masses the model cannot explain
the neutrino oscillation experiments, which require at least 2 independent
oscillation frequencies: these models are then excluded by observations; we
indicate this by a in the seventh column of the table. Models with 3 dif-
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ISS mass scales

For each ISS realisation:
- #𝝼L + (#s - #𝝼R) light states;

- 2 #𝝼R heavy states (#𝝼R pseudo-Dirac couples);{ (1)

1

Mass

#𝝼L active neutrinos

*only if #s > #𝝼R*

(#s - #𝝼R) light sterile states

3.1 General feature of the ISS models: 2 or 3 different neutrino
mass scales

Here we discuss interesting features common to all ISS models that has been analysed in
this work.

As a function of the number of generation for each kind of field, the model in the
mass basis always exhibits #⌫L + (#s � #⌫R) light states, (light in the sense that they
are massless when the pertubation �M vanishes), plus almost heavy states with masses of
order O(ni,j)+O(di,j) that forms #⌫R pseudo-Dirac couples with mass differences of order
O(µi,j), O(mi,j); these states become Dirac particles in the limit �M = 0.

In fact, the low-energy physics of these models is determined by two quantities: the scale
of the Lepton Number Violating (LNV) parameters µ and the ratio k between the scale of
the Dirac mass terms d and the one of the n mass matrix. This can be understood from
the one generation toy model (#⌫L = #⌫R = #s = 1), where the active neutrino mass, eq.
(17), is m⌫ = |µ|k/(1 + k), with k = |d|/|n|. The ratio k is directly proportional to the
non-unitarity of the leptonic mixing matrix, as shows the expression (18) (in the toy model
the leptonic matrix reduces to the first entry of the active neutrino mass eigenvector), and
from the constraints on the non-unitarity of the PMNS matrix, k cannot be too large (in our
analysis we found solutions in agreement with experimental data only if O(d)/O(n) . 10

�1).
These features are shared also by the realistic extensions of the toy model analyzed, with
the caveat that in these cases d, n, µ are matrices, and these considerations apply on the
order of magnitude of their entries.

The mass spectrum of the ISS models is thus characterised by 2 or 3 different mass
scales:

• the one of the light active neutrinos ⇠ O(µ)O(k);

• the heavy scale corresponding to the heavy states, roughly O(d) +O(n) ⇡ O(n);

• in the case where #s > #⌫R, there is an intermediate scale of order O(µ) for #s�#⌫R
corresponding to sterile light states.

3.2 Removing unphysical parameters

After the electroweak symmetry breaking (EWSB), the leptonic part of the Lagrangian
writes in the basis in which gauge interactions are diagonal, as:

Lleptonic = Lkinetic + Lmass + LCC + LNC + Lem, (31)
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2 #𝝼R heavy states
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(2,3) ISS: light sterile state
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Figure 1. Left: Allowed regions of oscillation parameters from SBL reactor data in the 3+1
scheme for a rates only analysis (contours) as well as a fit including Bugey3 spectral data (colored
regions). Right: Event rates in SBL reactor experiments compared to the predictions for three
representative sets of oscillation parameters. The thick (thin) error bars correspond to uncorrelated
(total) experimental errors. The neutrino flux uncertainty is not included in the error bars. The
Rovno and SRP data points at 18 m have been shifted for better visibility.

even shorter baselines. However, from the GOF values given in Tab. 4 we conclude that
also those solutions provide a good fit to the data.

3.2 The Gallium anomaly

The response of Gallium solar neutrino experiments has been tested by deploying radioac-
tive 51Cr or 37Ar sources in the GALLEX [84, 85] and SAGE [86, 87] detectors. Results
are reported as ratios of observed to expected rates, where the latter are traditionally
computed using the best fit cross section from Bahcall [88], see e.g. [19]. The values for
the cross sections weighted over the 4 (2) neutrino energy lines from Cr (Ar) from [88]
are �

B

(Cr) = 58.1 ⇥ 10�46 cm2, �
B

(Ar) = 70.0 ⇥ 10�46 cm2. While the cross section for
71Ga ! 71Ge into the ground state of 71Ge is well known from the inverse reaction there
are large uncertainties when the process proceeds via excited states of 71Ge at 175 and
500 keV. Following [88], the total cross section can be written as

�(X) = �
g.s.

(X)

✓
1 + a

X

BGT
175

BGT
g.s.

+ b
X

BGT
500

BGT
g.s.

◆
(3.4)

with X = Cr, Ar. The coe�cients a
Cr

= 0.669, b
Cr

= 0.220, a
Ar

= 0.695, b
Ar

= 0.263 are
phase space factors. The ground state cross sections are precisely known [88]: �

g.s.

(Cr) =
55.2⇥ 10�46 cm2, �

g.s.

(Ar) = 66.2⇥ 10�46 cm2. BGT denote the Gamov-Teller strength of
the transitions, which have been determined recently by dedicated measurements [89] as

BGT
175

BGT
g.s.

= 0.0399± 0.0305 ,
BGT

500

BGT
g.s.

= 0.207± 0.016 . (3.5)

In our analysis we use these values together with Eq. (3.4) for the cross section.
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Figure 2. Allowed regions at 95% CL (2 dof) for 3+1 oscillations. We show SBL reactor data
(blue shaded), Gallium radioactive source data (orange shaded), ⌫e disappearance constraints
from ⌫e–12C scattering data from LSND and KARMEN (dark red dotted), long-baseline reac-
tor data from CHOOZ, Palo Verde, DoubleChooz, Daya Bay and RENO (blue short-dashed) and
solar+KamLAND data (black long-dashed). The red shaded region is the combined region from all
these ⌫e and ⌫̄e disappearance data sets.

source data in Tab. 5. For these two cases we find an improvement of 5.3 and 3.8 units in
�2, respectively, when going from the 3+1 scenario to the 3+2 case. Considering that the
3+2 model has two additional parameters compared to 3+1, we conclude that there is no
improvement of the fit beyond the one expected by increasing the number of parameters,
and that SBL

(–)

⌫
e

data sets show no significant preference for 3+2 over 3+1. This is
also visible from the fact that the confidence level at which the no oscillation hypothesis is
excluded does not increase for 3+2 compared to 3+1, see the last columns of Tabs. 4 and 5.
There the ��2 is translated into a confidence level by taking into account the number of
parameters relevant in each model, i.e., 2 for 3+1 and 4 for 3+2.

3.3 Global data on ⌫
e

and ⌫̄
e

disappearance

Let us now consider the global picture regarding
(–)

⌫
e

disappearance. In addition to the
short-baseline reactor and Gallium data discussed above, we now add data from the fol-
lowing experiments:

• The remaining reactor experiments at a long baseline (“LBL reactors”) and the very
long-baseline reactor experiment KamLAND, see table 3.

• Global data on solar neutrinos, see appendix C for details.

• LSND and KARMEN measurements of the reaction ⌫
e

+ 12C ! e� + 12N [91, 92].
The experiments have found agreement with the expected cross section [93], hence
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Figure 6. MiniBooNE neutrino (left) and anti-neutrino (right) data compared to the predicted
spectra for the 3+1, 3+2, and 1+3+1 best fit points for the combined appearance data (the data
set used in Fig. 7) and global data including disappearance. Shaded histograms correspond to the
unoscillated backgrounds. The predicted spectra include the e↵ect of background oscillations. The
corresponding �2 values (for combined neutrino and anti-neutrino data) are also given in the plot.
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to the combination of those data, with the star indicating the best fit point.
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search in ICARUS are ⌫
e

appearance events due to �m2

31

and ✓
13

. Furthermore,
as discussed in section 2 and appendix A the long-baseline appearance probability in the
3+1 scheme depends on one complex phase. In deriving the ICARUS bound shown in
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Sterile 𝞶 as Dark Matter

The Cosmic Pie:

Dark energy

Dark matter
Ordinary matter

P. A. R. Ade et al. [Planck Collaboration], arXiv:1303.5076 [astro-ph.CO]
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�Lm⌫ =
1

2
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⌫L, N,N 0� (3)
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⌦Bh

2 = 0.02205± 0.00028 (5)
⌦DMh2 = 0.1199± 0.0027 (6)

⌦⇤ = 0.685+0.018
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h = 0.673± 0.012 km s�1 Mpc�1 (8)
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⌦Bh

2 = 0.02205± 0.00028 (5)
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⌦⇤ = 0.685+0.018
�0.016 (7)

h = 0.673± 0.012 km s�1 Mpc�1 (8)

1

Sterile neutrinos could be viable DM candidates
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Constraints: abundance
DW: as long as an active-sterile mixing is present, a population of sterile ν is 

produced by oscillations in the primordial plasma

Recent evaluation give
neutrinos according [8]:

⌦sh
2 = 1.1 · 107

X

↵

C↵(ms) |U↵s|2
⇣ ms

keV

⌘2

, ↵ = e, µ, ⌧ (6)

where C↵ are active-flavor dependend coefficients which can be numerically computed
by solving the Boltzmann equation for the DM relic density, while |U↵s| is an effective
active-sterile mixing matrix which reduces to |U↵s| ' ✓↵s.

