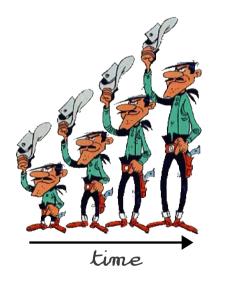


22ième Congrès Général de la Société Française de Physique Marseille, le 04/07/2013

The growth index of cosmological perturbations

Heinrich STEIGERWALD*



*Ph.D. Student at Centre de Physique Théorique / Aix-Marseille Université Supervisor: Christian Marinoni

- The problem: how to parametrize the growth index?
- Test of our formalism
- Prospects with Euclid-like surveys

The universe is currently accelerating [Perlmutter et al., Planck13]

- The universe is dominated today by a hidden form of energy, dubbed Dark Energy. $w = p/\rho < -1/3$
- OR... Einsteins fields equations break down at very large cosmological scales modified gravity
- Measurements of background not enough to determine the source of acceleration ______ perturbations

Simulation of Dark Matter clustering

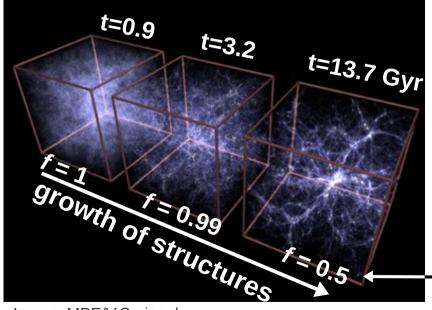


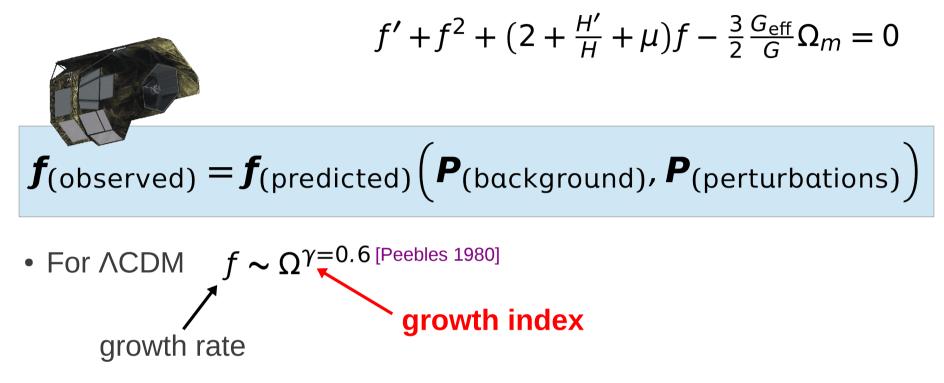
Image: MPE/V.Springel.

Can the linear growth of structures disentangle these hypotheses?

$$f' + f^2 + (2 + \frac{H'}{H} + \mu)f - \frac{3}{2}\frac{G_{\text{eff}}}{G}\Omega_m = 0$$

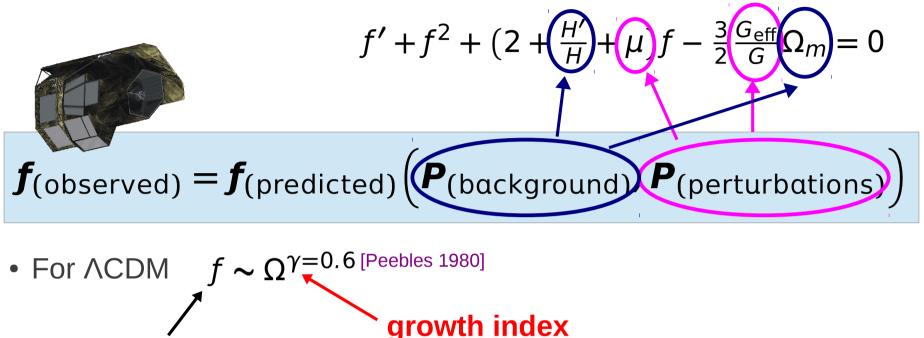
$$\int f$$
growth rate

The problem: how to parametrize the growth rate?



