Heavy flavour and search for new physics at LHCb

de Physique des Particules

Centre de Physique des Particules de Marseille

Congrès de la SFP, Marseille, 1^{er} juillet 2013

Flavour in the SM

Fermions

u

Bosons

Transitions between quarks of different families are allowed through charged weak interaction are

with

are allowed through charged weak interaction

$$\mathcal{L}_{cc} = -\frac{g}{\sqrt{2}} \left(J^{\mu} W_{\mu}^{\dagger} + J^{\mu \dagger} W_{\mu} \right)$$
with
$$J_{\mu} = \sum_{i,j} \overline{u}_{i} \gamma_{\mu} \frac{1}{2} \left(1 - \gamma_{s} V_{ij} d_{j} \right)$$

$$Flavour eigenstates \begin{bmatrix} d' \\ s' \\ b' \end{bmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
Mass eigenstate
$$V_{CKM}$$
 is described by 4 parameters (but their values are unknown in SM)

Flavour in the SM

- We don't know why
- But the consistency of the CKM picture has been tested experimentaly with a great precision

- There is no flavour changing neutral current at the tree level in the SM
 - FCNC are only possible through penguins/boxes diagrams so there are highly suppressed.
- CP violation is explained by the phase of the CKM matrix
 - It could be connected to the matter-antimatter asymetry of the Universe

Justine Serrano

The indirect search for new physics

■ NP particles can virtually enter in the loop processes and modify the prediction of the SM for physics observables. Ex: BR($B_s \rightarrow \mu^+ \mu^-$)

- « indirect » because the NP particle are not explicitly created and observed in the experiment
- The goal is to look for deviation from SM prediction. The rules of the game are
 - great precision of experimental measurement (statistics)
 - great precision of theoretical prediction
- These searches have been largely successful in the past:
 - Ex: heavyness of top quark (observed in 1995 at the Tevatron) through the B⁰ oscillations (1987 by ARGUS)

The new physics scale

• NP contribution can be expressed as a perturbation to the SM lagrangian

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{C_{NP}}{\Lambda^2}$$
 NP coupling
NP scale

- If NP particles are discovered at the LHC, we are able to study the flavour structure of the NP
- Flavour physics can probe very high energy scale (even beyond the LHC reach)
- Considering the present experimental constraints in flavour physics:
 - if C=1, ∧ ~ O(100TeV)
 - If Λ~1TeV (quantum stabilization of electroweak scale), C ~ O(10⁻⁷).
 Where is this suppression coming from ?

 \Rightarrow This is the NP flavour problem. The flavour strucure of NP should be highly non trivial.

Where to look ?

Different observables give different constraints on different NP models

I will focus on : BR($B_{s/d} \rightarrow \mu^+\mu^-$), CP violation in B_s mixing, CKM angle γ

LHCb

- Forward spectrometer optimised for heavy flavour physics at the LHC
 - Large acceptance 2<η<5
 - Low trigger thresholds
 - Precise vertexing
 - Efficient particle identification
 - Large boost (B mesons flight ~1cm)

- Running at a constant luminosity of 4.10³² cm⁻² s⁻¹ thanks to the luminosity leveling (design 2.10³²)
- Precision physics easier in a low pile-up environment: interactions per bunch crossing ~1.5

LHCb Integrated Luminosity pp collisions 2010-2012

The LHCb Collaboration

Interest of $B_{s/d} \rightarrow \mu^+ \mu^-$

- FCNC and helicity suppressed decays
- Precise SM prediction:
 - BR(B_s $\rightarrow \mu^{+}\mu^{-}$)= (3.23±0.27) x10⁻⁹
 - BR(B_d $\rightarrow \mu^{+}\mu^{-}$)= (1.07±0.10) x10⁻¹⁰ A.J.Buras: arXiv:1208.0934
 - Taking Bs oscillation into account, measured BR should be compare to: $B(B_s^0 \rightarrow \mu^+\mu^-)_{exp}^{SM} = (3.54 \pm 0.30) \times 10^{-9}$
- Possible new particles in the loops

Very good pace to look for physics beyond SM

Experimental picture

90% C.L. Upper Limits

Justine Serrano

Analysis strategy

Spot the differences

- Geometrical variables: Impact Parameters, Distance of Closest Approach, isolation
- Kinematic variables: Transverse momentum

Results

 $B(B^0 \rightarrow \mu^+ \mu^-) < 9.4 \times 10^{-10}$ at 95% CL (7.1 10⁻¹⁰ expected)

Results published in Phys. Rev. Lett. 110, 021801 (2013)

We still have another 1 fb⁻¹ of data to be analysed

In summary

CP violation in B_s mixing

B_s oscillation studied at high precision at LHCb (arXiv:1304.4741)

