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• Statistics Convener of ATLAS experiment at LHC 
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Large, Distributed Collaborations

Complicated Sensor Environment

Scientifically Motivated Data Modeling

A harbinger for things to come
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The Computational Wall: If a model has hundreds of parameters, how can we: 
 
1)  Find the parameter values that match the observations best? 
2)  Determine if we underfit (model too simple) or overfit (model too complex)? 
3)  Compare two models? 

Computer simulations have 
become increasingly complex 
(e.g. weather, earthquake models)   
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The Four Paradigms 

We have added big data to  
computer simulation, experiment 
and theory. 

Not replaced it… 
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3x Exponential Growth 
in Machine Learning 

Computer Power Data Volume 

Model Capacity 
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Fundamental Particles & Interactions
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The Success of the Standard Model & QFT
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Non-trivial  aspects of the theory have been tested to < 1 ppm 
!
A unique realm for reasonable statistical exploration of a scientific theory 
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Overview of Predictions
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The language of the Standard Model is 
Quantum Field Theory1)
Perturbation Theory, 
Feynman Diagrams, 
and Factorization are 
used to construct 
Monte Carlo 
simulations of the 
interactions

2)

The interaction of outgoing particles 
with the detector is simulated.  

3)
e+

e-

mu-

mu+

Finally, we run algorithms on the 
simulated data as if they were from real 
collisions.


4)

Uses of Multivariate Methods

Complex final state of VBF H → WW → llEmiss
T well-suited for multivariate methods

Used 7 variables:
∆ηll, ∆φll, Mll, ∆ηjj, ∆φjj, Mjj, MT

Compared Neural Networks, Genetic Program-
ming, and Support Vector Regression

q

q

W

W

H
W+

W−

ν

l+

l−

ν̄

Ref. Cuts low-mH Cuts NN GP SVR
120 ee 0.87 1.25 1.72 1.66 1.44
120 eµ 2.30 2.97 3.92 3.60 3.33
120 µµ 1.16 1.71 2.28 2.26 2.08
Combined 2.97 3.91 4.98 4.57 4.26
130 eµ 4.94 6.14 7.55 7.22 6.59

Table 1: Expected significance in sigma after 30 fb−1 for two cut analyses and three multivariate analyses for
different Higgs masses and final state topologies.

March 14, 2006

University of Pennsylvania Seminar

Higgs Searches at the LHC:

Challenges, Prospects, and Developments (page 25)

Kyle Cranmer

Brookhaven National Laboratory
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Number of collisions 

80 mb ⋅ 25 fb-1 = 2⋅1015 collisions

14

expected number of scatterings = cross section [cm2] x Luminosity [1/cm2]
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Top quark pair decaying to bb eµ ET,miss
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How good is the modeling?

22
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Use of Machine Learning: 
!

Particle-Level  
and  

Event-Level

25



H ! ZZ ! 4l
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Putting the Higgs back together again

Don’t believe the media:

27

EHiggs = Ebefore = Eafter =
X

i

Ei

~pHiggs = ~pbefore = ~pafter =
X

i

~pi

E 6= mc2

E2 = (mc2)2 + (|~p|c)2
What Einstein really said:

Every physics student knows energy and momentum are conserved

Thus, we can estimate the mass of the Higgs with

mH =
q

E2
after/c

4 � |~pafter|2/c2
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An example high-level feature
From the 16 energies and momenta measured in this system, this 
particular combination gives a very sharp feature. 
~sufficient statistic

28
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Figure 9: Distribution of the four-lepton reconstructed mass in the full mass range for the sum
of the 4e, 2e2µ and 4µ channels. Points with error bars represent the data, shaded histograms
represent the backgrounds, and the unshaded histogram the signal expectation for a mass hy-
pothesis of mH = 126 GeV. Signal and ZZ background are normalized to the SM expectation,
Z + X background to the estimation from data. The expected distributions are presented as
stacked histograms. No events are observed with m4` > 800 GeV.