- We need a parametrization for the growth rate satisfying
 - high precision (<1% of error)
 - observer friendly (few parameters to fit)
 - theorist friendly (parameters must be easily related to theories)
 - flexible (covering a maximum of models!)

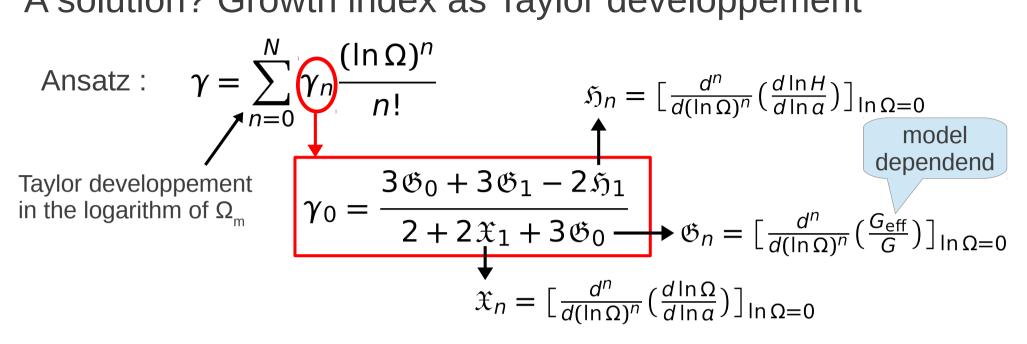
The problem: how to parametrize the growth rate?



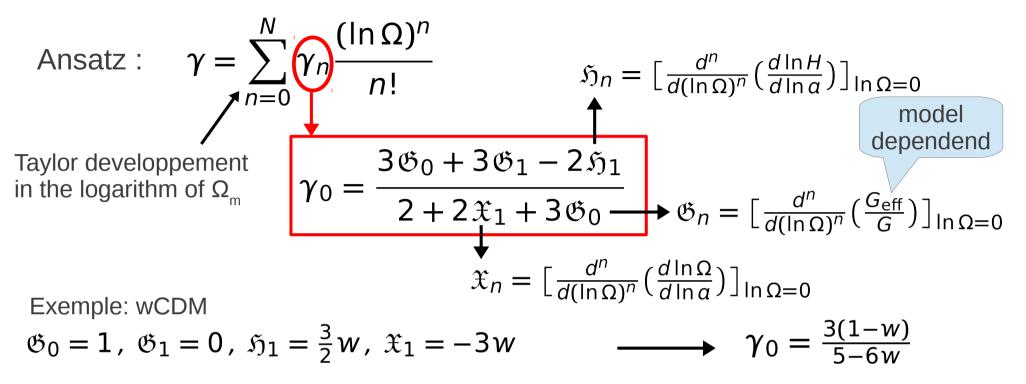
growth rate

- We need a parametrization for the growth rate satisfying
 - high precision (<1% of error)
 - observer friendly (few parameters to fit)
 - theorist friendly (parameters must be easily related to theories)
 - flexible (covering a maximum of models!)

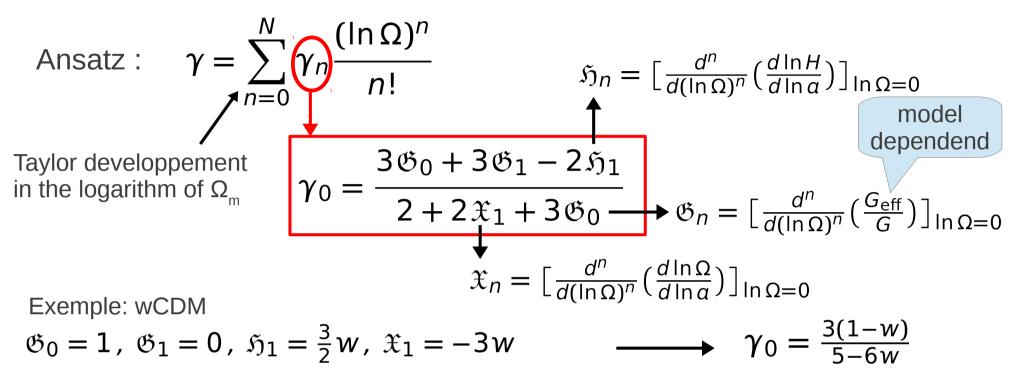
A solution? Growth index as Taylor developpement



