



## The Data Science Challenges of Particle Physics



Kyle Cranmer (NYU)

- Experimental Particle Physicist
- Statistics Convener of ATLAS experiment at LHC
- Founder of RooStats framework (used for Higgs discovery)
- Co-lead Open Science Working Group for Moore-Sloan
   Data Science Environment at NYU

## A harbinger for things to come



 $\mathcal{L}_{SM} = \underbrace{\frac{1}{4} \mathbf{W}_{\mu\nu} \cdot \mathbf{W}^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a}_{\text{kinetic energies and self-interactions of the gauge bosons}} \\ + \bar{L} \gamma^{\mu} (i \partial_{\mu} - \frac{1}{2} g \tau \cdot \mathbf{W}_{\mu} - \frac{1}{2} g' Y B_{\mu}) L + \bar{R} \gamma^{\mu} (i \partial_{\mu} - \frac{1}{2} g' Y B_{\mu}) R$ 

$$L\gamma^{\mu}(i\partial_{\mu} - \frac{1}{2}g\tau \cdot \mathbf{W}_{\mu} - \frac{1}{2}gYB_{\mu})L + R\gamma^{\mu}(i\partial_{\mu} - \frac{1}{2}gYB_{\mu})$$
kinetic energies and decreweak interactions of fermions.

+ 
$$\underbrace{\frac{1}{2} \left[ (i\partial_{\mu} - \frac{1}{2}g\tau \cdot \mathbf{W}_{\mu} - \frac{1}{2}g'YB_{\mu})\phi \right]^2 - V(\phi)}_{W^{\pm}, Z, \gamma, \text{and Higgs masses and couplings}}$$

+  $\underline{g''(\bar{q}\gamma^{\mu}T_aq)G^a_{\mu}}$  +  $\underline{(G_1\bar{L}\phi R + G_2\bar{L}\phi_c R + h.c.)}$ 

Large, Distributed Collaborations Big Science

Complicated Sensor Environment Big Data Big Simulation

Scientifically Motivated Data Modeling Big Simulation Big Model



### **Fundamental Particles & Interactions**





Kyle Cranmer (NYU)

Paris-Saclay Center for Data Science June 30, 2014

## The Success of the Standard Model & QFT



#### Non-trivial aspects of the theory have been tested to < 1 ppm

A unique realm for reasonable statistical exploration of a scientific theory



 $a_{\mu}$  (exp) = 11 659 208 (6) × 10<sup>-10</sup> (0.5 ppm)

















## **Overview of Predictions**



$$\begin{split} \mathcal{L}_{SM} = \underbrace{\frac{1}{4} \mathbf{W}_{\mu\nu} \cdot \mathbf{W}^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a}_{\text{kinetic energies and self-interactions of the gauge bosons}} \\ + \underbrace{\bar{L} \gamma^{\mu} (i \partial_{\mu} - \frac{1}{2} g \tau \cdot \mathbf{W}_{\mu} - \frac{1}{2} g' Y B_{\mu}) L + \bar{R} \gamma^{\mu} (i \partial_{\mu} - \frac{1}{2} g' Y B_{\mu}) R}_{\text{kinetic energies and electroweak interactions of fermions}} \\ + \underbrace{\frac{1}{2} \left| (i \partial_{\mu} - \frac{1}{2} g \tau \cdot \mathbf{W}_{\mu} - \frac{1}{2} g' Y B_{\mu}) \phi \right|^2 - V(\phi)}_{W^{\pm}, Z, \gamma, \text{and Higgs masses and couplings}} \end{split}$$

+ 
$$\underline{g''(\bar{q}\gamma^{\mu}T_aq)G^a_{\mu}}$$
 +  $\underline{(G_1\bar{L}\phi R + G_2\bar{L}\phi_c R + h.c.)}$   
fermion masses and compliants to Hiers

1) The language of the Standard Model is Quantum Field Theory

2) Perturbation Theory, \_ Feynman Diagrams, and Factorization are used to construct Monte Carlo \_ simulations of the interactions





3) The interaction of outgoing particles with the detector is simulated.

