3-Antenna Observation and Raw Data Analysis

Jixia Li NAOC Beijing

3-Antenna Observation in 2013

- Location: MingAnTu Observatory (<u>N42.221589 E115.255502</u>)
- Frequency: 685~810MHz
- Integration: 0.5 seconds
- Baseline length A1 \rightarrow A2 ~ 28.9m, A1 \rightarrow A3 ~ 42.9m
- Two polarizations each antenna(Horizon: ch1,3,5; Vertical: ch2,4,6.)
- Source: Sun, Cygnus A, Cassiopeia A.

Data preview

- Sun, Sept. 17th, 2013
- Channel 2 is a useless channel because, by mistake, it actually outputs channel 1's data.

Amplitude of auto-correlation (Ch11, 33, 55; Horizontal)

Note: channel 2 is a wrong channel, which by mistake, is actually channel 1's data.

Amplitude of auto-correlation (Ch22, 44, 66; Vertical)

Amplitude for channel 66 800 3.6 3.2 780 2.8 Frequency[Mhz] 740 2.4 2.0 1.6 1.2 720 0.8 700 0.4 0.0 500 1000 2000 time[s] 0 1500 2500 3000 3500

Amplitude of cross-correlation (Ch13, 15, 35; Horizontal)

7

Amplitude of cross-correlation (Ch46; Vertical)

Amplitude of cross-correlation (Ch12, 14, 16)

Note: channel 2 is a wrong channel, which by mistake, is actually channel 1's data.

Amplitude of cross-correlation (Ch34, 36, 45, 56)

Amplitude of auto-correlation (All channels; Frequency integrated)

Note: channel 2 is a wrong channel, which by mistake, is actually channel 1's data.

Real part of cross-correlation (ch13, 15, 35, 46)

real part for channel 35

Real part of cross-correlation (Ch13, 15, 35; Frequency integrated)

Real part of cross-correlation (Ch24, 26, 46; Frequency integrated)

Note: channel 2 is a wrong channel, which by mistake, is actually channel 1's data.

Phase of cross-correlation (Ch13, 15, 35, 46)

Band pass (All channels)

Visibility data simulation

- visibility = $amplitude \cdot exp(i \cdot phase)$
- A function of time and frequency.

Amplitude part

Related to the source flux, system gain, and beam pattern.

- Source flux F_{source} input as known constant.
- System gain ($G_{amp} \cdot bandpass$)
- beam pattern(Gaussian profile)

•
$$\exp\left(-\frac{[\alpha_s(t) - \alpha_A]^2}{2\pi\sigma^2}\right)$$
.
• $\sigma \sim \frac{\lambda}{D} = \frac{c}{\nu D}$, angular resolution.

• beampattern =
$$\exp\left(-\frac{\nu^2 D^2 [\alpha_s(t) - \alpha_A]^2}{2\pi c^2}\right)$$

= $\exp(-a^2 \nu^2 [\alpha_s(t) - \alpha_A]^2)$

Amplitude part

$$\begin{aligned} & - exp\left(-\frac{\nu^2 D^2 [\alpha_s(t) - \alpha_A]^2}{2\pi c^2}\right) \\ & = \exp(-a^2 \nu^2 [\alpha_s(t) - \alpha_A]^2) \end{aligned}$$

- Antenna directions not accurate:
 - beampattern =

$$\sqrt{\exp(-a_1^2 \nu^2 [\alpha_s(t) - \alpha_{A1}]^2)} \cdot \exp(-a_2^2 \nu^2 [\alpha_s(t) - \alpha_{A2}]^2)$$

Phase part

- Geometry delay $e^{i\omega\tau}$
 - $-e^{i\cdot 2\pi\nu\cdot\frac{B\cdot n}{c}}$

 $-\mathbf{B}\cdot\mathbf{n} = \mathbf{B}\cdot\cos\theta = \mathbf{B}\cdot(\cos\phi_B\cos\phi_s\cos(\theta_B-\theta_s)+\sin\phi_B\sin\phi_s)$

- ϕ is declination and θ is azimuth, and B is for Baseline length and s is for Source.
- Instrumental delay Φ_i
 - Differences between frequencies not considered yet
- Total phase

- Phase $\Phi = \phi_i + \frac{2\pi\nu B}{c} \cdot (\cos\phi_B \cos\phi_s \cos(\theta_B - \theta_s) + \sin\phi_B \sin\phi_s)$

Visibility data simulation

- visibility
- = $amplitude \cdot exp(i \cdot phase) =$
- $F_{source}(A_{gain}e^{i\phi_i})\sqrt{\exp(-a_1^2\nu^2[\alpha_s(t)-\alpha_{A1}]^2)\exp(-a_2^2\nu^2[\alpha_s(t)-\alpha_{A2}]^2)}}$ $e^{i\frac{2\pi\nu}{c}(\cos\phi_B\cos\phi_s\cos(\theta_B-\theta_s)-\sin\phi_B\sin\phi_s)}$
- ALL of the following images are results of observation:
 - Source: Sun.
 - Time: 15:31, Sept. 17th, 2013.
 - Duration: 4000 seconds.
 - Channel 1 and 5.

Band pass **Bandpass Comparison** 0.30 bandpass11 bandpass15 bandpass55 0.25 0.20 0.15 0.10 0.05 0.00 680 720 700 740 760 780 800

Amplitude

Frequency (MHz)

28

820

Total Power vs Time

Real part vs Time

Comparison of Real Part

Imaginary part vs Time

Comparison of Imaginary Part

Amplitude vs Time

Comparison of Amplitude

Phase vs Time

Comparison of Phase

ADC non-linearity

• ADC:

- 4bit out of 14bit

- Input single frequency
- Measure output
- Should be linear