Table 3: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are given integrated over the full mass measurement range m4` > 100 GeV and for
7 and 8 TeV data combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 77 ± 10 191 ± 25 119 ± 15 387 ± 31
Z + X background 7.4 ± 1.5 11.5 ± 2.9 3.6 ± 1.5 22.6 ± 3.6
All backgrounds 85 ± 11 202 ± 25 123 ± 15 410 ± 31
mH = 500 GeV 5.2 ± 0.6 12.2 ± 1.4 7.1 ± 0.8 24.5 ± 1.7
mH = 800 GeV 0.7 ± 0.1 1.6 ± 0.2 0.9 ± 0.1 3.1 ± 0.2
Observed 89 247 134 470

Table 4: The number of observed candidate events compared to the mean expected background
and signal rates for each final state. Uncertainties include statistical and systematic sources.
The results are integrated over the mass range from 121.5 to 130.5 GeV and for 7 and 8 TeV data
combined.

Channel 4e 2e2µ 4µ 4`
ZZ background 1.1 ± 0.1 3.2 ± 0.2 2.5 ± 0.2 6.8 ± 0.3
Z + X background 0.8 ± 0.2 1.3 ± 0.3 0.4 ± 0.2 2.6 ± 0.4
All backgrounds 1.9 ± 0.2 4.6 ± 0.4 2.9 ± 0.2 9.4 ± 0.5
mH = 125 GeV 3.0 ± 0.4 7.9 ± 1.0 6.4 ± 0.7 17.3 ± 1.3
mH = 126 GeV 3.4 ± 0.5 9.0 ± 1.1 7.2 ± 0.8 19.6 ± 1.5
Observed 4 13 8 25

The observation in the 4l channel
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Deep Neural Network for event kinematics
ML techniques performed poorly unless these high-level features 
were supplied. Deep learning techniques can discover them.

30

7

TABLE I: Performance for Higgs benchmark. Com-
parison of the performance of several learning techniques:
boosted decision trees (BDT), shallow neural networks (NN),
and deep neural networks (DN) for three sets of input fea-
tures: low-level features, high-level features and the complete
set of features. Each neural network was trained five times
with di↵erent random initializations. The table displays the
mean Area Under the Curve (AUC) of the signal-rejection
curve in Figure 7, with standard deviations in parentheses as
well as the expected significance of a discovery (in units of
Gaussian �) for 100 signal events and 1000 ± 50 background
events.

AUC

Technique Low-level High-level Complete

BDT 0.73 (0.01) 0.78 (0.01) 0.81 (0.01)

NN 0.733 (0.007) 0.777 (0.001) 0.816 (0.004)

DN 0.880 (0.001) 0.800 (< 0.001) 0.885 (0.002)

Discovery significance

Technique Low-level High-level Complete

NN 2.5� 3.1� 3.7�

DN 4.9� 3.6� 5.0�

better understood than others, so that some simulated
background collisions have larger associated systematic
uncertainties than other collisions. This can transform
the problem into one of reinforcement learning, where
per-collision truth labels no longer indicate the ideal net-
work output target. This is beyond the scope of this
study, but see Refs. [22, 23] for stochastic optimizaton
strategies for such problems.

Figure 7 and Table I show the signal e�ciency and
background rejection for varying thresholds on the out-
put of the neural network (NN) or boosted decision tree
(BDT).

A shallow NN or BDT trained using only the low-level
features performs significantly worse than one trained
with only the high-level features. This implies that the
shallow NN and BDT are not succeeding in indepen-
dently discovering the discriminating power of the high-
level features. This is a well-known problem with shallow
learning methods, and motivates the calculation of high-
level features.

Methods trained with only the high-level features,
however, have a weaker performance than those trained
with the full suite of features, which suggests that despite
the insight represented by the high-level features, they do
not capture all of the information contained in the low-
level features. The deep learning techniques show nearly
equivalent performance using the low-level features and
the complete features, suggesting that they are automat-

ically discovering the insight contained in the high-level

features. Finally, the deep learning technique finds addi-
tional separation power beyond what is contained in the
high-level features, demonstrated by the superior perfor-
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FIG. 7: Performance for Higgs benchmark. For the
Higgs benchmark, comparison of background rejection versus
signal e�ciency for the traditional learning method (a) and
the deep learning method (b) using the low-level features, the
high-level features and the complete set of features.

mance of the deep network with low-level features to the
traditional network using high-level features. These re-
sults demonstrate the advantage to using deep learning
techniques for this type of problem.

