Sterile neutrinos and implications for dark matter

<u>Michele Lucente</u>

GDR Neutrino, June 17th 2014

Based on:

A.Abada and M.L., *arXiv*:1401.1507 [hep-ph] (accepted on Nucl.Phys.B.) A.Abada, G.Arcadi and M.L., *in preparation*

The Inverse Seesaw (ISS) idea R. N. Mohapatra and J. W. F. Valle, Phys. Rev. D 34 (1986) 1642 M. C. Gonzalez-Garcia and J. W. F. Valle, Phys. Lett. B 216 (1989) 360 F. Deppisch and J. W. F. Valle, hep-ph/0406040 Enlarge the SM field content with: $\begin{cases} - \text{ right handed neutrino fields, } \boldsymbol{\nu}_{R}; \\ - \text{ fermionic sterile singlets, s.} \end{cases}$ In the basis $n_{L} \equiv (\boldsymbol{\nu}_{L}, \boldsymbol{\nu}_{R}^{C}, s)^{T}$ the ISS neutrino mass terms read: $\mathcal{M} = \left(\begin{array}{ccc} 0 & a & 0 \\ d & \mathbf{m} & n \\ 0 & n & \mathbf{u} \end{array}\right)$ $-\mathcal{L}_{m_{\nu}} = \frac{1}{2} n_L^T \ C \ \mathcal{M} \ n_L + h.c.,$

t'Hooft naturalness criterium: terms violating L are "small", i.e. $|m|, |\mu| << |n|, |d|$

Lightest mass eigenvalue in the limit $|\mu| << |d| << |n|: \quad m_{\nu} \approx \mu \left(\frac{d}{n}\right)^2$

One could link the smallness of μ with the one of m_{ν} (mechanism viable with large Yukawas), thus interesting phenomenology

Presence of sterile states (ν anomalies or DM candidates)

<u>Methodology</u>

 $\boldsymbol{\nu}_R$ and s, are gauge singlets

No interactions with gauge bosons No contribution to anomalies

What is the minimal number of ν_R and s in order to accommodate neutrino data while complying with all experimental requirements?

Define:

- $\# \nu_R \equiv$ number of ν_R fields ($\neq 0$);
- #s \equiv number of s fields (\neq 0);

Let us call each model realisation ($\#\nu_R,\#s$) ISS

We studied realisations obtained with $\#\nu_R$, #s = 1,2,3

Perturbative approach

$$M = \underbrace{\begin{pmatrix} 0 & d & 0 \\ d & 0 & n \\ 0 & n & 0 \end{pmatrix}}_{M_0} + \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & \mu \end{pmatrix}}_{\Delta M},$$

or

$$M^{\dagger}M = \underbrace{M_0^{\dagger}M_0}_{M_0^2} + \underbrace{\Delta M^{\dagger}M_0 + M_0^{\dagger}\Delta M}_{M_I^2} + \underbrace{\Delta M^{\dagger}\Delta M}_{M_{II}^2}$$

Light states:
$$\lim_{\Delta m \to 0} m_i = 0, \Rightarrow m_i \propto \mu, m$$
Heavy states:
$$\lim_{\Delta m \to 0} m_i \neq 0, \Rightarrow m_i \propto n, d$$

Mass spectra and mixing

	Analytical diagonalization				Numerica	on	
	$\#\nu_R$	# s	$ \begin{array}{c} \#m_i^2 = 0 \\ \text{when} \\ \Delta M = 0 \end{array} $	$ \# \left(\begin{array}{c} m_i^2 = 0 \\ \downarrow \Delta M \neq 0 \\ m_i^2 \neq 0 \end{array} \right) $	$\begin{array}{c} \# \text{ of} \\ \text{different} \\ \text{light } m_i \end{array}$		PMNS matrix
2	1	1	3	1	2	×	×
3	1	2	4	2	3	✓ (s)	×
3	2	1	2	1	2	×	×
4	1	3	5	3	4	✓ (a)	×
4	2	2	3	2	3	✓ (s)	\checkmark
4	3	1	1	1	1	×	×
5	2	3	4	3	4	✓ (a)	\checkmark
5	3	2	2	2	2	×	×
6	3	3	3	3	3	✓ (s)	\checkmark

