Recherche expérimentale de nouvelle physique au LHC

C. Collard (IPHC, CNRS/IN2P3)

Congrès Général de la SFP Marseille, 1-5 Juillet 2013

LHC, machine de découvertes

Le boson de Higgs 🗸

1 paramètre : m_H [114.4 GeV-1 TeV] → Signatures principales :

- Н→үү
- $H \rightarrow ZZ \rightarrow 4$ leptons
- H→bb
- H→WW
- Η→ττ

Points clés du LHC:

- Energie dans le centre de masse
 => production de nouvelles
 particules lourdes
- Luminosité => accès à des processus rares

Nouvelle physique (= au-delà du Modèle Standard)

Beaucoup de modèles, Beaucoup de paramètres

→ Enormément de signatures différentes :

- 1 jet/1 photon + MET ,
- 1 lepton + MET,
- 2 leptons de même charge,
- Résonances de leptons,
- Résonances de photons,
- 2 photons + MET,
- Multi-leptons,
- Leptons + jets + MET
- Jets + MET
- Résonances de quarks top,
- Résonances de bosons,
- Trous noirs,
- etc

=> Vaste programme de recherche!

Survol de quelques analyses

Impossible de présenter toutes les recherches menées au LHC
 → Sélection restreinte de sujets dans ATLAS et CMS :

 Supersymétrie : principalement à travers un exemple : recherche de stop en Susy naturelle

La partie principale de la présentation

• Physique plus « exotique » :

dimensions supplémentaires et trous noirs

Quelques mots pour finir

1. La Supersymétrie (SUSY)

Dès le démarrage du LHC, la supersymétrie a été très étudiée par ATLAS et CMS.

Surtout avec R-parité conservée → Production par paires de particules susy, LSP stable = candidat Matière Noire = MET dans le détecteur.

Production forte de gluinos et de squarks de 1ere et 2eme générations Mais aucune découverte dans les données enregistrées en 2011 à 7 TeV

→ Limites fortes sur $M_{squarks}$ et $M_{gluinos}$ Exemple : dans le cadre de MSUGRA/CMSSM tan β = 10, A_0 = 0 and μ > 0, sqrarks et gluinos de même masse sont exclus en dessous de 1360 GeV.

L'approche « naturelle » de Susy

$$\Delta m_H^2 = \frac{H}{-y_t} - \frac{t}{y_t} - - + \frac{H}{-y_t} - \frac{t}{y_t^2} - - -$$

Susy « naturelle » = éviter les ajustements fins dans le calcul de Δm_{H}^{2}

→ le stop doit rester léger : $M_{stop} \le 700 \text{ GeV}$, ainsi que le sbottom ($M_{sbottom} \le 700 \text{ GeV}$), et le gluino pas trop lourd ($M_{gluino} \le 1.5 \text{ TeV}$).

Les squarks de 1ère et 2ème générations peuvent avoir des masses plus lourdes (> 1 TeV) sans que cela pose le moindre problème.

Par la suite, l'exemple de la recherche de stop

Un état final similaire aux événements tt :

- 1 lepton de grand PT (e ou μ),
- ≥ 4 jets dont ≥1 identifié comme provenant d'un quark b
- de l'énergie transverse manquante (MET) venant du v et des 2 χ⁰ (=LSP)

Sélection des événements :

- 1 lepton de grand PT (e ou μ),
- ≥ 4 jets dont ≥1 identifié comme provenant d'un quark b
- de l'énergie transverse manquante (MET) venant du v et des 2 χ⁰
- + M_T (I, MET) > 120 GeV

But : Essayer de faire émerger le signal de nouvelle physique s'il existe!

Utilisation de variables complexes à fort pouvoir discriminant dans une analyse multi variée.

Mise au point en « aveugle »

Régions de contrôle : Contrôle/estimation des processus du Modèle Standard Régions de signal : Nombre d'événements observés dans les données

Pas d'excès → Extraction de limites d'exclusion à 95% de niveau de confiance dans le cadre du modèle simplifié en fonction des masses des particules susy considérées.

Limite pour le stop : $M_{stop} \le 650 \text{ GeV}$, et pour le neutralino : $M_{\chi} \le 225 \text{ GeV}$. Il reste des régions difficiles d'accès : $\Delta M (=M_{stop} - M_{\chi}) \sim M_{top}$ ou petit ΔM

C. Collard (IPHC)

Résumé des limites obtenues si on rassemble les résultats pour différents canaux de désintégration du stop.

D'autres études en Susy

D'autres études en Susy

2. Les dimensions supplémentaires (ED)

Des nouvelles dimensions spatiales (ED) pourraient expliquer pourquoi la gravité nous semble si faible : diluée dans les ED

Caractéristiques des ED:

- Taille très petite < mm → invisibles pour les humains.
- Concept de compactification
- Nombre de ED variable
- Géométrie (plate ou effet de courbure)
- Quelles sont les particules qui ont accès aux ED?

Différents modèles : large ED (ADD), universal ED, warped ED (RS), etc

Différentes signatures au LHC!