A solution? Growth index as Taylor developpement



A solution? Growth index as Taylor developpement



A general recursion formula for higher order coefficients (n>0): $\gamma_{n} = 3 \frac{\mathfrak{G}_{n+1} + \sum_{k=1}^{n+1} \binom{n+1}{k} \mathfrak{G}_{n+1-k} B_{k}(1-y_{1}, -y_{2}, -y_{3}, \dots, -y_{k})}{(n+1)(2+2(n+1)\mathfrak{X}_{1}+3\mathfrak{G}_{0})}$ $- \frac{B_{n+1}(y_{1}, y_{2}, \dots, y_{n+1}) + \sum_{k=2}^{n+1} \binom{n+1}{k} \mathfrak{X}_{k}(n+2-k)\gamma_{n+1-k} + \mathfrak{H}_{n+1}}{(n+1)(1+(n+1)\mathfrak{X}_{1}+\frac{3}{2}\mathfrak{G}_{0})}$

- The problem: how to parametrize the growth index?
- Test of our formalism
- Prospects with Euclid-like surveys

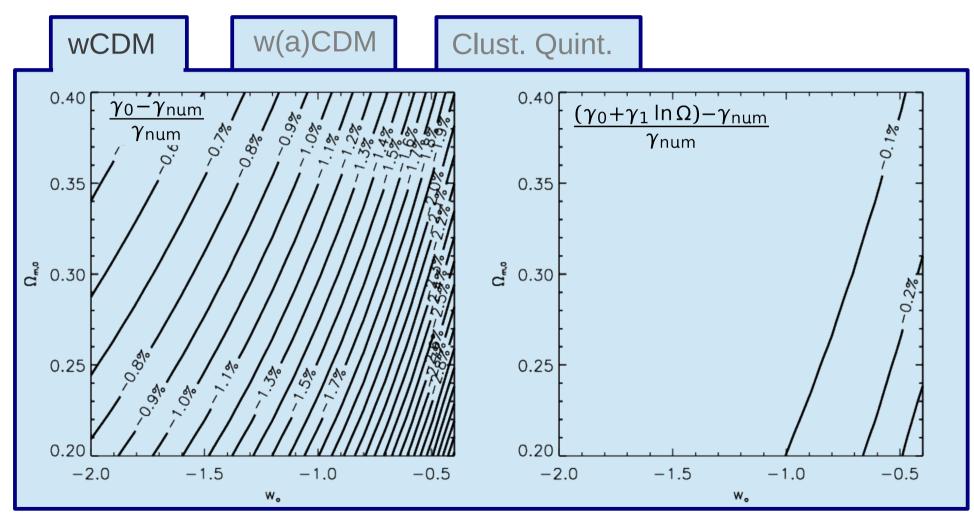
• The problem: how to parametrize the growth index?

• Test of our formalism

• Prospects with Euclid-like surveys

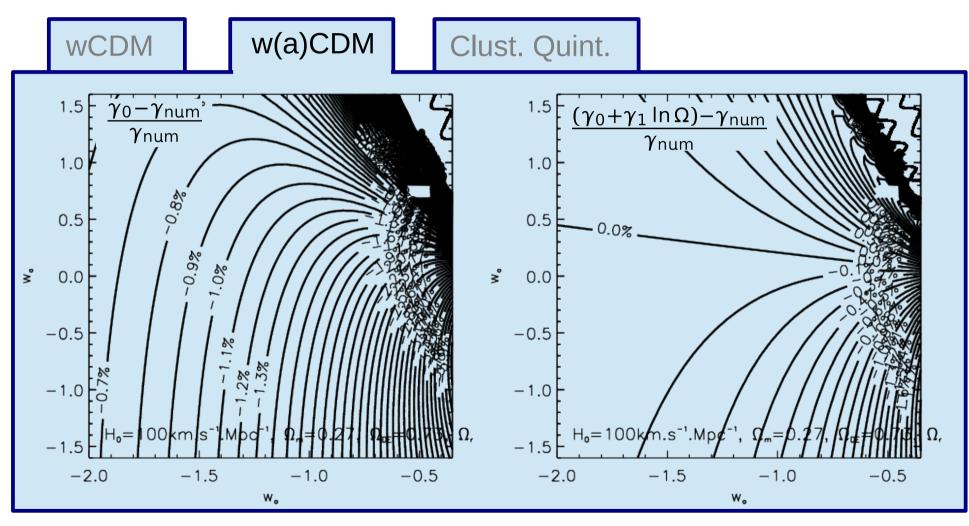
Precision

- What is the precision of the approximation?
- How many orders do we need?