The internal representation of a NN is notoriously dif-
ficult to reverse engineer. To gain some insight into the
mechanism by which the deep network (DN) is improving
upon the discrimination in the high-level physics features,
we compare the distribution of simulated events selected
by a minimum threshold on the NN or DN output, cho-
sen to give equivalent rejection of 90% of the background
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mance of the deep network with low-level features to the
traditional network using high-level features. These re-
sults demonstrate the advantage to using deep learning
techniques for this type of problem.

The internal representation of a NN is notoriously dif-
ficult to reverse engineer. To gain some insight into the
mechanism by which the deep network (DN) is improving
upon the discrimination in the high-level physics features,
we compare the distribution of simulated events selected
by a minimum threshold on the NN or DN output, cho-
sen to give equivalent rejection of 90% of the background

P. Baldi, P. Sadowski, and D. Whiteson [arXiv:1402.4735] GPU-accelerated Theano and Pylearn2 https://github.com/uci-igb/higgs-susy.
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We demonstrate that recent developments in deep learn-
ing tools can overcome these failings, providing signifi-
cant boosts even without manual assistance.

RESULTS

The vast majority of particle collisions do not pro-
duce exotic particles. For example, though the Large
Hadron Collider produces approximately 1011 collisions
per hour, approximately 300 of these collisions result in
a Higgs boson, on average. Therefore, good data anal-
ysis depends on distinguishing collisions which produce
particles of interest (signal) from those producing other
particles (background).

Even when interesting particles are produced, detect-
ing them poses considerable challenges. They are too
small to be directly observed and decay almost immedi-
ately into other particles. Though new particles cannot
be directly observed, the lighter stable particles to which
they decay, called decay products, can be observed. Mul-
tiple layers of detectors surround the point of collision for
this purpose. As each decay product pass through these
detectors, it interacts with them in a way that allows its
direction and momentum to be measured.

Observable decay products include electrically-charged
leptons (electrons or muons, denoted `), and particle jets
(collimated streams of particles originating from quarks
or gluons, denoted j). In the case of jets we attempt
to distinguish between jets from heavy quarks (b) and
jets from gluons or low-mass quarks; jets consistent with
b-quarks receive a b-quark tag. For each object, the mo-
mentum is determined by three measurements: the mo-
mentum transverse to the beam direction (pT), and two
angles, ✓ (polar) and � (azimuthal). For convenience, at
hadron colliders, such as Tevatron and LHC, the pseu-

dorapidity, defined as ⌘ = � ln(tan(✓/2)) is used instead
of the polar angle ✓. Finally, an important quantity is
the amount of momentum carried away by the invisible
particles. This cannot be directly measured, but can be
inferred in the plane transverse to the beam by requiring
conservation of momentum. The initial state has zero
momentum transverse to the beam axis, therefore any
imbalance of transverse momentum (denoted 6ET ) in the
final state must be due to production of invisible particles
such as neutrinos (⌫) or exotic particles. The momentum
imbalance in the longitudinal direction along the beam
cannot be measured at hadron colliders, as the initial
state momentum of the quarks is not known.

Benchmark Case for Higgs Bosons (HIGGS)

The first benchmark classification task is to distinguish
between a signal process where new theoretical Higgs
bosons are produced, and a background process with the

b

b̄

W
Wg

g

H0

H±

h0

(a)

g

g

t

t̄
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W+
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FIG. 1: Diagrams for Higgs benchmark. (a) Diagram de-
scribing the signal process involving new exotic Higgs bosons
H0 and H±. (b) Diagram describing the background process
involving top-quarks (t). In both cases, the resulting particles
are two W bosons and two b-quarks.

identical decay products but distinct kinematic features.
This benchmark task was recently considered by experi-
ments at the LHC [10] and the Tevatron colliders [11].

The signal process is the fusion of two gluons into a
heavy electrically-neutral Higgs boson (gg ! H0), which
decays to a heavy electrically-charged Higgs bosons (H±)
and a W boson. The H± boson subsequently decays to a
second W boson and the light Higgs boson, h0 which has
recently been observed by the ATLAS [12] and CMS [13]
experiments. The light Higgs boson decays predomi-
nantly to a pair of bottom quarks, giving the process:

gg ! H0 ! W⌥H± ! W⌥W±h0 ! W⌥W±bb̄, (1)

which leads to W⌥W±bb̄, see Figure 1. The background
process, which mimics W⌥W±bb̄ without the Higgs bo-
son intermediate state, is the production of a pair of top
quarks, each of which decay to Wb, also giving W⌥W±bb̄,
see Figure 1.