We have then computed the DM relic density using eq. (6), adopting the results
of [8] for the coefficients C↵

2, for a set of ISS(2,3) satisfying oscillation and laboratory
constrains from active neutrino physics and imposed fWDM = ⌦s/⌦Planck

DM < 1 thus
obtaining constraints for the pair (ms, ✓s).

The configurations with DM relic density not exceeding the experimental de-
termination have been confronted with the limits coming from structure formation.
There are, in reality, several strategy to determing the impact of WDM on structure
formation, leading to differnt constraints.

The most solid bounds comes from the analysis of the phase-space distribution
of astrophyiscal objects. Indeed the free-streaming scale of WDM is of the order of
the typical size of galaxies; as a consequece the formation of DM halos, as well as the
one of the galaxies associated to them is deeply influenced by the DM distribution
function. According this idea it is possible to obtain rather robust limits on the DM
mass by requiring the maximun of the dark matter distribution function inferred by
the observations, the so called coarse grained phase space density, does not exceed
the one of the so called fine-grained phase density, theoretically determined and
depending on the specific DM candidate. Using this method an absolute lower limit
on the DM mass of around 0.3 KeV, dubbed Tremaine-Gunn (TG) bound [9], by
comparing the DM distribution from the observation of Dwarf Spheroidal Galaxies
(Dphs), with the fine-grained distribution of a Fermi-gas. A most focused study on
sterile neutrinos produced by DW mechanism has been presented in [10] obtaining
a lower mass bound of the order of 2 KeV. This limit can be evaded assuming that
the WDM candidate is a subdominat component while the DM halos are mostly
determined by an unknown cold dark matter component. The reformulation of the
limits in this kind of scenarios requires a dedicated study (an example can be found
in [11]). In this work we will conservatively regard as viable, the points with mass

2For DM masses of the order of 1-10 keV DM production is peaked at temperatures of the order
of 150 MeV, which correspond to the tempertature at which QCD phase transition occurs in the
primordial plasma. As a consequence the numerical computation of the C↵ coefficients is affected
by uncertainties related to the determination of the rates of hadronic scatterings and to the QCD
equation of state.

5
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1

S. Dodelson and L. M. Widrow, hep-ph/9303287

T. Asaka, M. Laine and M. Shaposhnikov, hep-ph/0612182
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Constraints: phase-space density
For fermionic DM Pauli exclusion principle impose a maximum on its distribution 

function (degenerate Fermi gas). Imposing that inferred phase-space density do not 
excess this bound it is possible to extract a lower bound on the DM mass

S. Tremaine and J. E. Gunn, Phys. Rev. Lett. 42 (1979) 407

from dSphs
observations

10

V. RESULTS

Our main results are compiled into the Table II (columns 6–9). The column 6 of Table II contains the bound
on mdeg (given by Eq. (1)) based on the Pauli exclusion principle. It is independent of the details of the evolution
of the system, is not affected by the presence of baryons (see below) and holds for any fermionic DM. The column
7 contains the mass bounds for the relativistically decoupled DM particles (primordial distribution (4)), obtained
by combining Eqs.(17)–(19). Combining Eqs. (17), (18) and (23) one obtains the result for the case of DM with
primordial velocity distribution (20), quoted in the column 8. Both bounds in columns 7 and 8 conservatively
assume maximally coarse-grained distribution function (see Section III). In instead of the maximal coarse-graining,
one assumes the isothermal distribution in the final state (c.f. Fig. 1), one arrives to the original Tremaine-Gunn
bound, shown in the 9th column. It is obtained by comparing the expressions (21) with (24).9 We denote the
corresponding mass bound by mnrp,tg.

We quote all the mass bounds with the corresponding uncertainties, coming from those of in determination of σ and
rh (see Section IV). However, for any given object there can be unique reasons, violating the standard assumptions
and therefore increasing the uncertainties. Therefore, although the strongest bounds in Table II come from the Canes
Venatici II (CVnII) dSph, we decided to take a value which independently follows from several objects as a single
number, characterizing our results (for a given type of DM). To this end we choose the value, obtained for Leo IV.10

Thus, the mass bounds, quoted below are excluded from three dSphs: Leo IV, CVnII and Coma Berenices (Com)11

To summarize, we obtain the following lower bounds

mdeg > 0.41 keV , (32)

mfd > 0.48 keV , (33)

mnrp > 1.77 keV , (34)

and

mnrp,tg > 2.79 keV . (35)

We can compare lower bounds (34)–(35) with the upper ones, coming from astrophysical (X-ray) constraints on the
possible flux from sterile neutrino DM decay [126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136]. Taking central
value (34) and comparing it with the X-ray constraints, one sees that there exists a narrow window of parameters
for which 100% of DM can be made from the NRP sterile neutrino (c.f. Fig.2). Less conservative bound (35), based
on [22] (marked by the dark orange double-dotted vertical line on the Fig. 2) almost completely closes this window.
Notice, that these bounds are comparable with the lower mass limit mnrp > 5.6 keV, coming from the Ly-α forest
analysis of [74].

We also performed the analysis for sterile neutrinos, produced in the presence of lepton asymmetry (resonant
production mechanism, RP) [66, 67, 68]. This mechanism is more efficient than the NRP scenario and allows us to
achieve the required DM abundance for weaker mixings (c.f. Fig. 4 in [68]). This lifts the upper bound on the DM
particle mass in RP scenario to ∼ 50 keV. To estimate the lower mass bound at this scenario, we have analyzed a
number of available spectra (mass range 1 − 20 keV, asymmetries (2 − 700) × 10−6 (see [67, 68] for the definition of
asymmetry). The result are collected on the Fig. 3. One can see that based on F̄ , the Mrp = 1 keV is ruled out for
lepton asymmetries L >∼ 102 and higher masses Mrp ≥ 2 keV are allowed for all available asymmetries. Based on the
original Tremaine-Gunn bound, Mrp = 2 keV is also ruled out for sufficiently high (L >∼ 102) lepton asymmetries.
Thus, resonantly produced sterile neutrinos remain a viable DM candidate (see Fig. 4).

Finally, we would like to notice that our bounds (33)–(35) are valid under the assumption that the influence of the
baryons does not result in the increase of the PSD in the course of structure formation. If this assumption does not
hold, only the bound (32) remains intact.

9 The value of rc is not currently known for several new, faint dSphs, from which we obtain the best limits on DM mass. Therefore, to
calculate the Tremaine-Gunn limit in Table II, we use the conservative estimate rc ≈ rh (see comment after Eq.(25)).

10 Notice, that the numbers for Leo IV essentially coincide with the mass limits from CVnII and Com if all uncertainties in these dSphs
are pushed to minimize the mass bound.