) Finally, we run algorithms on the simulated data as if they were from real collisions.

### Number of collisions



expected number of scatterings = cross section [cm<sup>2</sup>] x Luminosity [1/cm<sup>2</sup>]



Kyle Cranmer (NYU)

Paris-Saclay Center for Data Science June 30, 2014





Kyle Cranmer (NYU)

#### Paris-Saclay Center for Data Science June 30, 2014

**CENTER FOR** 





Kyle Cranmer (NYU)

#### Paris-Saclay Center for Data Science June 30, 2014

**CENTER FOR** 

#### Top quark pair decaying to bb eµ E<sub>T,miss</sub>





Kyle Cranmer (NYU)

#### Paris-Saclay Center for Data Science June 30, 2014

**CENTER FOR** 



Run Number: 182747, Event Number: 63217197 Date: 2011-05-28 13:06:57 CEST











## How good is the modeling?









## **Use of Machine Learning:**

Particle-Level and Event-Level

## $H \to ZZ \to 4l$



## Putting the Higgs back together again



Don't believe the media:

$$E \neq mc^2$$

What Einstein really said:

$$E^2 = (mc^2)^2 + (|\vec{p}|c)^2$$

Every physics student knows energy and momentum are conserved

$$E_{\text{Higgs}} = E_{\text{before}} = E_{\text{after}} = \sum_{i}^{i} E_{i}$$
$$\vec{p}_{\text{Higgs}} = \vec{p}_{\text{before}} = \vec{p}_{\text{after}} = \sum_{i}^{i} \vec{p}_{i}$$

Thus, we can estimate the mass of the Higgs with

$$m_H = \sqrt{E_{\rm after}^2/c^4} - |\vec{p}_{\rm after}|^2/c^2$$

## An example high-level feature



From the 16 energies and momenta measured in this system, this particular combination gives a very sharp feature.

~sufficient statistic



## The observation in the 4l channel







P. Baldi, P. Sadowski, and D. Whiteson [arXiv:1402.4735] GPU-accelerated Theano and Pylearn2 https://github.com/uci-igb/higgs-susy.

Paris-Saclav Center for Data Science June 30, 2014



# $H \to \gamma \gamma$

## The observation in the 2 photon channel



Kyle Cranmer (NYU)

**CENTER FOR** 

COSMOLOGY AND PARTICLE PHYSICS

#### **Particle Identification**





Kyle Cranmer (NYU)

Paris-Saclay Center for Data Science June 30, 2014

## *Machine Learning in H*→γγ

Sensor Particle Event  $\rightarrow$ Dataset Per-Photon Categorized Resolution **Di-photon Mass** Mass Estimate Fits Regression **EM Cluster** (RAW Energy, Shower Shape Local/Global Photon **Per-Event** Results Coords) Energy Mass Resolution --**≻** Regression Estimate (Cluster **Corrections**) **Primary** Vertex Primary **Mass-Factorized Di-photon MVA** Reconstruction Vertex **Kinematics** Probability Reconstructed MVA Tracks Conversion Reconstruction **Primary Per-Event** Results Vertex **Primary** Selection 5 a. - ≽ **ECal and HCal** Vertex **MVA** Deposits Probability Categorize and Count Selected **MVA** Isolation Sums 🔫 **Primary** Vertex Photon ID **MVA** (Photon/Jet discriminator)

#### \*MVA = BDT implemented in TMVA

(Deep networks being used for particle identification)