<u>Etats excités de Kaluza-Klein</u> Si une particule se propage dans une dimension de taille compacte R, son impulsion est quantifiée dans cette dim : n/R. Ca apparaît comme un terme de masse dans notre monde à 4 dim : $M^2 = M_0^2 + (n/R)^2$

Les signatures avec 2 leptons

Excellent accord entre données et Modèle Standard, aucune déviation observée \rightarrow Limites sur RS G_{KK} (~2.5 TeV c=0.1), Z' (~2.5-3 TeV), ADD M_S (~3-4 TeV)

Les trous noirs

Conclusion

Vaste programme de recherche de nouvelle physique au LHC en cours...

On a déjà exploré beaucoup de signatures différentes, beaucoup de modèles, sur un vaste régime en masse et jeu de paramètres.

 → Limites basées sur des modèles simplifiés avec hypothèses fortes.

Mots clés pour découvrir la nouvelle physique : énergie et luminosité

Redémarrage du LHC en 2015 à 13-14 TeV

Que nous réserve le redémarrage du LHC?

Que nous réserve le redémarrage du LHC?

Références

- https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
- <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO</u>
- <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G</u>
- <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/</u> <u>SupersymmetryPublicResults</u>
- <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults</u>

Résumé des analyses Susy

Résumé des analyses Susy

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 10- theoretical signal cross section uncertainty.

Résumé des analyses Susy

C. Collard (IPHC)

Résumé des analyses exotiques

Résumé des analyses exotiques

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: May 2013)

Large ED (ADD) : monojet + $E_{T,mis}$	L=4.7 fb ⁻¹ , 7 TeV [1210.449 ⁴]	4.37 TeV M _D (8=2)	
Large ED (ADD) : monophoton + $E_{T,mis}$	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV M_D (δ =2)	ATLAS
Large ED (ADD) : diphoton & dilepton, $m_{\gamma\gamma}$	L=4.7 fb ⁻¹ , 7 TeV [1211.1150]	4.18 TeV M_s (HLZ δ =3, NLC	Preliminary
OED . diprotoin + $E_{T,mis}$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.40 TeV Compact. scale R	
$S'/Z_2 ED : dilepton, m$	L=5.0 fb ⁻ , 7 TeV [1209.2535]	4.71 TeV M _{KK} ~ R	
RS1 : dilepton, m	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]	$2.47 \text{ TeV} \text{ Graviton mass } (k/M_{Pl} = 0.4)$	1)
$RS1$: WW resonance, $m_{T,W}$	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]	1.23 TeV Graviton mass $(K/M_{Pl} = 0.1)$	$\int dt = (1, 20) \text{ fb}^{-1}$
Buik RS : ZZ resonance, m	L=7.2 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-150]	850 GeV Graviton mass $(K/M_{\rm Pl} = 1.0)$	Lai = (1 - 20) Ib
$HS g \rightarrow tt (BR=0.925) : tt \rightarrow 1+jets, m$	L=4.7 fb ⁻¹ , 7 TeV [1305.2756]	2.07 TeV g _{KK} mass	s = 7.8 TeV
$\square \qquad ADD BH (M_{TH} / M_{D}=3) : SS almuon, N_{ch. pail}$	L=1.3 fb ⁻¹ , 7 TeV [1111.0080]	1.25 TeV $M_D(\delta=6)$	•••••••
ADD BH $(M_{TH}/M_D=3)$. leptons + jets, $2p$	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.5 TeV $M_D(\delta=6)$	
Quantum black note : dijet, $F_{\chi}(m_{ij})$	L=4.7 fb ⁻¹ , 7 TeV [1210.1718]	4.11 TeV M _D (δ=6)	
	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	7.6 TeV Λ	
\bigcirc qqii Ui : ee & $\mu\mu$, m	L=5.0 fb ⁻¹ , 7 TeV [1211.1150]	13.9 TeV	A (constructive int.)
uult CI: SS dilepton + jets + $E_{T,mis}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]	3.3 TeV A (C=1)	
$Z^{*}(SSM): m_{ee/\mu}$	L=20 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-017]	2.86 TeV Z' mass	
Z' (SSM) : m.	L=4.7 fb ⁻¹ , 7 TeV [1210.6604]	1.4 TeV Z' mass	
\geq Z' (leptophobic topcolor) : tt \rightarrow l+jets, m	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-052]	1.8 TeV Z' mass	
$W'(SSM): m_{T,e}$	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.55 TeV W' mass	
$VV' (\rightarrow Iq, g = 1) : m$	L=4.7 fb ⁻⁺ , 7 TeV [1209.6593]	430 GeV W' mass	
$W_{R} (\rightarrow ID, LRSIM) : m_{I}$	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-050]	1.84 TeV W' MASS	
Scalar LQ pair (β =1) : kin. vars. in eejj, evj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 GeV 1" gen. LQ mass	
Scalar LQ pair (β =1) : kin. vars. in µµjj, µvj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 GeV 2 rd gen. LQ mass	
Scalar LQ pair (β =1) : kin. vars. in $\tau\tau_{JJ}$, τv_{JJ}	L=4.7 fb ⁻¹ , 7 TeV [1303.0526]	534 GeV 3° gen. LQ mass	
$4^{"'}$ generation : t't' \rightarrow WbWl	L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	656 GeV t'mass	
$Z \neq 4$ (in generation . D D \rightarrow 33 dilepton + jets + E 0 σ	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-051]	720 GeV b' mass	
$\geq \frac{1}{2}$ Vector-like quark : TT \rightarrow Ht+)	L=14.3 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-018]	790 GeV I mass (isospin doublet)	
Vector-like quark : CC, m	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mass (charge -1/3, coupling κ_{qQ}	$= v/m_{Q}$)
Exclued quarks γ -jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV q* mass	
Excited quarks : dijet resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]	3.84 TeV q* mass	
Excited b quark : w-t resonance, m _y	L=4.7 fb ⁻¹ , 7 TeV [1301.1583]	870 Gev b* mass (left-handed coupling)	
	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]	$\frac{2.2 \text{ TeV}}{1000 \text{ mass}} \left(\Lambda = \text{m}(1^{\circ})\right)$	
Techni-hadrons (LSTC) : dilepton, $m_{ee/\mu}$	L=5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV ρ_{T} / ω_{T} mass $(m(\rho_{T} / \omega_{T}) - m(\pi_{T}) = M_{W})$	
	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-015]	<u>920 GeV</u> $\rho_{\rm T}$ mass $(m(\rho_{\rm T}) = m(\pi_{\rm T}) + m_{\rm W}, m(a_{\rm T}) = 1.7$	1 <i>m</i> (ρ _τ))
Major. neutr. (LRSM, no mixing) : 2-lep + jet	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N mass $(m(W_R) = 2 \text{ IeV})$	
Heavy lepton N ² (type III seesaw) : Z-I resonance, m	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-019]*	N^{-} mass ($IV_{1}^{-} = 0.055$, $IV_{1}^{-} = 0.063$, $IV_{1}^{-} = 0$)	
$G = H_{L}$ (DY prod., BR($H \rightarrow II$)=1): SS ee ($\mu\mu$), H_{L}	L=4.7 fb ⁻¹ , 7 TeV [1210.5070]	409 GeV $H_{L^{-}}$ mass (limit at 398 GeV for $\mu\mu$)	
Color ociet scalar : dijet resonance, m	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	1.86 TeV Scalar resonance mass	
Multi-charged particles (DY prod.) : highly ionizing track	L=4.4 fb ⁻¹ , 7 TeV [1301.5272]	490 GeV mass (IqI = 4e)	
Magnetic monopoles (DY prod.) : highly ionizing track	5 L=2.0 fb ⁻¹ , 7 TeV [1207.6411]	862 GeV mass	
	10-1	1 10	10 ²