Simulated events are generated with the mad-
graph5 [14] event generator assuming 8 TeV collisions
of protons as at the latest run of the Large Hadron
Collider, with showering and hadronization performed
by pythia [15] and detector response simulated by
delphes [16]. For the benchmark case here, mH0 = 425
GeV and mH± = 325 GeV has been assumed.

We focus on the semi-leptonic decay mode, in which
one W boson decays to a lepton and neutrino (`⌫) and
the other decays to a pair of jets (jj), giving decay prod-
ucts `⌫b jjb. We consider events which satisfy the re-
quirements:
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this purpose. As each decay product pass through these
detectors, it interacts with them in a way that allows its
direction and momentum to be measured.

Observable decay products include electrically-charged
leptons (electrons or muons, denoted `), and particle jets
(collimated streams of particles originating from quarks
or gluons, denoted j). In the case of jets we attempt
to distinguish between jets from heavy quarks (b) and
jets from gluons or low-mass quarks; jets consistent with
b-quarks receive a b-quark tag. For each object, the mo-
mentum is determined by three measurements: the mo-
mentum transverse to the beam direction (pT), and two
angles, ✓ (polar) and � (azimuthal). For convenience, at
hadron colliders, such as Tevatron and LHC, the pseu-

dorapidity, defined as ⌘ = � ln(tan(✓/2)) is used instead
of the polar angle ✓. Finally, an important quantity is
the amount of momentum carried away by the invisible
particles. This cannot be directly measured, but can be
inferred in the plane transverse to the beam by requiring
conservation of momentum. The initial state has zero
momentum transverse to the beam axis, therefore any
imbalance of transverse momentum (denoted 6ET ) in the
final state must be due to production of invisible particles
such as neutrinos (⌫) or exotic particles. The momentum
imbalance in the longitudinal direction along the beam
cannot be measured at hadron colliders, as the initial
state momentum of the quarks is not known.

Benchmark Case for Higgs Bosons (HIGGS)

The first benchmark classification task is to distinguish
between a signal process where new theoretical Higgs
bosons are produced, and a background process with the

b

b̄

W
Wg

g

H0

H±

h0

(a)

g

g

t

t̄

b

b̄

W+

W�

(b)

FIG. 1: Diagrams for Higgs benchmark. (a) Diagram de-
scribing the signal process involving new exotic Higgs bosons
H0 and H±. (b) Diagram describing the background process
involving top-quarks (t). In both cases, the resulting particles
are two W bosons and two b-quarks.

identical decay products but distinct kinematic features.
This benchmark task was recently considered by experi-
ments at the LHC [10] and the Tevatron colliders [11].

The signal process is the fusion of two gluons into a
heavy electrically-neutral Higgs boson (gg ! H0), which
decays to a heavy electrically-charged Higgs bosons (H±)
and a W boson. The H± boson subsequently decays to a
second W boson and the light Higgs boson, h0 which has
recently been observed by the ATLAS [12] and CMS [13]
experiments. The light Higgs boson decays predomi-
nantly to a pair of bottom quarks, giving the process:

gg ! H0 ! W⌥H± ! W⌥W±h0 ! W⌥W±bb̄, (1)

which leads to W⌥W±bb̄, see Figure 1. The background
process, which mimics W⌥W±bb̄ without the Higgs bo-
son intermediate state, is the production of a pair of top
quarks, each of which decay to Wb, also giving W⌥W±bb̄,
see Figure 1.

Simulated events are generated with the mad-
graph5 [14] event generator assuming 8 TeV collisions
of protons as at the latest run of the Large Hadron
Collider, with showering and hadronization performed
by pythia [15] and detector response simulated by
delphes [16]. For the benchmark case here, mH0 = 425
GeV and mH± = 325 GeV has been assumed.