## **Reaching out to the ML community**





#### Higgs Boson Machine Learning Challenge

|                   | 2 months to go       |                            |
|-------------------|----------------------|----------------------------|
| lay, May 12, 2014 | \$13,000 • 837 teams | Monday, September 15, 2014 |

| Dashboard                |                                    |               | Competition Details » Get the Data » Make a submission                                                                                             |                |  |
|--------------------------|------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Home<br>Data<br>Make     |                                    | nission       | Evaluation                                                                                                                                         |                |  |
| Evalu<br>Rules<br>Prizes | ription<br>ation<br>s<br>t the Spo | onsors        | The evaluation metric is the approximate median significance (AMS): $AMS = \sqrt{2\left((s+b+b_r)\log\left(1+\frac{s}{b+b_r}\right) - s\right)^2}$ | 5)             |  |
| 1                        | † <b>1</b>                         | Gábor Melis * | <b>3.80573 32</b> Thu, 26 Jun 2014 06                                                                                                              | :14:34 (-0.2h) |  |
| 359                      | <b>↓49</b>                         | JeJe          | 3.25012 4 Sat, 21 Jun 2014 01:1                                                                                                                    | 1:13           |  |
|                          |                                    | simple TMVA   | oosted trees 3.24954                                                                                                                               |                |  |
| 360                      | <b>↓49</b>                         | Xiaohu SUN    | <b>3.24954 3</b> Tue, 03 Jun 2014 13:                                                                                                              | 14:47          |  |
|                          |                                    |               |                                                                                                                                                    |                |  |



# Statistical Modeling for Higgs Discovery

### Visualizing probability models



I will represent PDFs graphically as below (directed acyclic graph)

- eg. a Gaussian  $G(x|\mu,\sigma)$  is parametrized by  $(\mu,\sigma)$
- every node is a real-valued function of the nodes below



#### Clearly related to Graphical Models, but not the focus here.

#### Mixture model

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS

Total distribution is a mixture model with components corresponding to various signal and background interactions



Kyle Cranmer (NYU)

Paris-Saclay Center for Data Science June 30, 2014

### **Incorporating Systematic Effects**



Tabulate effect of individual variations of sources of systematic uncertainty

- $\cdot$  typically one at a time evaluated at nominal and "± 1  $\sigma$ "
- use some form of interpolation to parametrize p<sup>th</sup> variation in terms of nuisance parameter α<sub>p</sub>



Paris-Saclay Center for Data Science June 30, 2014

#### Visualizing the model for one dataset

CENTER FOR COSMOLOGY AND PARTICLE PHYSICS



### Visualizing the model for one dataset



After parametrizing each component of the mixture model, the pdf for a single



10<sup>6</sup>

250

### **Digital Publishing Statistical Models**



| ROOT Object Browser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| <u>File View Options</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | File     Edit     View     Options     Inspect     Classes     Help       A RooPlot of "x" |
| Image: wspace.root       Image: wspace.root         All Folders       Contents of "/ROOT Files/wspace.root"         Image: wspace root       Image: wspace.root         Im | 60<br>40                                                                                   |
| RooFit's Workspace now provides the<br>ability to save in a file the full likelihood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20<br>                                                                                     |
| model, any priors you might want, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                            |
| the data necessary to reproduce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |
| likelihood function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ection of profile likelihoo                                                                |
| Gives flexibility in later statistical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |
| analysis (frequentist vs. bayesian) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                            |
| handles for detailed meta-analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1<br>m                           |

# **Collaborative Statistical Modeling**





# **Collaborative Statistical Modeling**







## REPRODUCIBILITY PROBLEM

Not possible for others to reproduce results from paper.



## PUBLISHING LIKELIHOODS





## PUBLISHING LIKELIHOODS

Reproducing derived results from original paper!