11 It is possible that Coma Berenices is undergoing tidal disruption (like another ultra-faint dSph, Ursa Major II (UMaII), closely resembling
Com) [79]. However, unlike UMaII (or the best known example of tidally disrupted dSph, Sagittarius), there are no known tidal streams
near the position of Coma Berenices and the evidence in favor of tidal disruption are quite moderate [c.f. discussion in 79, §3.6].
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abundance
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A. Boyarsky, O. Ruchayskiy and D. Iakubovskyi, 0808.3902 [hep-ph]
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Constraints: stability and indirect detection (ID)

A massive ν can radiatively 
decay producing 

monochromatic 𝛾

PHYSICAL REVIEW 0 VOLUME 25, NUMBER 3 1 FEBRUARY 1982

Radiative decays of massive neutrinos

Palash B. Pal and Lincoln Wolfenstein
Carnegie-Mellon University, Pittsburgh, Pennsyluania I52I3

(Received 4 June 1981; revised manuscript received 15 September 1981)

General formulas are given for the decay rate v2~v~+y in the SU(2))&U(1) model for
neutrinos with a small mass. The emphasis is on distinguishing between the cases of
Dirac and Majorana neutrinos. Possible enhancements of the rate due to methods of elud-
ing the Glashow-Iliopoulos-Maiani suppression and due to charged Higgs bosons are con-
sidered.

If neutrinos are massive and if the mass eigen-
states are not degenerate, then it is possible to have
a radiative decay of the form v2~v&+y. The pos-
sibility that massive relic neutrinos from the big
bang might be detected as a result of this radiation
has been discussed recently. ' In addition, such
decays have been discussed in a variety of astro-
physical contexts. Formulas for the rate of these
decays have been given explicitly by Petcov and
by Goldman and Stephenson and can be derived
from the general results of Marciano and Sanda
and of Lee and Shrock. All these results are
given for the case of Dirac neutrinos whereas most
present theoretical ideas about neutrino mass yield
Majorana neutrinos. In this paper we discuss the
general case involving either Majorana or Dirac
neutrinos. Since the predicted rates within the
standard model are small, we consider some possi-
bilities of enhancing the rate.
In order to understand the differences between

the Majorana and Dirac cases, it is necessary first
to review the calculation for the Dirac case, which
we carry out in the Feynman —'t Hooft gauge. We
assume the standard SU(2) )& U(1) model with the
leptons in left-handed doublets and right-handed
singlets plus a single Higgs doublet. The relevant
diagrams are shown in Fig. 1. Because of the
Glashow-Iliopoulos-Maiani (GIM) cancellation the
transition moment vanishes in the limit that all
charged lepton masses are taken equal to zero. As
a result, the diagrams involving the unphysical P+
cannot be ignored even though the coupling of P+
is proportional to a lepton mass. This coupling
may be written

2(GF/V 2)'/ g v,—U, (ml, R m, L)l, p++H. c. ,—
a,a (1)

vaL g UaavaL (2)

For simplicity, we assume CI' invariance and
choose U« to be real. The helicity projection

V2 a V2 W

V2 Vl V2

y+

VI

/
/
/

V2 Vl

FIG. 1. Diagrams in the 't Hooft —Feynman gauge
contributing to the process v2~vi+y for Dirac neutri-
nos v2 and v~.

where mI, (=m„m„, etc.) is the charged-lepton
mass, m is the neutrino mass, GF is the Fermi
constant, and U« is the unitary matrix relating the
neutrino mass eigenstates v L (a= 1,2 . ) to the
weak eigenstates v,L, (a =e,p . )

766 1982 The American Physical Society

P. B. Pal and L. Wolfenstein, Phys. Rev. D 25 (1982) 766

of the lightest sterile neutrino below 2 KeV, featuring fWDM < 1%, corresponding
approximatively to the current experimental uncertainty in the determination of the
DM relic density.

For masses above 2 KeV a further bound is obtained by the analysis of the Lyman-
↵ forest data. From these it is possible to indirectly infer the spectrum of matter
density fluctuations which are in turn determined by the DM properties. The Lyman-
↵ method is strongly model dependent and the bounds are crucially related to the
WDM production mechanism and to which amount contributes to the total DM
abundance.

For our analysis we have adopted the results presented in [12] where the Lyman-↵
have been considered in the case that sterile neutrino WDM account for the total DM
component as well as the contribute only to a fraction of it while the remaining con-
tribution is originated by a cold DM component. More precisely we have considered
the most stringent 95 percent exclusion limit 3, expressed in terms of (ms, FWDM),
and translated it into an exclusion limit on the parameters of our model, namely
the mass ms of the sterile neutrino and its effective mixing angle ✓s with active
neutrinos 4.

There other possible strategies for constraining WDM. For example a strong lower
limit of the order of 10 KeV on the DM mass can be obtained from the number of
observed satellites of the Milky way [14]. This kind of limit however strictly assume
that the whole dark matter abundance is originated by the WDM candidate and
then cannot straightforwardly embedded in our analysis.

The ISS realizations passing the Lyman-↵ constraint have been finally confronted
with the limits from the X-ray searches, as reported e.g. in [15]. The constraints are
given again in the plane (ms, ✓s) are can be schematically expressed by 5:

fWDM sin2 2✓ . 1.5⇥ 10�4
⇣ ms

1keV

⌘�5

(7)

3The limit considered actually rely on not up-to-date data sets. A more recent analysis [13] has
obtained a stronger limit in the case of a pure WDM scenario, thus the limits are an underestimate.
As will be clear in the following the final picture won’t be affected by this.

4Notice that the Lyman-↵ method is reliable for DM masses above 5 KeV. For lower values
there are very strong uncertainties and it is not possible to obtain solid bounds. In [12] it is argued
nonetheless that the limit on FWDM should not sensitively change, at lower masses, with respect to
the one obtained for neutrinos of 5 keV mass.

5Notice that the exclusion limit from X-rays is actually the combination of the outcome of
different experiments and the dependence on the dark matter mass deviates from the one provided
above in some regions. We have taken this effect into account in our analysis

6

Due to the lack of signature (e.g. CHANDRA, XMN)

ID excluded
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Constraints: Lyman-α
The absorption in the spectra of QSOs by the H (Ly-α: 1s → 2p) in IGM can 

trace the matter distribution at scales (1-80 h-1 Mpc)
Narayanan, Vijay K.; Spergel, David N.; Davé, Romeel; Ma, Chung-Pei, Astrophys. J. 543, 103 (2000)

These constraints are highly-model dependent, we applied the limits for DW 
produced sterile 𝞶

Ly-α
exluded

A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, 0812.0010 [astro-ph]
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WDM summary

Allowed
region

Ly-α
and

x-ray
constraints
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Effects of heavy sterile states
Recall the (2,3) ISS mass spectrum

3 active neutrinos

1 light sterile state
(DM candidate)

4 heavy states
(pseudo-Dirac pairs)

Mass

ISS can accommodate tiny 𝞶 masses with large O(1) Yukawas

Heavy states can thermalize in the early Universe

I=1

I=2,...5
M

m

𝜇

𝝁

𝝁
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Thermalization of the heavy sterile states
Unbroken EW phase:  efficient interactions via Higgs scattering
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Thermalization if  Yeff>10-7

I=2,...5

I=1

Broken EW phase:  DW production

As evident, there are only equilibrium configurations above masses of 10 GeV
while at lower masses both the two possibilities are open, altough the equilibrium
configurations seem favored. This outcome is a peculiar feature of the ISS mechanism
which allow to generate the correct value of the active neutrino masses for high
values of the Yukawa couplings of the right-handed neutrino. For comparison we
are reporting in the same plot the distribution (blue points) of values of the mass
and effective Yukawa of the WDM candidate. As evident it results always far from
thermal equilibrium because of the much more suppressed coupling.

At low temperatures the Yukawa interactions become less efficient and the abun-
dance of the heavy neutrinos is governed by the transitions processes from the light
active neutrinos. For a given neutrino state the rate of the transition processes
reaches a maximum at around [21]:

Tmax,I ' 130

✓
MI

1keV

◆ 1
3

MeV (9)

Comparing, according the customary rule of thumb, the transition rate of each neu-
trino at the temperature Tmax,I with the Hubble expansion rate H, the oscillation
processes result in thermal equilibrium if [21]:

✓ > 5 · 10�4

✓
1 keV
Ms

◆1/2

(10)

If this condition is satisfied an equilibrium population of pseudo dirac neutrinos exists
in an interval of temperatures around Tmax,I. Notice that the picture depicted above
assumes that the production of sterile neutrinos from oscillations of the active ones
is energetically allowed; as a consequence it is valid only for neutrino masses lower
than Tmax:

Tmax ' 130

✓
MI

1keV

◆ 1
3

MeV � MI ) MI  MI,max ⇡ 46.87 GeV. (11)

As will be clarified in the following neutrinos heavier than MI,max have too high
decay rates for affecting DM production and then are not relevant in the following
analysis.