We focus on the semi-leptonic decay mode, in which
one W boson decays to a lepton and neutrino (`⌫) and
the other decays to a pair of jets (jj), giving decay prod-
ucts `⌫b jjb. We consider events which satisfy the re-
quirements:

https://github.com/uci-igb/higgs-susy
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Figure 2: Invariant mass distribution of diphoton candidates after all
selections of the inclusive analysis for the combined 7 TeV and 8 TeV
data. The result of a fit to the data with the sum of a SM Higgs boson
signal (withmH = 126.8 GeVand free signal strength) and background
is superimposed. The residuals of the data with respect to the fitted
background are displayed in the lower panel.

4.5. Results
The diphoton invariant mass distribution after selec-

tions for the full data sample is shown in Fig. 2. At the
maximum deviation from the background-only expec-
tation, which occurs for mH ∼ 126.5 GeV, the signif-
icance of the observed peak is 7.4σ for the combined
7 TeV and 8 TeV data and the category-based analysis
(compared with 4.3σ expected from SM Higgs boson
production at this mass), which establishes a discovery-
level signal in the γγ channel alone. Table 5 lists the

Table 5: For the H → γγ analysis of the
√
s = 8 TeV data, the num-

bers of events observed in the data (ND), the numbers of background
events (NB) estimated from fits to the data, and the expected SMHiggs
boson signal (NS ) for mH = 126.8 GeV, split by category. All num-
bers are given in a mass window centred at mH = 126.8 GeV and con-
taining 90% of the expected signal (the size of this window changes
from category to category and for the inclusive sample). The predicted
numbers of signal events in each of the ggF, VBF, WH, ZH and tt̄H
processes are also given.

Category ND NB NS ggF VBF WH ZH tt̄H
Untagged 14248 13582 350 320 19 7.0 4.2 1.0
Loose high-mass two-jet 41 28 5.0 2.3 2.7 < 0.1 < 0.1 < 0.1
Tight high-mass two-jet 23 13 7.7 1.8 5.9 < 0.1 < 0.1 < 0.1
Low-mass two-jet 19 21 3.1 1.5 < 0.1 0.92 0.54 < 0.1
EmissT significance 8 4 1.2 < 0.1 < 0.1 0.43 0.57 0.14
Lepton 20 12 2.7 < 0.1 < 0.1 1.7 0.41 0.50
All categories (inclusive) 13931 13205 370 330 27 10 5.8 1.7

observed number of events in the main categories, the
estimated background from fits to the data (described in

Section 4.3), and the predicted signal contributions from
the various production processes.
Additional interpretation of these results is presented

in Section 7.

5. The H→ ZZ∗→ 4ℓ channel

Despite the small branching ratio, this channel pro-
vides good sensitivity to Higgs boson studies, e.g. to
the coupling to Z bosons, mainly because of the large
signal-to-background ratio.
Events are required to have two pairs of same-flavour,

opposite-charge, isolated leptons: 4e, 2e2µ, 2µ2e, 4µ
(where final states with two electrons and two muons
are ordered by the flavour of the dilepton pair with mass
closest to the Z-boson mass). The largest background
comes from continuum (Z(∗)/γ∗)(Z(∗)/γ∗) production,
referred to hereafter as ZZ∗. Important contributions
arise also from Z + jets and tt̄ production, where two
of the charged lepton candidates can come from decays
of hadrons with b- or c-quark content, misidentification
of light-quark jets, and photon conversions.
The analysis presented here is largely the same as that

described in Ref. [100] with only minor changes. The
electron identification is tightened in the 8 TeV data to
improve the background rejection for final states with
a pair of electrons forming the lower-mass Z∗ boson.
The mass measurement uses a constrained fit to the Z
mass to improve the resolution. The lepton pairing is
modified to reduce the mis-pairing in the 4µ and 4e fi-
nal states, and the minimum requirement on the mass
of the second Z∗ boson is relaxed. Final-state radiation
(FSR) is included in the reconstruction of the first Z(∗) in
events containing muons. Finally, a classification which
separates Higgs boson candidate events into ggF–like,
VBF–like and VH–like categories is introduced.