ISS viable only if $\#s \ge \#\mu_R$

(2,2) ISS: minimal realisation to account for the 3 flavour mixing M. B. Gavela, T. Hambye, D. Hernandez and P. Hernandez, arXiv:0906.1461 [hep-ph]

vi. D. Gavela, T. Hambye, D. Hemandez and F. Hemandez, arxiv.0900.1401 [hep-ph]

(2,3) ISS: minimal realisation to account for the (3+1) mixing

ISS mass scales

Minimal ISS spectra

(2,3) ISS: light sterile state

Sterile v as Dark Matter

$$\begin{split} \Omega_B h^2 &= 0.02205 \pm 0.00028 \\ \Omega_{DM} h^2 &= 0.1199 \pm 0.0027 \qquad h = 0.673 \pm 0.012 \ \mathrm{km \ s^{-1} \ Mpc^{-1}} \\ \Omega_\Lambda &= 0.685^{+0.018}_{-0.016} \\ \mathrm{P.A. \ R. \ Ade \ et \ al. \ [Planck \ Collaboration], \ arXiv:1303.5076 \ [astro-ph.CO]} \end{split}$$

Sterile neutrinos could be viable DM candidates

Constraints: abundance

DW: as long as an active-sterile mixing is present, a population of sterile v is produced by oscillations in the primordial plasma

S. Dodelson and L. M. Widrow, hep-ph/9303287

Constraints: phase-space density

For fermionic DM Pauli exclusion principle impose a maximum on its distribution function (degenerate Fermi gas). Imposing that inferred phase-space density do not excess this bound it is possible to extract a lower bound on the DM mass

S. Tremaine and J. E. Gunn, Phys. Rev. Lett. 42 (1979) 407

Constraints: stability and indirect detection (ID)

A massive V can radiatively decay producing monochromatic γ

P. B. Pal and L. Wolfenstein, Phys. Rev. D 25 (1982) 766

Due to the lack of signature (e.g. CHANDRA, XMN)

<u>Constraints: Lyman-α</u>

The absorption in the spectra of QSOs by the H (Ly- α : Is \rightarrow 2p) in IGM can trace the matter distribution at scales (1-80 h⁻¹ Mpc)

Narayanan, Vijay K.; Spergel, David N.; Davé, Romeel; Ma, Chung-Pei, Astrophys. J. 543, 103 (2000)

These constraints are highly-model dependent, we applied the limits for DW produced sterile ν

A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, 0812.0010 [astro-ph]

WDM summary

Thermalization of the heavy sterile states

• <u>Unbroken EW phase</u>: efficient interactions via Higgs scattering

$$Y_{\alpha\beta} \,\overline{l_L}^{\alpha} \,\widetilde{\Phi} \,\nu_R^{\beta} = Y_{\alpha\beta} \,\overline{l_L}^{\alpha} \,\widetilde{\Phi} \,U_{\beta i} \nu_i$$
$$Y_{\alpha i}^{eff} \equiv Y_{\alpha\beta} U_{\beta i}$$

Thermalization if $Y^{eff} > 10^{-7}$

E. K. Akhmedov, V. A. Rubakov and A. Y. Smirnov hep-ph/9803255

Broken EW phase: DW production

T. Asaka, M. Shaposhnikov and A. Kusenko, hep-ph/0602150

Entropy injection

If the heavy states thermalize they dominate the energy density of the Universe from \overline{T} until their decay at $(T_{r,M}, T_{r,m})$

$$\overline{T} \approx 6.4 \,\mathrm{MeV}\left(\frac{m_2}{1 \,\mathrm{GeV}}\right) \left(\frac{\sum_I m_I Y_I}{m_2 Y_2}\right)$$

If they decay after the WDM production (\approx 150 MeV) its abundance is reduced and its momentum distribution is redshifted