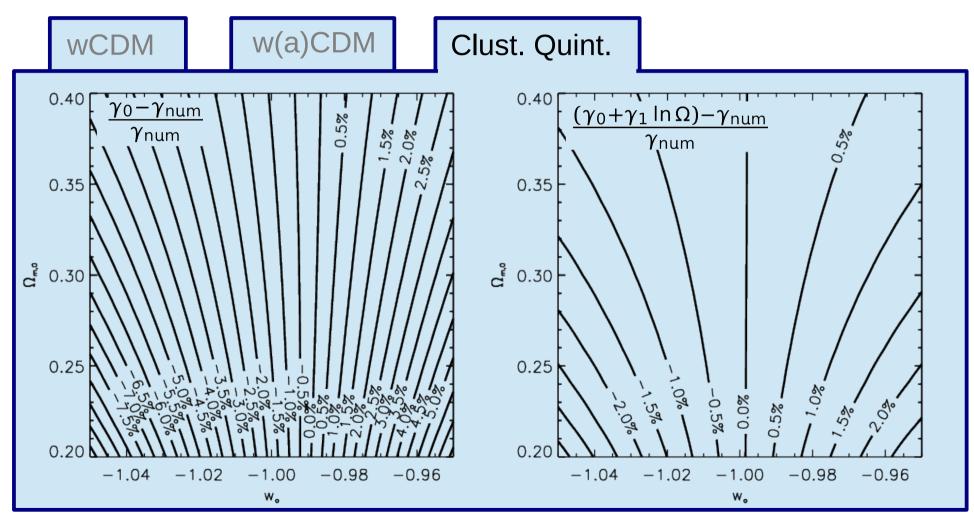
Precision

- What is the precision of the approximation?
- How many orders do we need?



Precision

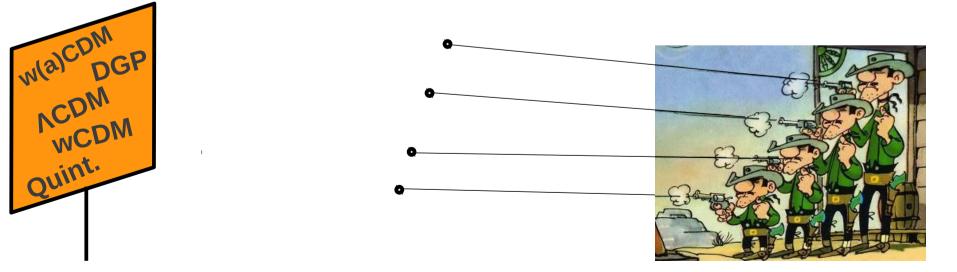
- What is the precision of the approximation?
- How many orders do we need?



Connection theory-observation

Model	γο	γ_1	γ2	• • •
ACDM	$\frac{6}{11}$	$-\frac{15}{2057}$	$\frac{410}{520421}$	• • •
wCDM ($w = -0.9$)	0.5481	-0.ŨŎ78	0.0009	
wCDM ($w = -1.1$)	0.5431	-0.0068	0.0007	
w(a)CDM ($w_o = -0.9, w_a = 0.5$)	0.5538	-0.0072	-0.0010	
w(a)CDM ($w_o = -1.1, w_a = 0.5$)	0.5467	-0.0064	0.0004	
Clust. Quint. ($w = -0.9$)	243 520 363	<u>1356669</u> 42723200 3467739	$\begin{array}{r} 6260762727\\ \hline 294362848000\\ 733481309\end{array}$	
Clust. Quint. ($w = -1.1$)	$\frac{530}{580}$	$-\frac{1}{61224800}$	17200342250	• • •
flat DGP	$\frac{11}{16}$	7 5632	-0.0466	• • •

All coefficients are analytically predicted!