5.1. Event selection
The data are selected using single-lepton or dilepton

triggers. The pT threshold of the single-muon trigger is
24 GeV (18 GeV) in 2012 (2011) and the ET threshold
of the single-electron trigger is 24 GeV (20–22 GeV).
The dielectron trigger threshold is ET = 12GeV and
the dimuon trigger threshold is pT = 13GeV (10GeV
in 2011) for both leptons. In addition, an asymmetric
dimuon trigger and electron–muon triggers are used as
described in Ref. [100]. The efficiency for events pass-
ing the offline analysis cuts to be selected by at least one
of the above triggers is between 97% and 100%.
Muon and electron candidates are reconstructed as

described in Section 2. In the region |η| < 0.1, which

7
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Generation of an e+e−

→ tt̄ → bb̄W +W − event

• hard scattering

• (QED) initial/final
state radiation

• partonic decays, e.g.
t → bW

• parton shower
evolution

• nonperturbative
gluon splitting

• colour singlets

• colourless clusters

• cluster fission

• cluster → hadrons

• hadronic decays
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*MVA = BDT implemented in TMVA 
(Deep networks being used for particle identification)
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G(x|µ, ⇥) (µ, ⇥)
I will represent PDFs graphically as below (directed acyclic graph) 
‣ eg. a Gaussian                  is parametrized by                     
‣ every node is a real-valued function of the nodes below 

G

x µ σ

Clearly related to Graphical Models, but not the focus here.
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10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
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is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l

R
ooR

ealSum
Pdf

h2m
u2nu_200_m

odel_zz2l2nu_m
odel_h2m

u2nu_200_zz2l2nu_edit

R
ooProduct

L_x_Signal_h2m
u2nu_200_overallSyst_x_H

istSyst_zz2l2nu_m
odel_h2m

u2nu_200_zz2l2nu_edit

R
ooProduct

L_x_tt_h2m
u2nu_200_overallSyst_x_H

istSyst_zz2l2nu_m
odel_h2m

u2nu_200_zz2l2nu_edit

R
ooProduct

L_x_W
W
_h2m

u2nu_200_overallSyst_x_H
istSyst_zz2l2nu_m

odel_h2m
u2nu_200_zz2l2nu_edit

R
ooProduct

L_x_W
Z_h2m

u2nu_200_overallSyst_x_H
istSyst_zz2l2nu_m

odel_h2m
u2nu_200_zz2l2nu_edit

R
ooProduct

L_x_ZZ_h2m
u2nu_200_overallSyst_x_H

istSyst_zz2l2nu_m
odel_h2m

u2nu_200_zz2l2nu_edit

R
ooProduct

L_x_W
_h2m

u2nu_200_overallSyst_x_H
istSyst_zz2l2nu_m

odel_h2m
u2nu_200_zz2l2nu_edit

R
ooProduct

L_x_Z_h2m
u2nu_200_overallSyst_x_H

istSyst_zz2l2nu_m
odel_h2m

u2nu_200_zz2l2nu_edit

R
ooProduct

L_x_M
ultiJet_h2m

u2nu_200_overallSyst_x_H
istSyst_zz2l2nu_m

odel_h2m
u2nu_200_zz2l2nu_edit

R
ooR

ealVar
binW

idth_obs_h2m
u2nu_200_0_zz2l2nu

R
ooR

ealVar
binW

idth_obs_h2m
u2nu_200_1_zz2l2nu

R
ooR

ealVar
binW

idth_obs_h2m
u2nu_200_2_zz2l2nu

R
ooR

ealVar
binW

idth_obs_h2m
u2nu_200_3_zz2l2nu

R
ooR

ealVar
binW

idth_obs_h2m
u2nu_200_4_zz2l2nu

R
ooR

ealVar
binW

idth_obs_h2m
u2nu_200_5_zz2l2nu

R
ooR

ealVar
binW

idth_obs_h2m
u2nu_200_6_zz2l2nu

R
ooR

ealVar
binW

idth_obs_h2m
u2nu_200_7_zz2l2nu

⌫i
fi

f

f(x) =
1

⌫

X

i2interactions

⌫i fi(x) , ⌫ =
X

i2interactions

⌫i



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

Paris-Saclay Center for Data Science June 30, 2014

Z+jets top Diboson ...

syst 1

syst 2

...