Examples with different Y_{eff} values

 $Y_{\alpha i}^{eff} \equiv Y_{\alpha\beta} U_{\beta i}$ 17

Entropy dilution

Consider the pseudo-Dirac couples to be degenerate with masses M > m

$$S_{M} = \left[1 + 2.95 \left(\frac{2\pi^{2}}{45}g_{*}(T_{r,M})\right)^{1/3} \left(\frac{\sum_{\alpha} m_{\alpha} Y_{\alpha}}{M Y_{M}}\right)^{1/3} \frac{(M Y_{M})^{4/3}}{(\Gamma M_{\rm PL})^{2/3}}\right]^{3/4}$$

$$S_{\rm m} = \left[1 + 2.95 \left(\frac{2\pi^{2}}{45}g_{*}(T_{r,m})\right)^{1/3} 2^{1/3} \frac{\left(\frac{m Y}{S_{\rm M}}\right)^{4/3}}{(\Gamma M_{\rm PL})^{2/3}}\right]^{3/4} \qquad S = S_{m} \times S_{M}$$

Examples of S with (m, θ_m) chosen to fix T_{r,m}

WDM summary with entropy injection

The entropy injection enlarges the allowed parameter space but it is not effective to make Ω_s =1viable

Is $\Omega_s = 1$ viable?

Cosmological constraints on the (2,3) ISS parameter space makes impossible to produce the whole DM abundance via DW mechanism

max $f_{WDM} \approx 0.48$

Are there other production mechanisms that can account for the missing DM abundance?

Dark Matter Production from heavy neutrino decays

Freeze-in: decay of a thermalized species into one which is out of equilibrium

L. J. Hall, K. Jedamzik, J. March-Russell and S. M. West, arXiv:0911.1120 [hep-ph]

Effective if $Y_{eff} > 10^{-7}$ and $Y_{eff} sin\theta < 10^{-7}$ and $m_h < M_l < 160$ GeV

$$\Omega_{\rm DM}h^2 \simeq \frac{1.07 \times 10^{27}}{g_*^{3/2}} \sum_I g_I \frac{m_{\rm DM}\Gamma\left(N_I \to \rm DM + \rm anything\right)}{m_I^2}$$
$$\Gamma\left(N_I \to hDM\right) = \frac{m_I}{16\pi} Y_{\rm eff,I}^2 \sin^2\theta \left(1 - \frac{m_h^2}{m_I^2}\right)$$
$$\approx 2.16 \times 10^{-1} \left(\frac{\sin\theta}{10^{-6}}\right)^2 \left(\frac{m_{\rm DM}}{1 \text{ keV}}\right) \sum_I g_I \left(\frac{Y_{\rm eff,I}}{0.1}\right)^2 \left(\frac{m_I}{1 \text{ TeV}}\right)^{-1} \left(1 - \frac{m_h^2}{m_I^2}\right) \chi\left(m_I\right)$$

 $\Omega h^2 \simeq 0.12$ compatible with ID bounds

 Ωh^2

The spectrum of the produced DM is "colder" than the DW one, evading the Ly- α bounds 21

Examples for different neutrino masses

(assuming for simplicity same masses and Y_{eff} for the 4 heavy states) Y_{eff}

3.5 keV line: E. Bulbul, M. Markevitch, A. Foster, R. K. Smith, M. Loewenstein and S. W. Randall, arXiv:1402.2301 [astro-ph.CO] A. Boyarsky, O. Ruchayskiy, D. lakubovskyi and J. Franse, arXiv:1402.4119 [astro-ph.CO]

Conclusions

The Inverse Seesaw is a viable mechanism to generate tiny ν masses with sizable Yukawas and low seesaw scale

In a generic realisation (#s - $\#\nu_R$) light sterile states are present

The (2,3) ISS can provide an explanation for ν anomalies or a viable DM candidate

Due to the large Yukawas heavy states can thermalise in the early Universe, relaxing cosmological bounds or producing the correct DM abundance

The model can generate pure CDM as well as C+WDM (max $f_{WDM} \approx 0.4$)

Backup

Mixing temperature dependance

The leptonic mixing matrix is temperature-dependent

 $d_{\alpha\beta} = \frac{v(T)}{\sqrt{2}} Y^*_{\alpha\beta}$

$$\mathcal{M} = \left(\begin{array}{ccc} 0 & d & 0 \\ d & m & n \\ 0 & n & \mu \end{array}\right)$$

In the limit v = 0 neutrinos are massless and do not mix

M. D'Onofrio, K. Rummukainen and A. Tranberg arXiv:1404.3565 [hep-ph]

Sterile *v* in CMB