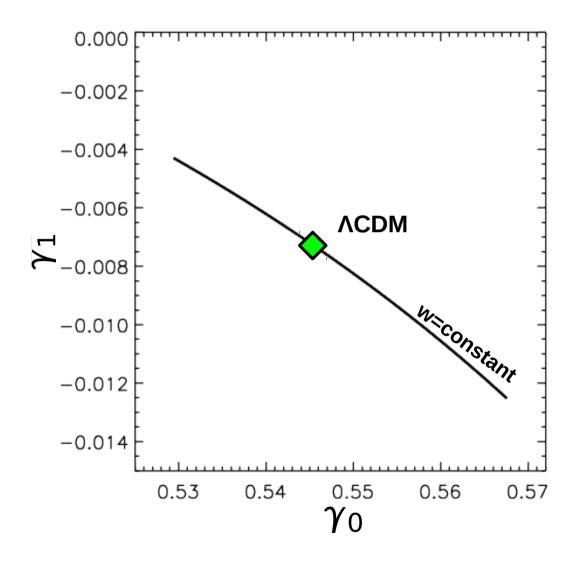
• The problem: how to parametrize the growth index?

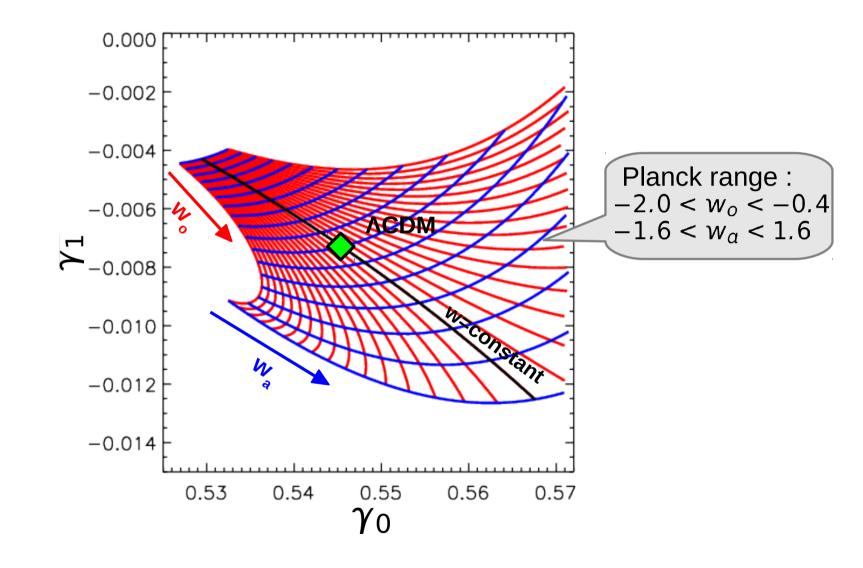
• Test of our formalism