39

f(x
)

x

Tabulate effect of individual variations of sources of systematic uncertainty 
‣ typically one at a time evaluated at nominal and “± 1 σ” 
‣ use some form of interpolation to parametrize pth variation in terms of 

nuisance parameter αp 

Incorporating Systematic Effects

10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → ℓℓνν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l

f(D|↵) = Pois(n|⌫(↵))

nY

e=1

f(xe|↵)
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Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → ℓℓνν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l
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10 ATLAS collaboration: Search for the Standard Model Higgs Boson

Table 5. Numbers of events estimated as background, observed in data and expected from signal in the H → ZZ → ℓℓqq search
for low mass (mH < 360 GeV) and high mass (mH ≥ 360 GeV) selections. The signal, quoted at two mass points, includes small
contributions from ℓℓℓℓ and ℓℓνν decays. Electron and muon channels are combined. The uncertainties shown are the statistical
and systematic uncertainties, respectively.

Source low mass selection high mass selection
Z+jets 214± 4± 27 9.1± 0.9± 1.4
W+jets 0.33 ± 0.16 ± 0.17 −

tt̄ 0.94 ± 0.09 ± 0.25 0.08 ± 0.02± 0.03
Multi-jet 3.81 ± 0.65 ± 1.91 0.11 ± 0.11± 0.06

ZZ 3.80 ± 0.10 ± 0.73 0.30 ± 0.03± 0.06
WZ 2.83 ± 0.05 ± 0.88 0.29 ± 0.02± 0.10

Total background 226± 4± 28 9.9± 0.9± 1.5
H → ZZ → ℓℓqq 0.60 ± 0.01 ± 0.12 (mH = 200 GeV) 0.24± (< 0.001) ± 0.05 (mH = 400 GeV)

Observed 216 11

data. The multi-jet background in the electron channel is
derived from a sample where the electron identification
requirements are relaxed. In the muon channel, the multi-
jet background is estimated from a simulated sample of
semi-leptonically decaying b- and c-quarks and found to be
negligible after the application of the mℓℓ selection. This
was verified in data using leptons with identical charges.

6.3.2 Results for the H → ZZ → ℓℓνν search

The H → ZZ → ℓℓνν analysis is performed for Higgs
boson masses between 200 GeV and 600 GeV in steps of
20 GeV. Table 6 summarises the numbers of events ob-
served in the data, the estimated numbers of background
events and the expected numbers of signal events for two
selectedmH values. For the low mass selections, five events
are observed in data compared to an expected number of
events from background sources only of 5.8±0.5±1.3. The
corresponding results for the high mass selections are five
events observed in data compared to an expected yield of
3.5±0.4±0.8 events from background sources only. In ad-
dition to the H → ZZ → ℓℓνν decays, several other Higgs
boson channels give a non-negligible contribution to the
total expected signal yield. In particular, H → WW (∗) →
ℓνℓν decays can lead to final states that are very similar
to H → ZZ → ℓℓνν decays. They are found to contribute
significantly to the signal yield at low mH values. The
expected number of events from H → WW (∗) → ℓνℓν de-
cays relative to that from H → ZZ → ℓℓνν decays is 76%
for mH = 200 GeV and 9% for mH = 300 GeV. The kine-
matic selections prevent individual candidates from being
accepted by both searches. The Emiss

T distribution before
vetoing events with low Emiss

T is shown in Fig. 7.

7 Combination method

The limit-setting procedure uses the power-constrained
profile likelihood method known as the Power Constrained
Limit, PCL [13, 14, 64]. This method is preferred to the
more familiar CLs [15] technique because the constraint
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Fig. 7. Distribution of missing transverse energy in the H →
ZZ → ℓℓνν search in the electron channel before vetoing events
with low Emiss

T . The expected yield for a Higgs boson with
mH = 400 GeV is also shown.

is more transparently defined and it has reduced overcov-
erage resulting in a more precise meaning of the quoted
confidence level. The resulting PCL median limits have
been found to be around 20% tighter than those obtained
with the CLs method in several Higgs searches. The ap-
plication of the PCL method to each of the individual
Higgs boson search channels is described in Refs. [7–11].
A similar procedure is used here. The individual analyses
are combined by maximising the product of the likelihood
functions for each channel and computing a likelihood ra-
tio. A single signal normalisation parameter µ is used for
all analyses, where µ is the ratio of the hypothesised cross
section to the expected Standard Model cross section.