Mass scale [TeV]

La conservation de la parité R

 $R = (-1)^{(3B-L)+2S}$

- L = nombre leptonique
- B = nombre baryonique

S = spin

R = +1 pour les particules du MS R = -1 pour les particules susy

Conservation de la parité R :

- La particule susy la plus légère (LSP) est stable
 → candidat pour la matière noire
- Les particules susy sont produites par paires
- Désintégration des particules susy en cascade jusqu'à la LSP

• Energie Transverse Manquante dans le détecteur (MET)

LHC roadmap to achieve full potential

Higgs et nouvelle physique

- Etude des propriétés du nouveau boson : Modèle Standard ou nouvelle physique ?
 - Higgs fermiophobique (=qui ne se couple qu'aux bosons) : exclu entre 110 et 147 GeV (95%CL) car on aurait du voir plus de H→γγ.
 - 4ème génération : exclu entre 110 et 660 GeV (99%CL) car H→γγ aurait été quasiment supprimé.
 - Limite dans le plan (tan β, m_A) car A/H/h \rightarrow bb, ττ, μμ ont des rapports d'embranchement fortement modifiés dans le MSSM.
 - Très important d'obtenir une excellente précision sur les mesures de couplage, car ceux-ci peuvent dans certains cas n'être modifiés que de quelques pourcents.

- Recherche de nouveaux bosons

- H lourd : H→ZZ, WW : on assimile maintenant le nouveau boson à 125 GeV comme un bruit de fond, et on cherche un nouveau signal. 2eme boson exclu pour m_H<600 GeV (WW) et <700 GeV (ZZ).
- H chargé : t \rightarrow H⁺ b, H⁺ \rightarrow τ v (grand tan β) et H⁺ \rightarrow cs (tan β < 1)
- Φ doublement chargé : quand le secteur du Higgs est étendu par un triplet Φ, Φ⁺,
 Φ⁺⁺, recherche de paires de leptons de même signe (résonance eµ par exemple)

Mono-Jet: Pair-produced Dark Matter

La Recherche de matière noire

Hypothèse : les particules de matière noire sont des fermions de Dirac.

Les résultats de CMS en terme de section efficace χ -nucléon sont comparés aux expériences de détection directe et indirecte de matière noire.

Susy : Jet+MET+...

Limits in "Higgs-aware" MSUGRA/CMSSM plane

Gluino masses below ~1.35 TeV excluded for any squark mass