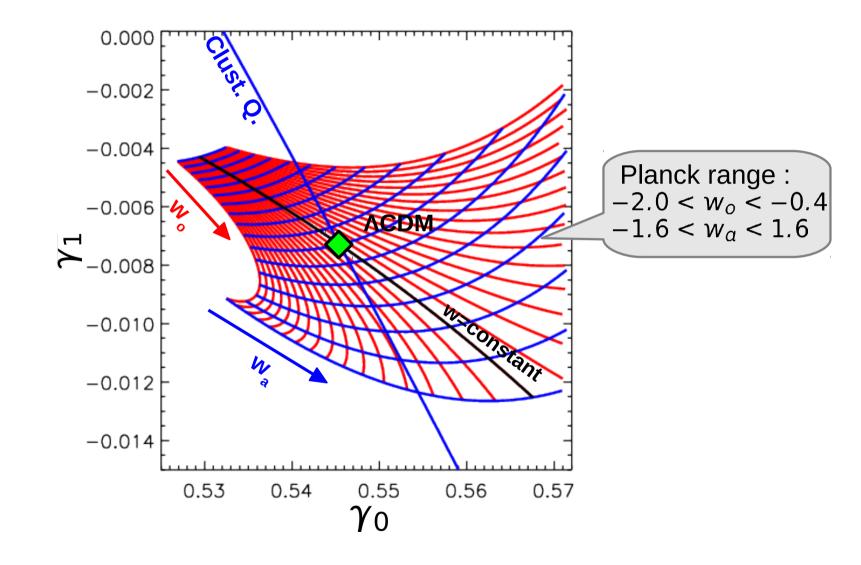
• Prospects with Euclid-like surveys

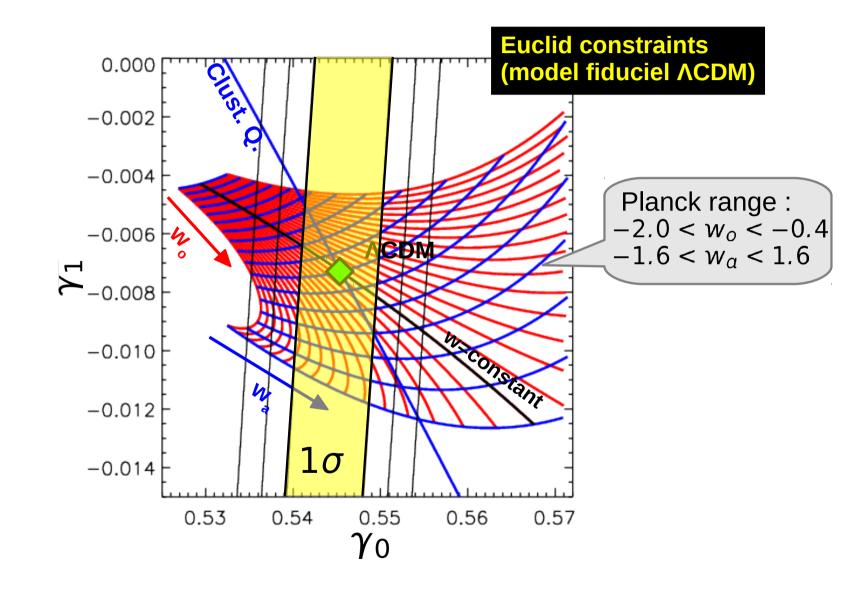
- The problem: how to parametrize the growth index?
- Test of our formalism