Each channel has sources of systematic uncertainty,
some of which are common with other channels. Table 7
lists the common sources of systematic uncertainties, which
are taken to be 100% correlated with other channels. Let
the search channels be labelled by l (l = H → γγ, H →
WW , . . . ), the background contribution, j, to channel l

After parametrizing each 
component of the mixture 
model, the pdf for a single 
channel might look like this
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RooFit’s Workspace now provides the 
ability to save in a file the full likelihood 
model, any priors you might want, and 
the data necessary to reproduce 
likelihood function. 
!
Gives flexibility in later statistical 
analysis (frequentist vs. bayesian) and 
handles for detailed meta-analysis



Collaborative Statistical Modeling



Collaborative Statistical Modeling
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R E P R O D U C I B I L I T Y  P R O B L E M

Not possible for others to reproduce results from paper.
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Figure 4: Fits for 2-parameter benchmark models probing different coupling strength scale factors for

fermions and vector bosons: (a) Correlation of the coupling scale factors κF and κV , assuming no non-

SM contribution to the total width; (b) Correlation of the coupling scale factors λFV = κF/κV and

κVV = κV · κV/κH without assumptions on the total width.
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Figure 5: Fits for benchmark models probing different coupling strength scale factor for fermions and

vector bosons, assuming no non-SM contribution to the total width: (a) coupling scale factor for fermions

κF (the coupling scale factor for gauge bosons κV is profiled) and (b) coupling scale factor for gauge

bosons κV (the coupling scale factor for fermions κF is profiled).



P U B L I S H I N G  L I K E L I H O O D S  

Note, data record itself has 4 citation



Reproducing derived results from original paper!

P U B L I S H I N G  L I K E L I H O O D S  



GitHub    →    Zenodo    →    INSPIRE

Mathematica    →    figshare    →    INSPIRE

C O D E  A S  A  R E S E A R C H  P R O D U C T



same-sign leptons+2jets

coupling |C|/Λ2

cross-section ∝ C2/Λ4

same-sign tops

Use  4f effective operators
(LL,LR,RR) modes

Many models predict ss tops
(esp. to explain CDF top Afb)

Squark pairs

+WW,ZZ modes

Squark pairs

+WW,ZZ modes

R E C A S T I N G
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kinetic energies and self-interactions of the gauge bosons
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︸ ︷︷ ︸

W±,Z,γ,and Higgs masses and couplings

+ g′′(q̄γµTaq) Ga
µ

︸ ︷︷ ︸

interactions between quarks and gluons

+ (G1L̄φR + G2L̄φcR + h.c.)
︸ ︷︷ ︸

fermion masses and couplings to Higgs

Q

A

T H E O R Y S E R V I C ESquark pairs

+WW,ZZ modes
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Review of Challenges 
and 

Possible Research Topics
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The complexity of our statistical models is growing exponentially, starting to 
need new algorithms to deal with them or principles for simplifying them 

‣ graphical models, automatic differentiation, distributed processing, … 

‣ better optimization & sampling algorithms 

‣ optimal statistical procedures subject to computational constraints (link)  
"
Interpolation of distributions based on simulated samples with different 
parameter settings a weak point 

‣ experimental design, response surface interpolation, Gaussian processes, … 

‣ complication: samples often not statistically independent 
"
Machine learning + computer simulations 

‣ Most analyses either use computer simulations of the detector or ad hoc 
parametrized models.   

‣ Little use of machine learning to learn the expensive computer simulation
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Challenges & possible research areas

http://www.cs.berkeley.edu/~jordan/papers/BEJSP17.pdf
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Most discussion with statisticians has focused on hypothesis testing and 
confidence intervals for final results.  Many interesting problems up-stream 

‣ exception: machine learning for selecting candidate signal events 
‣ barriers: collaborations do not openly share data, requires some semi-formal 

agreement 
‣ progress: movement towards open access (link to policy)  

"
Importance sampling for rare events in simulation 

‣ The simulation of our detectors is very computationally challenging and we 
use brute force to populate tails in cases where we can do something smarter 
"

Particle physics is a unique arena for data science 
‣ well posed questions in an extreme setting 
‣ lots of data, complicated sensor environment, strong theoretical basis 

"
Congratulations and best wishes to 
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Challenges & possible research areas

Center for Data Science

Paris-Saclay

https://twiki.cern.ch/twiki/pub/AtlasPublic/AtlasPolicyDocuments/A78_ATLAS_Data_Access_Policy.pdf

