TIANLAI DISH ARRAY CONFIGURATION R. Ansari - July 2014

- Comparison of several configurations for the Tianlai 16-dish array, and survey strategy
- Based on work being done by Jiao Zhang
- Computation of reconstructed beams from visibilities, Transfer function and noise power spectrum
- Assume transit mode operation, with several scans along the declination, and complete beam knowledge
- assume stationary white noise for the visibilities as a function of time V_{ij}(t)⁻⁻⁺V_{ij}(α)

$$\begin{array}{rcl} \mathrm{Sky} &:& \alpha \ (\mathrm{RA, \, East-West, \, EW}) \\ && \delta \ (\mathrm{DEC, \, North-South, \, NS}) \end{array}$$

$$\begin{array}{rcl} \mathrm{Fourier} &:& (\alpha, \delta) \longrightarrow (u, v) \\ \mathrm{Sky} &:& I(\alpha, \beta) \longrightarrow F(u, v) \end{array}$$

$$\begin{array}{rcl} \mathrm{Sky} &:& I(\alpha, \beta) \longrightarrow F(u, v) \end{array}$$

$$\begin{array}{rcl} \mathrm{Visibilities} &:& V_{ij}(\alpha) \rightarrow \tilde{V_{ij}}(u) \end{array}$$

Rectangular geometry used
in the reconstruction, larger
than the scanned region
full sky map
full sky map
full sky map

$$\begin{array}{rcl}
 & \tilde{V}_{ij}(u) \\
 & \tilde{V}_{ij}(u) \\
 & \tilde{F}_{u}(v) \\
 & \tilde{F}_{u}(v) \\
 & \tilde{F}_{W}(u,v) \\
 & \tilde{F}_{W}(u,v) = \hat{F}(u,v) \times W(u,v) \\
 & \hat{F}_{W}(u,v) \longrightarrow \hat{I}(\alpha,\delta) \quad (\text{FFT})
\end{array}$$

CONFIGURATIONS

- 16=4x4 D=6 m dishes, $D_{eff}=\eta D=5.4$ m, base spacing d=7 m
- maximum $N_B = 8x17 = 136$ baselines
- (a) regular array, 28x28 m^2, N_B = 25 baselines
- (b) circular, 1+6+9, ~32x32 m^2, N_B =101 baselines
- (c) irregular, 2+3+5+4+2, ~32x32 m^2, N_B =84 baselines
- 9 scans : $\delta = \{0, \pm 1.5^{\circ}, \pm 3^{\circ}, \pm 4.5^{\circ}, \pm 6^{\circ}\}$

$$d \simeq \frac{D}{\cos(\beta_{max})}$$
$$D = 6 \text{ m}, d = 7 \text{ m}$$
$$\beta_{max} \simeq 30^{\circ}$$

Synchrotron map @ 400 MHz - Eq. Coordinates (ra,dec) Tianlai-16dish accessible sky region $(45 \text{ N} \pm 25 \text{ deg}) \rightarrow 20 < \delta < 60$ in Xinjiang (45 N)

(a) regular

(c) irrgular

(d) circular-rotated

BEAM SHAPES

- Compute the reconstructed from the visibilities (without noise) for an input map with point sources at different declination
- The beam (response to a point source) depends on declination, but not on RA
- beam before and after applying weights on the (u,v) plane (cut/weight based on the computed noise covariance matrix, application of a frequency independent global beam)

Beam at center (in δ) - 1200 MHz

Beam at the edge (in δ) - 1200 MHz

irregular

circular

Diagonal of the error covariance matrix for configurations (b),(c)

TRANSFER FUNCTION AND NOISE POWER SPECTRUM

- T(t⊥) : Compute the reconstructed map for a white noise input map, compute the power spectrum of the reconstructed map
- Noise power spectrum: reconstruct the map with the visibility noise only (F(u,v)=0) and compute the power spectrum
- take the average over several input noise map / visibility noise realizations (single / few realizations right now)

$$t_{\perp} = \sqrt{u^2 + v^2}$$
$$T(t_{\perp}) = \frac{P_{rec}(t_{\perp})}{P_{in}(t_{\perp})}$$
$$P_{noise}(t_{\perp}) = P_{noise-V}(t_{\perp})$$

transfer function for circle array

Transfer function for configurations (c)irregular and (b)-circular rejecting high noise-variance modes (red), and with global beam weighting (blue)

Transfer function for configurations the regular array - with/without autocorrelations rejecting high noise-variance modes (red), and global beam weighting (blue)

Irregular array (c)

Circular array (b)

Noise power spectrum Tsys = 100 K, 6 month total observation time (9 scans), Δv =1 MHz, ~ 250 (α) x 15 (δ) ~ 3700 deg^2 covered (latitude ~ 45 deg)

Thursday, July 3, 14

naise nower enectrum for regular without autocor array

17

Regular array (a) with autocorrelation

Regular array (a) without autocorrelation

Noise power spectrum regular array, with and without autocorrelation

- better sky reconstruction with more independent baselines → more uniform (u,v) plane coverage, better isotropy of the synthetized beam
- Possibility to optimize the beam, decreasing frequency dependency using weights on the reconstructed (u,v) plane
- Better reconstruction when increasing the number of δ scans (over the same sky area), without noise penalty
- Choice between (b)-circular or (c)-irregular configuration ?