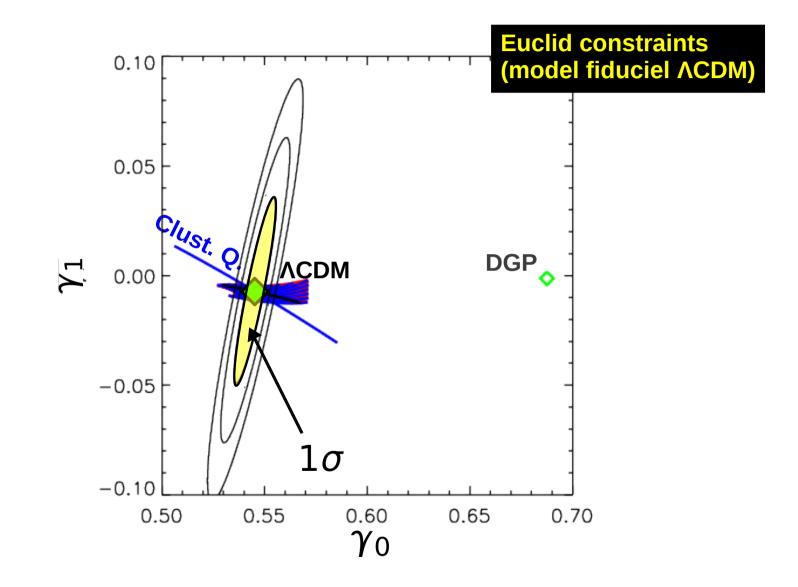
• Prospects with Euclid-like surveys











Conclusions

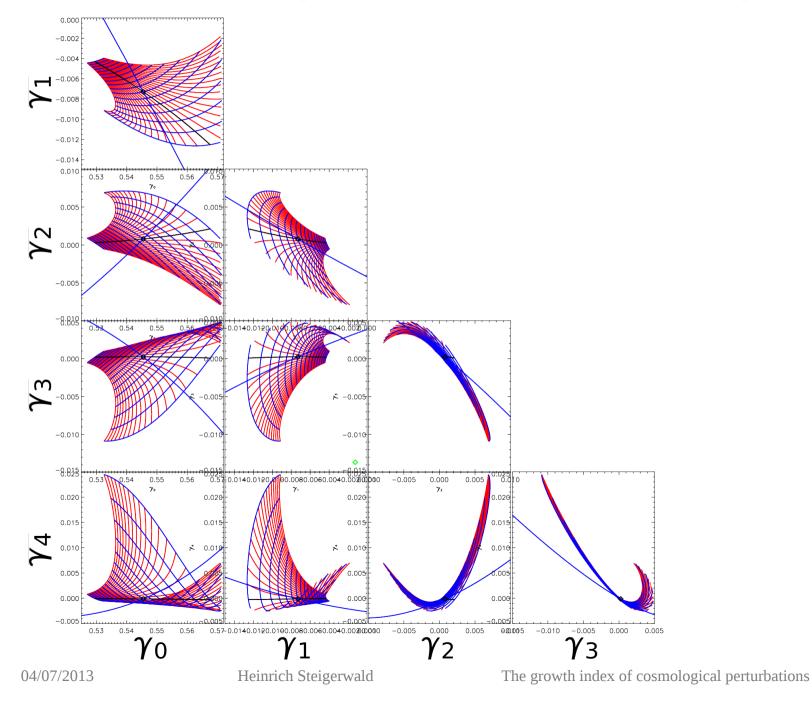
• We present an analytical parametrization that is

a) observer friendly (few coefficients needed)

b) theorist friendly (links observational results to specific models)

c) precise

• What's next: extending the parametrization to include f(R) and more in general EFT



Connection theory-observation

Model	γ_0	γ_1	γ2	
ACDM	0.5454	-0.0073	0.0008	
wCDM ($w = -0.9$)	0.5481	-0.0078	0.0009	
wCDM ($w = -1.1$)	0.5431	-0.0068	0.0007	
w(a)CDM ($w_o = -0.9, w_a = 0.5$)	0.5538	-0.0072	-0.0010	
w(a)CDM ($w_o = -1.1, w_a = 0.5$)	0.5467	-0.0064	0.0004	
Clust. Quint. ($w = -0.95$)	0.5061	0.0135	-0.01246	
Clust. Quint. ($w = -1.05$)	0.5854	-0.0307	0.0190	
flat DGP	0.6875	-0.0012	-0.0466	

All coefficients are analytically predicted!

_

What observations can measure ...

Label	Ζ	$f\sigma_8$	γ	Ref	
THF	0.02	0.398 ± 0.065	$0.56^{+0.11}_{-0.09}$	1	
DNM	0.02	0.314 ± 0.048	$0.71_{-0.09}^{+0.10}$	2	
6dF	0.07	0.423 ± 0.055	$0.54_{-0.08}^{+0.09}$	3	
2dF	0.17	0.510 ± 0.060	$0.43_{-0.08}^{+0.10}$	4	
LRG1	0.25	0.351 ± 0.058	$0.77_{-0.14}^{+0.16}$	5	
LRG2	0.37	0.460 ± 0.038	$0.55_{-0.08}^{+0.09}$	5	
WZ1	0.22	0.390 ± 0.078	$0.67_{-0.15}^{+0.19}$	6	
WZ2	0.41	0.428 ± 0.044	$0.64_{-0.11}^{+0.12}$	6	
WZ3	0.6	0.403 ± 0.036	$0.76_{-0.13}^{+0.14}$	6	
WZ4	0.78	0.493 ± 0.065	$0.38_{-0.24}^{+0.28}$	6	
BOSS	0.57	0.415 ± 0.034	$0.71_{-0.11}^{+0.12}$	7	
VVDS	0.77	0.490 ± 0.180	$0.40^{+0.89}_{-0.59}$	8	
Euclid	0.7 <mark>–</mark> 2	.0 δ ⁻	γ/γ ~ 0.01	2018	