We report in the right panel of fig. (2) the mixing of the lighter pseudo-Dirac
state with the electron neutrino as a function of the sterile mass (we remember that
for small angles it is possible to approximate ✓e5 ' Ue5) for the ISS realizations com-
patible with laboratory limits. The yellow and the green line represent, respectively,
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Thermalization if 

Peak production at

E. K. Akhmedov, V. A. Rubakov and A. Y. Smirnov
hep-ph/9803255

T. Asaka, M. Shaposhnikov and A. Kusenko, hep-ph/0602150
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Entropy injection
If the heavy states thermalize they dominate the energy density of the 

Universe from T until their decay at (Tr,M, Tr,m)

the maximum value of the neutrino mass, according eq. (11), for which our analy-
sis apply, and a lower bound of 150 MeV [22] obtained by requiring that the heavy
neutrino decays before the onset of BBN. The points above the red line satisfy the
equilibrium condition (10).

Combining the outcomes of the two panels of fig. (2) we can conclude that all the
considered realizations, in the relevant interval of mass, satisfy equilibrium condi-
tions; as a consequence we can always assume the presence of an equilibrium popula-
tionof the pseudo-dirac states until temperatures of the order of Tmax,I. (This is not
the actual decoupling temperature. This has been instead determined e.g. in [?] and
more recently in [?] and results lower than Tmax, however this affects only marginally
our discussion). The decoupling occurs when the neutrinos are relativistic (eq. (9))
while their decay occurs at a much later stage, when they become non-relativistic.

We have now to verify whether the neutrinos can dominate the energy budget of
the Universe. This can be done by comparing the energy density of relativistically
decoupled species:

⇢N(T ) ⌘
X

I=2,5

mInI(T ), nI(T ) =
g⇤(T )

g⇤(TD)

✓
T

TD

◆3

neq
I (TD) =

g⇤(T )

g⇤(TD)

3⇣(3)

2⇡2
T 3 (12)

with the radiation energy density ⇢r =
⇡2

30
g⇤(T )T 4. The two densities result equal at:

T ⇡ 6.4MeV
⇣ m2

1GeV

⌘✓P
I mIYI

m2Y2

◆
(13)

where we have taken g⇤(TD) = 86.25 and m2 is the mass of the lightest right-handed
neutrino. The energy density of sterile neutrinos hence dominates the energy budged
of the Universe from the temperature T until their decay time. After this the stan-
dard radiation domination era starts again at a so called reheating temperature [19]
Tr,I while the entropy injection associated to the decay can be expressed to a factor S
defined as the ratio of the entropy densities of the prymordial plasma at temperatures
immediately above and below the reheating.

Having set up the initial conditions we can estimate the entropy injection pro-
duced by the decay of the heavy neutrinos as function of the parameters of the ISS
model. In the ISS(2,3) model the pseudo-dirac states appear as pairs with the mass
splitting in each pair much smaller with respect to the masses of the corresponding
states. We thus identify two mass scales m and M with m < M and, for simplicity,
we will describe the interactions of the two pairs with ordinary particles through two
effective mixing angles ✓m and ✓M .

12

If they decay after the WDM production (≈150 MeV) its abundance is reduced 
and its momentum distribution is redshifted

Examples with different Yeff values

The entropy release actually occurs into two phases 8. corresponding to the decay
of the two kind of states, which have in general different lifetimes.

The first entropy injection occurs at the decay of the heavier pseudo-dirac neu-
trinos, with mass M , at a reheating temperature given by:

Tr,M = 0.5

✓
2⇡2

45
g⇤(Tr,M)

◆�1/4p
�MPl

✓P
↵ m↵Y↵

mIYI

◆�1/4

, m↵ = M,m (14)

where the factor
P

↵ m↵Y↵

mIYI
accounts for the presence of other massive states dominating

the energy density of the Universe at the moment of the decay.
� is the decay rate of the heavy neutrino. This is determined by three-body

decay processes mediated by the Z-bosons or higgs bosons. This second type of
contribution is a peculiar feature of the ISS framework which allows for potentially
large Yukawa couplings for the heavy neutrinos. The contributions to the decay rate
can be written as:

�Z =
G2

Fm
5
I✓

2
I

192⇡3

�h =
Y 2
e↵m

5
I

128(2⇡)3m4
h

X

f

y2f

✓
1� 4m2

f

mI

◆
(15)

where Ye↵ is the effective Yukawa coupling of the pseudo-dirac states while yf is a
standard model Yukawa coupling and the sum runs over the channels kinematically
open. For values of Ye↵ ⇠ O(1) the contribution of higgs mediated processes is
dominant from masses of the heavy neutrinos above around 2 GeV, namely when the
decay into charm quarks is open while is weight becomes lower as Ye↵ decreases.

The entropy release associated to the decay is described by a paramter SM � 1
given by:

SM =

"
1 + 2.95

✓
2⇡2

45
g⇤(Tr,M)

◆1/3✓P
↵ m↵Y↵

MYM

◆1/3 (MYM)4/3

(�MPL)2/3

#3/4

(16)

The yields Y = n/s of all the species, including the lighter pair of pseudo-dirac
neutrinos, are reduced by a factor 1/SM .

8The discussion of this section, as well the expressions presented,is valid in the so called ’instan-
taneous reheating approximation’ which assumes that the entropy injection occurs at the reheating
temperature. In reality the entropy release is a continuous process and the quantities Tr and S are
not determined analytically but rather extrapolated from the numerical solution of suitable Boltz-
mann equations [23]. The instantaneous reheating is anyway customarily a good approximation
and it is enough for our purposes.
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Entropy dilution
Consider the pseudo-Dirac couples to be degenerate with masses M > m
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� is the decay rate of the heavy neutrino. This is determined by three-body
decay processes mediated by the Z-bosons or higgs bosons. This second type of
contribution is a peculiar feature of the ISS framework which allows for potentially
large Yukawa couplings for the heavy neutrinos. The contributions to the decay rate
can be written as:
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where Ye↵ is the effective Yukawa coupling of the pseudo-dirac states while yf is a
standard model Yukawa coupling and the sum runs over the channels kinematically
open. For values of Ye↵ ⇠ O(1) the contribution of higgs mediated processes is
dominant from masses of the heavy neutrinos above around 2 GeV, namely when the
decay into charm quarks is open while is weight becomes lower as Ye↵ decreases.

The entropy release associated to the decay is described by a paramter SM � 1
given by:

SM =
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The yields Y = n/s of all the species, including the lighter pair of pseudo-dirac
neutrinos, are reduced by a factor 1/SM .

A second entropy release coincides with the decay of the lighter pseudo-dirac pair
and it is associated to a reheating temperature Tr,m given by an analogous expression
as (18) and to an entropy dilution factor Sm given by:
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where this expression takes into account the dilution of the abundance of the de-
caying neutrinos in the previous reheating phase (we have explicitly checked that
they nonetheless dominate the energy density of the Universe). The total dilution is
expressed as:

S = Sm SM (22)
The DM phenomenology is affected only if at least one of the entropy injection

phases occurs after the DM production. For a keV scale DM this translates into the
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WDM summary with entropy injection

The entropy injection enlarges the allowed parameter space but it is not 
effective to make Ωs=1viable
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Is Ωs=1 viable?