## CODE AS A RESEARCH PRODUCT

#### $GitHub \rightarrow Zenodo \rightarrow INSPIRE$

| Settings          | O DitHub Repositories                                                                                                                   | O GitHub Repositories                                                                                                                            |                                                                                               |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| ≜ Profile         |                                                                                                                                         |                                                                                                                                                  | ANIA CONTRACT                                                                                 |
| % Linked accounts | G                                                                                                                                       | Get started                                                                                                                                      | 1 Aug                                                                                         |
| C Applications    | 1 Flip the switch                                                                                                                       | 2 Create a release                                                                                                                               | 3 Get the badge                                                                               |
| 0.00%             | Pip the switch                                                                                                                          | Create a release                                                                                                                                 | 3 Get the badge                                                                               |
|                   | Select the repository you want<br>to preserve, and toggle the<br>switch below to turn on<br>automatic preservation of your<br>software. | Go to GIBNUb and create a<br>release. 2019000 will<br>automatically download a zip-<br>ball of all new releases and<br>register a DOIs for them. | After your first release, you can<br>get a DOI bedge to include in<br>your Growb README file. |
|                   |                                                                                                                                         | More question? Check out the FAQ.                                                                                                                |                                                                                               |
|                   |                                                                                                                                         | Gittudi integration in Janodo, Over the com<br>ow by tweating us @armodo,.org/Fytochaw                                                           |                                                                                               |
|                   | cranmet/flask-d3-hello-wor<br>Proof of concept                                                                                          | м                                                                                                                                                |                                                                                               |
|                   | cranmet/KEYS-historical                                                                                                                 |                                                                                                                                                  |                                                                                               |
|                   | Ancient kernel estimation code for PAW                                                                                                  | http://inapirehep.net/record/527282                                                                                                              |                                                                                               |

#### nodo Allights of the Browney United Delawards Ballmant Bant month and little Ο scouple software associated arXiv:1401.0080 mac Aple ; Koelse, Sven Terrated by 1 all states at Mandatay 8 maders or Chell.Net resolution contains. The sufficience implementation for our same & el Approach la Higgs Coupling Measurements (Conver, Kniss, er na, Patri, activi 401 0080 Deputit, Il contains tante la apply the and methods to new models and contains a Makefie to recreate the in the paper. Publication data no for the recoupling stage where the effective likelihood and 07 March 2014 iate parametrization are readily provided is at decoupledberne. DOI: Experience (Col) Constructions of the second se Owte 5.44 autoritities of Mar 2014 285 516 A Download and datasets: Supplement to



#### Mathematica fig**share** → INSPIRE $\rightarrow$

#### Supplementary Material for "A Novel Approach to Higgs Coupling Measurements"

(2013) figshare.



| highly discussed by scholars | 97 - 100 percentile () of datasets published in 2013 () | 3 figshare shares 🖸    |
|------------------------------|---------------------------------------------------------|------------------------|
| highly viewed by scholars    | 97 - 100 percentile () of datasets published in 2013 () | 202 figshare views 🖂   |
| highly viewed by scholars    | 97 - 100 percentile () of datasets published in 2013 () | 9 figshare downloads 🖂 |
| highly discussed by public   | 97 - 100 percentile () of datasets published in 2013 🍟  | 10 tweets              |

## RECASTING



# THEORY

## SERVICE





## Review of Challenges and Possible Research Topics

#### Challenges & possible research areas



The complexity of our statistical models is growing exponentially, starting to need new algorithms to deal with them or principles for simplifying them

- · graphical models, automatic differentiation, distributed processing, ...
- better optimization & sampling algorithms
- optimal statistical procedures subject to computational constraints (link)

Interpolation of distributions based on simulated samples with different parameter settings a weak point

- experimental design, response surface interpolation, Gaussian processes, ...
- complication: samples often not statistically independent

#### Machine learning + computer simulations

- Most analyses either use computer simulations of the detector or ad hoc parametrized models.
- · Little use of machine learning to learn the expensive computer simulation

#### Challenges & possible research areas



Most discussion with statisticians has focused on hypothesis testing and confidence intervals for final results. Many interesting problems up-stream

- exception: machine learning for selecting candidate signal events
- barriers: collaborations do not openly share data, requires some semi-formal agreement
- progress: movement towards open access (link to policy)
- Importance sampling for rare events in simulation
  - The simulation of our detectors is very computationally challenging and we use brute force to populate tails in cases where we can do something smarter

Particle physics is a unique arena for data science

- well posed questions in an extreme setting
- lots of data, complicated sensor environment, strong theoretical basis

Congratulations and best wishes to