Cosmological constraints on the (2,3) ISS parameter space makes 
impossible to produce the whole DM abundance via DW 

mechanism

max fWDM ≈ 0.48 

Are there other production mechanisms that can account for 
the missing DM abundance?
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Dark Matter Production from heavy neutrino decays
Freeze-in: decay of a thermalized species into one which is out of equilibrium

Lyman-↵ bound down to the value ms = 2KeV because of this scaling only with S1/3

of this limit.
We finally point out that for very high values of S, sizable value of fWDM are

achieved for very high mixing angles, excluded by ID. This is the origin of the sat-
uration of the cosmologically favored region already observed in the left panel of
fig. (5).

3.2.2 Dark Matter Production from heavy neutrino decays

As already mentioned the pseudo-dirac neutrinos can produce dark matter through
their decays. These processes are mediated by their Yukawa interactions and the
decay rate is proportional to Y 2

e↵ sin ✓, thus suppressed with respect to the decay
channels into only SM particles by the active-sterile mixing angle. A sizable DM
production can be nonetheless achived through the so called freeze-in mechanism [27].
It consists in the production of the DM while the heavy neutrinos are still in thermal
equilibrium and, to be effective, requires that the rate of decay into DM is very
suppressed, such that it results lower than the Hubble expansion rate. In our setup
this conditions can be expressed as:, Ye↵ sin ✓ < 10�7. The DM relic density is
proportional to the decay rate of the pseudo-dirac neutrionos into DM as:

⌦DMh
2 ' 1.07⇥ 1027

g3/2⇤

X

I

gI
mDM� (NI ! DM + anything)

m2
I

(20)

where the sum runs over the pseudo-dirac states and gI represents the number of
internal degrees of freedom of each state. A sizable enough decay rate of the sterile
neutrinos into DM can be achieved when they are heavier than the higgs boson and
then the process NI ! hDM is kinematically open. The rate of this processes is
given by:

� (NI ! hDM) =
mI

16⇡
Y 2
e↵,I sin

2 ✓

✓
1� m2

h

m2
I

◆
(21)

where ✓ is the mixing angle between the DM and the ordinary matter. Neglecting
for simplicity the last kinematical factor we can express the contribution from these
decays to the DM relic density as:

⌦h2 ⇡ 2.16⇥ 10�1

✓
sin ✓

10�6

◆2⇣mDM

1KeV

⌘X

I

gI

✓
Ye↵,I

0.1

◆2⇣ mI

1TeV

⌘�1

(22)

as evident the decays of the pseudo-dirac neutrinos can account for the correct DM
component.
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Heavy thermalized states
(I=2,...,5)

Light sterile neutrino
(I=1)

Effective if  Yeff > 10-7 and Yeff sin𝜃 < 10-7 and mh < MI < 160 GeV
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e↵ sin ✓, thus suppressed with respect to the decay
channels into only SM particles by the active-sterile mixing angle. A sizable DM
production can be nonetheless achived through the so called freeze-in mechanism [27].
It consists in the production of the DM while the heavy neutrinos are still in thermal
equilibrium and, to be effective, requires that the rate of decay into DM is very
suppressed, such that it results lower than the Hubble expansion rate. In our setup
this conditions can be expressed as:, Ye↵ sin ✓ < 10�7. The DM relic density is
proportional to the decay rate of the pseudo-dirac neutrionos into DM as:
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where the sum runs over the pseudo-dirac states and gI represents the number of
internal degrees of freedom of each state. A sizable enough decay rate of the sterile
neutrinos into DM can be achieved when they are heavier than the higgs boson and
then the process NI ! hDM is kinematically open. The rate of this processes is
given by:
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16⇡
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1� m2

h
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where ✓ is the mixing angle between the DM and the ordinary matter. Neglecting
for simplicity the last kinematical factor we can express the contribution from these
decays to the DM relic density as:

⌦h2 ⇡ 2.16⇥ 10�1
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sin ✓

10�6
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I

gI

✓
Ye↵,I

0.1

◆2⇣ mI

1TeV

⌘�1

(22)

as evident the decays of the pseudo-dirac neutrinos can account for the correct DM
component.
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Ωh2 ≃ 0.12 compatible with ID bounds

The spectrum of the produced DM is “colder” than the DW one, evading the 
Ly-α bounds

L. J. Hall, K. Jedamzik, J. March-Russell and S. M. West, arXiv:0911.1120 [hep-ph]
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Examples for different neutrino masses
(assuming for simplicity same masses and Yeff for the 4 heavy states)

E. Bulbul, M. Markevitch, A. Foster, R. K. Smith, M. Loewenstein and S. W. Randall, arXiv:1402.2301 [astro-ph.CO]
A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, arXiv:1402.4119 [astro-ph.CO]

3.5 keV line:

sin𝜃 close to the maximum allowed value for each mass
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Conclusions
The Inverse Seesaw is a viable mechanism to generate tiny 𝞶 masses with sizable 

Yukawas and low seesaw scale

In a generic realisation (#s - #𝝼R) light sterile states are present

The (2,3) ISS can provide an explanation for 𝞶 anomalies or a viable DM candidate

Due to the large Yukawas heavy states can thermalise in the early Universe, relaxing 
cosmological bounds or producing the correct DM abundance

The model can generate pure CDM as well as C+WDM
(max fWDM ≈ 0.4 )
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Backup
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Mixing temperature dependance
The leptonic mixing matrix is temperature-dependent

3
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FIG. 2: The Higgs expectation value as a function of tem-
perature, compared with the perturbative result [2].

sphaleron barrier (∼ sphaleron energy), and special real-
time runs are performed to calculate the dynamical pref-
actors of the tunneling process. The physical rate is then
obtained by reweighting the measurements. For details
of this intricate technique, we refer to [12, 27]. As we will
observe, in the temperature range where both methods
work, these overlap smoothly.
Simulation results: We perform the simulations using lat-
tice spacing a = 4/(9g23) (i.e. βG = 4/(g23a) = 9 in
conventional lattice units), and volume V = 323a3. In
ref. [12] we observed that the rate measured with this
lattice spacing in the symmetric phase is in practice in-
distinguishable from the continuum rate, and deep in the
broken phase it is within a factor of two of our estimate
for the continuum value, well within our accuracy goals.
In fact, algorithmic inefficiencies in multicanonical simu-
lations become severe at significantly smaller lattice spac-
ing, making simulations there very costly in the broken
phase. The simulation volume is large enough for the
finite-volume effects to be negligible [12].
The expectation value of the square of the Higgs field,

v2/T 2 = 2〈φ†φ〉/T (here φ is in 3d units), measures the
“turning on” of the Higgs mechanism, see Fig. 2. As
mentioned above, there is no proper phase transition and
v2(T ) behaves smoothly as a function of the tempera-
ture. Nevertheless, the cross-over is rather sharp, and
the pseudocritical temperature can be estimated to be
Tc = 159± 1GeV. If the temperature is below Tc, v2(T )
is approximately linear in T , and at T > Tc, it is close to
zero. The observable 〈φ†φ〉 is ultraviolet divergent and
is additively renormalized; because of additive renormal-
ization, v2(T ) can become negative.
We also show the two-loop RG-improved perturbative
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T / GeV
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multicanonical
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perturbative
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log[αH(T)/T]

FIG. 3: The measured sphaleron rate and the fit to the broken
phase rate, Eq. (7), shown with a shaded error band. The
perturbative result is from Burnier et al. [11] with the non-
perturbative correction used there removed; see main text.
Pure gauge refers to the rate in hot SU(2) gauge theory [19].
The freeze-out temperature T∗ is solved from the crossing of
Γ and the appropriately scaled Hubble rate, shown with the
almost horizontal line.

result [2] for v2(T ) in the broken phase. Perturbation
theory reproduces Tc perfectly, and v2 is slightly larger
than the lattice measurement. In the continuum limit we
expect this difference to decrease for this observable; in
ref. [12] we extrapolated v2(T ) to the continuum at a few
temperature values and with Higgs mass 115GeV. The
continuum limit in the broken phase was observed to be
about 6% larger than the result at βG = 9. Thus, for
v2(T ) perturbation theory and lattice results match very
well.
Finally, in Fig. 3 we show the sphaleron rate as a func-

tion of temperature. The straightforward Langevin re-
sults cover the high-temperature phase, where the rate
is not too strongly suppressed by the sphaleron barrier.
In fact, we were able to extend the range of the method
through the cross-over and into the broken phase, down
to relative suppression of 10−3.
Using the multicanonical simulation methods we are

able to compute the rate 4 orders of magnitude further
down into the broken low-temperature phase. The results
nicely interpolate with the canonical simulations in the
range where both exist. In the interval 140<∼T<∼155GeV
the broken phase rate is very close to a pure exponential,
and can be parametrized as

log
ΓBroken

T 4
= (0.83± 0.01)

T

GeV
− (147.7± 1.9). (7)

The error in the second constant is completely dominated

M. D’Onofrio, K. Rummukainen and A. Tranberg
arXiv:1404.3565 [hep-ph]
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Sterile 𝞶 in CMBPlanck Collaboration: Cosmological parameters

to the lensing data (��2 = �2.35) being cancelled by the poorer
fit to high-` CMB data (��2 = �2.15). There are rather large
shifts in other cosmological parameters between these best-fit
solutions corresponding to shifts along the acoustic-scale degen-
eracy direction for the temperature power spectrum. Note that,
as well as the change in H0 (which falls to compensate the in-
crease in

P
m⌫ at fixed acoustic scale), ns, !b and !c change

significantly keeping the lensed temperature spectrum almost
constant. These latter shifts are similar to those discussed for
AL in Sect. 5.1, with non-zero

P
m⌫ acting like AL < 1. The

lensing power spectrum C��` is lower by 5.4% for the higher-
mass best fit at ` = 400 and larger below ` ⇡ 45 (e.g. by
0.6% at ` = 40), which is a similar trend to the residuals from
the best-fit minimal-mass model shown in the bottom panel of
Fig. 12. Planck Collaboration XVII (2014) explores the robust-
ness of the C��` estimates to various data cuts and foreground-
cleaning methods. The first (` = 40–85) bandpower is the least
stable to these choices, although the variations are not statis-
tically significant. We have checked that excluding this band-
power does not change the posterior for

P
m⌫ significantly, as

expected since most of the constraining power on
P

m⌫ comes
from the bandpowers on smaller scales. At this stage, it is un-
clear what to make of this mild preference for high masses from
the 4-point function compared to the 2-point function. As noted
in Planck Collaboration XVII (2014), the lensing measurements
from ACT (Das et al. 2013) and SPT (van Engelen et al. 2012)
show similar trends to those from Planck where they overlap
in scale. With further Planck data (including polarization), and
forthcoming measurements from the full 2500 deg2 SPT temper-
ature survey, we can expect more definitive results on this issue
in the near future.

Apart from its impact on the early-ISW e↵ect and lensing
potential, the total neutrino mass a↵ects the angular-diameter
distance to last scattering, and can be constrained through the
angular scale of the first acoustic peak. However, this e↵ect is
degenerate with ⌦⇤ (and so the derived H0) in flat models and
with other late-time parameters such as ⌦K and w in more gen-
eral models (Howlett et al. 2012). Late-time geometric measure-
ments help in reducing this “geometric” degeneracy. Increasing
the neutrino masses at fixed ✓⇤ increases the angular-diameter
distance for 0  z  z⇤ and reduces the expansion rate at low red-
shift (z <⇠ 1) but increases it at higher redshift. The spherically-
averaged BAO distance DV(z) therefore increases with increas-
ing neutrino mass at fixed ✓⇤, and the Hubble constant falls; see
Fig. 8 of Hou et al. (2012). With the BAO data of Sect. 5.2, we
find a significantly lower bound on the neutrino mass:
X

m⌫ < 0.23 eV (95%; Planck+WP+highL+BAO). (72)

Following the philosophy of this paper, namely to give higher
weight to the BAO data compared to more complex astrophys-
ical data, we quote the result of Eq. (72) in the abstract as our
most reliable limit on the neutrino mass. The⇤CDM model with
minimal neutrino masses was shown in Sect. 5.3 to be in tension
with recent direct measurements of H0 which favour higher val-
ues. Increasing the neutrino mass will only make this tension
worse and drive us to artificially tight constraints on

P
m⌫. If we

relax spatial flatness, the CMB geometric degeneracy becomes
three-dimensional in models with massive neutrinos and the con-
straints on

P
m⌫ weaken considerably to

X
m⌫ <

8>><
>>:

0.98 eV (95%; Planck+WP+highL)
0.32 eV (95%; Planck+WP+highL+BAO).

(73)
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Fig. 27. Marginalized posterior distribution of Ne↵ for
Planck+WP+highL (black) and additionally BAO (blue),
the H0 measurement (red), and both BAO and H0 (green).

6.3.2. Constraints on Ne↵

As discussed in Sect. 2, the density of radiation in the Universe
(besides photons) is usually parameterized by the e↵ective neu-
trino number Ne↵ . This parameter specifies the energy density
when the species are relativistic in terms of the neutrino tem-
perature assuming exactly three flavours and instantaneous de-
coupling. In the Standard Model, Ne↵ = 3.046, due to non-
instantaneous decoupling corrections (Mangano et al. 2005).

However, there has been some mild preference for
Ne↵ > 3.046 from recent CMB anisotropy measurements
(Komatsu et al. 2011; Dunkley et al. 2011; Keisler et al. 2011;
Archidiacono et al. 2011; Hinshaw et al. 2012; Hou et al. 2012).
This is potentially interesting, since an excess could be caused
by a neutrino/anti-neutrino asymmetry, sterile neutrinos, and/or
any other light relics in the Universe. In this subsection we dis-
cuss the constraints on Ne↵ from Planck in scenarios where the
extra relativistic degrees of freedom are e↵ectively massless.

The physics of how Ne↵ is constrained by CMB anisotropies
is explained in Bashinsky & Seljak (2004), Hou et al. (2011)
and Lesgourgues et al. (2013). The main e↵ect is that increasing
the radiation density at fixed ✓⇤ (to preserve the angular scales of
the acoustic peaks) and fixed zeq (to preserve the early-ISW ef-
fect and so first-peak height) increases the expansion rate before
recombination and reduces the age of the Universe at recombi-
nation. Since the di↵usion length scales approximately as the
square root of the age, while the sound horizon varies propor-
tionately with the age, the angular scale of the photon di↵usion
length, ✓D, increases, thereby reducing power in the damping tail
at a given multipole. Combining Planck, WMAP polarization and
the high-` experiments gives

Ne↵ = 3.36+0.68
�0.64 (95%; Planck+WP+highL). (74)

The marginalized posterior distribution is given in Fig. 27 (black
curve). The result in Eq. (74) is consistent with the value of
Ne↵ = 3.046 of the Standard Model, but it is important to
aknowledge that it is di�cult to constrain Ne↵ accurately using
CMB temperature measurements alone. Evidently, the nominal
mission data from Planck do not strongly rule out a value as high
as Ne↵ = 4.
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Fig. 23. Upper: Posterior distribution for ns for the base ⇤CDM
model (black) compared to the posterior when a tensor compo-
nent and running scalar spectral index are added to the model
(red) Middle: Constraints (68% and 95%) in the ns–dns/d ln k
plane for ⇤CDM models with running (blue) and additionally
with tensors (red). Lower: Constraints (68% and 95%) on ns and
the tensor-to-scalar ratio r0.002 for ⇤CDM models with tensors
(blue) and additionally with running of the spectral index (red).
The dotted line show the expected relation between r and ns for
a V(�) / �2 inflationary potential (Eqs. 66a and 66b); here N is
the number of inflationary e-foldings as defined in the text. The
dotted line should be compared to the blue contours, since this
model predicts negligible running. All of these results use the
Planck+WP+highL data combination.
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We show 68% and 95% contours for various data combinations.
Note the tightening of the constraints with the addition of BAO
data.

of ACT and SPT with earlier data from WMAP). The ACT
3-year release, which incorporated a new region of sky, gave
dns/d ln k = �0.003 ± 0.013 (Sievers et al. 2013) when com-
bined with WMAP 7 year data. With the wide field SPT data at
150 GHz, a negative running was seen at just over the 2� level,
dns/d ln k = �0.024 ± 0.011 (Hou et al. 2012).

The picture from previous CMB experiments is therefore
mixed. The latest WMAP data show a 1� trend for a running,
but when combined with the S12 SPT data, this trend is ampli-
fied to give a potentially interesting result. The latest ACT data
go in the other direction, giving no support for a running spectral
index when combined with WMAP36.

The results from Planck data are as follows (see Figs. 21 and
23):

dns/d ln k = �0.013 ± 0.009 (68%; Planck+WP); (62a)
dns/d ln k = �0.015 ± 0.009 (68%; Planck+WP+highL); (62b)
dns/d ln k = �0.011 ± 0.008 (68%; Planck+lensing

+WP+highL). (62c)

The consistency between (62a) and (62b) shows that these re-
sults are insensitive to modelling of unresolved foregrounds. The
preferred solutions have a small negative running, but not at

36The di↵erences between the Planck results reported here and the
WMAP-7+SPT results (Hou et al. 2012) are discussed in Appendix B.
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6.3.1. Constraints on the total mass of active neutrinos

The detection of solar and atmospheric neutrino oscillations
proves that neutrinos are massive, with at least two species being
non-relativistic today. The measurement of the absolute neutrino
mass scale is a challenge for both experimental particle physics
and observational cosmology. The combination of CMB, large-
scale structure and distance measurements already excludes a
large range of masses compared to beta-decay experiments.
Current limits on the total neutrino mass

P
m⌫ (summed over the

three neutrino families) from cosmology are rather model depen-
dent and vary strongly with the data combination adopted. The
tightest constraints for flat models with three families of neutri-
nos are typically around 0.3 eV (95% CL; e.g., de Putter et al.
2012). Since

P
m⌫ must be greater than approximately 0.06 eV

in the normal hierarchy scenario and 0.1 eV in the degener-
ate hierarchy (Gonzalez-Garcia et al. 2012), the allowed neu-
trino mass window is already quite tight and could be closed
further by current or forthcoming observations (Jimenez et al.
2010; Lesgourgues et al. 2013).

Cosmological models, with and without neutrino mass, have
di↵erent primary CMB power spectra. For observationally-
relevant masses, neutrinos are still relativistic at recombina-
tion and the unique e↵ects of masses in the primary power
spectra are small. The main e↵ect is around the first acoustic
peak and is due to the early integrated Sachs-Wolfe (ISW) ef-
fect; neutrino masses have an impact here even for a fixed red-
shift of matter–radiation equality (Lesgourgues & Pastor 2012;
Hall & Challinor 2012; Hou et al. 2012; Lesgourgues et al.
2013). To date, this e↵ect has been the dominant one in con-
straining the neutrino mass from CMB data, as demonstrated in
Hou et al. (2012). As we shall see here, the Planck data move
us into a new regime where the dominant e↵ect is from gravi-
tational lensing. Increasing neutrino mass, while adjusting other
parameters to remain in a high-probability region of parameter
space, increases the expansion rate at z >⇠ 1 and so suppresses
clustering on scales smaller than the horizon size at the non-
relativistic transition (Kaplinghat et al. 2003; Lesgourgues et al.
2006). The net e↵ect for lensing is a suppression of the CMB
lensing potential and, for orientation, by ` = 1000 the suppres-
sion is around 10% in power for

P
m⌫ = 0.66 eV.

Here we report constraints assuming three species of degen-
erate massive neutrinos. At the level of sensitivity of Planck, the
e↵ect of mass splittings is negligible, and the degenerate model
can be assumed without loss of generality.

Combining the Planck+WP+highL data, we obtain an upper
limit on the summed neutrino mass ofX

m⌫ < 0.66 eV (95%; Planck+WP+highL). (69)

The posterior distribution is shown by the solid black curve in
Fig. 26. To demonstrate that the dominant e↵ect leading to the
constraint is gravitational lensing, we remove the lensing infor-
mation by marginalizing over AL

39. We see that the posterior
broadens considerably (see the red curve in Fig. 26) to give
X

m⌫ < 1.08 eV [95%; Planck+WP+highL (AL)], (70)

taking us back close to the value of 1.3 eV (for AL = 1) from
the nine-year WMAP data (Hinshaw et al. 2012), corresponding

39The power spectrum of the temperature anisotropies is predomi-
nantly sensitive to changes in only one mode of the lensing potential
power spectrum (Smith et al. 2006). It follows that marginalizing over
the single parameter AL is nearly equivalent to marginalizing over the
full amplitude and shape information in the lensing power spectrum as
regards constraints from the temperature power spectrum.
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Fig. 26. Marginalized posterior distributions for
P

m⌫
in flat models from CMB data. We show results for
Planck+WP+highL without (solid black) and with (red)
marginalization over AL, showing how the posterior is signifi-
cantly broadened by removing the lensing information from the
temperature anisotropy power spectrum. The e↵ect of replacing
the low-` temperature and (WMAP) polarization data with a
⌧ prior is shown in solid blue (Planck�lowL+highL+⌧prior)
and of further removing the high-` data in dot-dashed blue
(Planck�lowL+⌧prior). We also show the result of including
the lensing likelihood with Planck+WP+highL (dashed black)
and Planck�lowL+highL+⌧prior (dashed blue).

to the limit above which neutrinos become non-relativistic be-
fore recombination. (The resolution of WMAP gives very little
sensitivity to lensing e↵ects.)

As discussed in Sect. 5.1, the Planck+WP+highL data com-
bination has a preference for high AL. Since massive neutrinos
suppress the lensing power (like a low AL) there is a concern
that the same tensions which drive AL high may give artificially
tight constraints on

P
m⌫. We can investigate this issue by re-

placing the low-` data with a prior on the optical depth (as in
Sect. 5.1) and removing the high-` data. Posterior distributions
with the ⌧ prior, and additionally without the high-` data, are
shown in Fig. 26 by the solid blue and dot-dashed blue curves,
respectively. The constraint on

P
m⌫ does not degrade much by

replacing the low-` data with the ⌧ prior only, but the degra-
dation is more severe when the high-` data are also removed:P

m⌫ < 1.31 eV (95% CL).
Including the lensing likelihood (see Sect. 5.1) has a signif-

icant, but surprising, e↵ect on our results. Adding the lensing
likelihood to the Planck+WP+highL data combination weakens
the limit on

P
m⌫,

X
m⌫ < 0.85 eV (95%; Planck+lensing+WP+highL), (71)

as shown by the dashed black curve in Fig. 26. This is representa-
tive of a general trend that the Planck lensing likelihood favours
larger

P
m⌫ than the temperature power spectrum. Indeed, if we

use the data combination Planck�lowL+highL+⌧prior, which
gives a weaker constraint from the temperature power spectrum,
adding lensing gives a best-fit away from zero (

P
m⌫ = 0.46 eV;

dashed blue curve in Fig. 26). However, the total �2 at the best-fit
is very close to that for the best-fitting base model (which, recall,
has one massive neutrino of mass 0.06 eV), with the improved fit
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Fig. 31. Constraints in the !b–Ne↵ plane from the CMB and
abundance measurements. The blue stripes shows the 68%
confidence regions from measurements of primordial element
abundances assuming standard BBN: 4He bounds compiled
by Aver et al. (2012); and deuterium bounds complied by
Iocco et al. (2009) or measured by Pettini & Cooke (2012). We
show for comparison the 68% and 95% contours inferred from
Planck+WP+highL, when Ne↵ is left as a free parameter in the
CMB analysis (and YP is fixed as a function of !b and Ne↵ ac-
cording to BBN predictions). These constraints assume no sig-
nificant lepton asymmetry.

We can derive constraints on Ne↵ from primordial element
abundances and CMB data together by combining their likeli-
hoods. The CMB-only confidence interval for Ne↵ is

Ne↵ = 3.36 ± 0.34 (68%; Planck+WP+highL). (88)

When combined with the data reported respectively by
Aver et al. (2012), Iocco et al. (2009), and Pettini & Cooke
(2012), the 68% confidence interval becomes

Ne↵ =

8>>>>><
>>>>>:

3.41 ± 0.30, YP (Aver et al.),
3.43 ± 0.34, yDP (Iocco et al.),
3.02 ± 0.27, yDP (Pettini and Cooke).

(89)

Since there is no significant tension between CMB and primor-
dial element results, all these bounds are in agreement with the
CMB-only analysis. The small error bar derived from combining
the CMB with the Pettini & Cooke (2012) data point shows that
further deuterium observations combined with Planck data have
the potential to pin down the value of Ne↵ to high precision.

6.4.5. Simultaneous constraints on both Ne↵ and YP

In this subsection, we discuss simultaneous constraints on both
Ne↵ and YP by adding them to the six parameters of the base
⇤CDM model. Both Ne↵ and YP have an impact on the damp-
ing tail of the CMB power spectrum by altering the ratio k�1

D /r⇤,
where k�1

D is the photon di↵usion length at last scattering and
r⇤ is the sound horizon there. There is thus an approximate de-
generacy between these two parameters along which the ratio is
nearly constant. The extent of the degeneracy is limited by the
characteristic phase shift of the acoustic oscillations that arises
due to the free streaming of the neutrinos (Bashinsky & Seljak
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Fig. 32. 2D joint posterior distribution for Ne↵ and YP with both
parameters varying freely, determined from Planck+WP+highL
data. Samples are colour-coded by the value of the angular ra-
tio ✓D/✓⇤, which is constant along the degeneracy direction. The
Ne↵–YP relation from BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with YP > 0.294 is highlighted in grey, delineating the re-
gion that exceeds the 2� upper limit of the recent measurement
of initial Solar helium abundance (Serenelli & Basu 2010), and
the blue horizontal region is the 68% confidence region from
the Aver et al. (2012) compilation of 4He measurements.

2004). As discussed by Hou et al. (2011), the early ISW e↵ect
also partly breaks the degeneracy, but this is less important than
the e↵ect of the phase shifts.

The joint posterior distribution for Ne↵ and YP from
the Planck+WP+highL likelihood is shown in Fig. 32, with
each MCMC sample colour-coded by the value of the
observationally-relevant angular ratio ✓D/✓⇤ / (kDr⇤)�1. The
main constraint on Ne↵ and YP comes from the precise measure-
ment of this ratio by the CMB, leaving the degeneracy along the
constant ✓D/✓⇤ direction. The relation between Ne↵ and YP from
BBN theory is shown in the figure by the dashed curve45. The
standard BBN prediction with Ne↵ = 3.046 is contained within
the 68% confidence region. The grey region is for YP > 0.294
and is the 2� conservative upper bound on the primordial he-
lium abundance from Serenelli & Basu (2010). Most of the sam-
ples are consistent with this bound. The inferred estimates of Ne↵
and YP from the Planck+WP+highL data are

Ne↵ = 3.33+0.59
�0.83 (68%; Planck+WP+highL), (90a)

YP = 0.254+0.041
�0.033 (68%; Planck+WP+highL). (90b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓D/✓⇤. Instead, it is constrained, at least in part,
by the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As discussed in Hou et al. (2012), this ef-
fect explains the observed correlation between Ne↵ and ✓⇤, which
is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵ model
is also plotted in the figure showing that the Ne↵–YP degeneracy
combines with the phase shifts to generate a larger dispersion in
✓⇤ in such models.

45For constant Ne↵ , the variation due to the uncertainty in the baryon
density is too small to be visible, given the thickness of the curve.
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Fig. 28. Left: 2D joint posterior distribution between Ne↵ and
P

m⌫ (the summed mass of the three active neutrinos) in models with
extra massless neutrino-like species. Right: Samples in the Ne↵–me↵

⌫, sterile plane, colour-coded by ⌦ch2, in models with one massive
sterile neutrino family, with e↵ective mass me↵

⌫, sterile, and the three active neutrinos as in the base ⇤CDM model. The physical mass
of the sterile neutrino in the thermal scenario, mthermal

sterile , is constant along the grey dashed lines, with the indicated mass in eV. The
physical mass in the Dodelson-Widrow scenario, mDW

sterile, is constant along the dotted lines (with the value indicated on the adjacent
dashed lines). Note the pile up of points at low values of Ne↵ , caused because the sterile neutrino component behaves like cold dark
matter there, introducing a strong degeneracy between the two components, as described in the text.

Here, recall that T⌫ = (4/11)1/3T� is the active neutrino temper-
ature in the instantaneous-decoupling limit and that the e↵ective
number is defined via the energy density, �Ne↵ = (Ts/T⌫)4. In
the Dodelson-Widrow case the relation is given by

me↵
⌫, sterile = �smDW

sterile , (81)

with �Ne↵ = �s. For a thermalized sterile neutrino with temper-
ature T⌫ (i.e., the temperature the active neutrinos would have if
there were no heating at electron-positron annihilation), corre-
sponding to �Ne↵ = 1, the three masses are equal to each other.

Assuming flat priors on Ne↵ and me↵
⌫, sterile with me↵

⌫, sterile <
3 eV, we find the results shown in Fig. 28. The physical mass,
mthermal

sterile in the thermal scenario is constant along the dashed lines
in the figure and takes the indicated value in eV. The physical
mass, mDW

sterile, in the Dodelson-Widrow scenario is constant on
the dotted lines. For low Ne↵ the physical mass of the neutrinos
becomes very large, so that they become non-relativistic well be-
fore recombination. In the limit in which the neutrinos become
non-relativistic well before any relevant scales enter the horizon,
they will behave exactly like cold dark matter, and hence are
completely unconstrained within the overall total constraint on
the dark matter density. For intermediate cases where the neutri-
nos become non-relativistic well before recombination they be-
have like warm dark matter. The approach to the massive limit
gives the tail of allowed models with large me↵

⌫, sterile and low Ne↵

shown in Fig. 28, with increasing me↵
⌫, sterile being compensated

by decreased⌦ch2 to maintain the total level required to give the
correct shape to the CMB power spectrum.

For low me↵
⌫, sterile and �Ne↵ away from zero the physical neu-

trino mass is very light, and the constraint becomes similar to
the massless case. The di↵erent limits are continuously con-
nected, and given the complicated shape seen in Fig. 28 it is
clearly not appropriate to quote fully marginalized parameter
constraints that would depend strongly on the assumed upper
limit on me↵

⌫, sterile. Instead we restrict attention to the case where

the physical mass is mthermal
sterile < 10 eV, which roughly defines the

region where (for the CMB) the particles are distinct from cold
or warm dark matter. Using the Planck+WP+highL (abbreviated
to CMB below) data combination, this gives the marginalized
one-parameter constraints

Ne↵ < 3.91
me↵
⌫, sterile < 0.59 eV

9>>=
>>; (95%; CMB for mthermal

sterile < 10 eV) . (82)

Combining further with BAO these tighten to

Ne↵ < 3.80
me↵
⌫, sterile < 0.42 eV

9>>=
>>; (95%; CMB+BAO for mthermal

sterile < 10 eV) .

(83)

These bounds are only marginally compatible with a fully ther-
malized sterile neutrino (Ne↵ ⇡ 4) with sub-eV mass mthermal

sterile ⇡
me↵
⌫, sterile < 0.5 eV that could explain the oscillation anomalies.

The above contraints are also appropriate for the Dodelson-
Widrow scenario, but for a physical mass cut of mDW

sterile < 20 eV.
The thermal and Dodelson-Widrow scenarios considered

here are representative of a large number of possible models that
have recently been investigated in the literature (Hamann et al.
2011; Diamanti et al. 2012; Archidiacono et al. 2012;
Hannestad et al. 2012).

6.4. Big bang nucleosynthesis

Observations of light elements abundances created during big
bang nucleosynthesis (BBN) provided one of the earliest preci-
sion tests of cosmology and were critical in establishing the ex-
istence of a hot big bang. Up-to-date accounts of nucleosynthe-
sis are given by Iocco et al. (2009) and Steigman (2012). In the
standard BBN model, the abundance of light elements (parame-
terized by YBBN

P ⌘ 4nHe/nb for helium-4 and yBBN
DP ⌘ 105nD/nH

46