NP can enter into the mixing amplitude, accessible via interference

$\varphi_s \text{ in } B_s \! \rightarrow J \! / \! \psi \varphi$

- Interference between mixing and decay gives rise to a CP violating phase ϕ_s
- Very precisely predicted in SM $\phi_s^{SM} \approx -2 \arg\left(\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cs}^*}\right) = 0.036 \pm 0.002 \ rad$

Charles et al, PRD84 (2011) 033005

- $B_s \rightarrow J/\psi \phi$ is a mixing of CP odd and even final state. Need an analysis
 - Time dependent
 - Tagged
 - Full angular
 - Should measure also $\Delta \Gamma_s$

$\varphi_s \text{ in } B_s \! \rightarrow J \! / \psi \varphi$

Phys. Rev. D 87, 112010 (2013)

$\varphi_s \text{ in } B_s \! \rightarrow J \! / \psi \varphi$

• Combined result with $B_s \rightarrow J/\psi \pi\pi$: *arXiv:1304.2600*

 $\phi_s = 0.01 \pm 0.07 \pm 0.01 \text{ rad}$

Good agreement with the SM prediction

The CKM angle γ

 If NP enters only at loop level, it is interesting to compare tree dominated measurements with loop dominated measurements

• Important to improve γ from tree: B \rightarrow DK

γ from B \rightarrow DK

- Many analysis using different methods
- LHCb Combination: $\gamma = (67 \pm 12)^{\circ}$
- Compare to:
 - Belle: (69⁺¹⁷-16) ^o
 - Babar: (68⁺¹⁵-14) ^o
 - Prediction from fit: $(68.6 \pm 3.6)^{\circ}$ UTFIT
 - Prediction from fit: (68.0^{+4.1}-4.6) ° CKMFitter

LHCb-CONF-2013-006

Future: LHCb upgrade

- New physics has not shown itself clearly at the LHC
- Essential to improve measurements of precisely predicted quantities
 Need more statistics: LHCb upgrade
- Installation during LS2: 2018
- Main limitation that prevents expoiting higher luminosity is the hardware trigger limiting the output rate at 1 MHz
- Propose to remove the hardware trigger and read out LHCb at 40MHz crossing rate

 \Rightarrow increase yields by 10-20 at 1-2 10³³ cm²s⁻¹

 \Rightarrow aim to collect 50 fb⁻¹

 LOI submitted to LHCC in March 2011, Framework TDR submitted in may 2012, all detector TDRs by end 2013

What we can expect

• LHCb upgrade: Expect 5 fb⁻¹ per year after 2018

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50 {\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	6.4×10^{-3} [18]	$0.6 imes 10^{-3}$	0.2×10^{-3}	$0.03 imes 10^{-3}$
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$		0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	-	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	-	0.09	0.02	< 0.01
currents	$ au^{ ext{eff}}(B^0_s o \phi \gamma)$	-	0.13%	0.03%	0.02%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25 % [14]	8 %	2.5 %	7 %
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6{ m GeV^2/c^4})$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25 % [16]	8 %	2.5%	$\sim 10 \%$
Higgs	$\mathcal{B}(B^0_s o \mu^+ \mu^-)$	1.5×10^{-9} [2]	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$		$\sim 100\%$	$\sim 35 \%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)}K^{(*)})$	$\sim 20^{\circ} [19]$	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	-	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K^0_S)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [18]	0.40×10^{-3}	0.07×10^{-3}	_
CP violation	ΔA_{CP}	2.1×10^{-3} [5]	$0.65 imes 10^{-3}$	$0.12 imes 10^{-3}$	

LHCD MEATINE

esign Report

Framework

LHCb

Conclusion

- Direct and indirect searches for new physics are both needed and complementary
- LHCb is probing beyond stantard model physics in different ways
- For the moment, the agreement with the SM is very good... but the search has just started!
 - Most of analysis published with <2 fb⁻¹, still more data to analysed
 - LHCb is preparing upgrade for 2019

Success of the indirect method

 Several predictions made in the past ~40 year. As exemple, the charm quark from K decays or top quark through the B⁰ oscillations:

Dominated by the top quark

B⁰B⁰ mixing: ARGUS, 1987 **Phys.Lett.B192:245,1987**

$$\Delta m_B \approx 0.00002 \cdot \left(\frac{m_t}{\text{GeV}/c^2}\right)^2 \text{ps}^{-1}$$

$$\approx 0.5 \text{ps}^{-1}$$
First hint of a really large m_{top}!
directly observed in 1995

Fit projections

NP @ LHCb

A nice signal candidate!

B candidate: $m_{\mu\mu}$ = 5353.4 MeV/c² BDT = 0.826 p_T = 4077.4 MeV/c τ = 2.84 ps muons: $p_{T^{\mu}}$ = 2329.5 MeV/c $p_{T^{\mu}}$ = 4179.4 MeV/c

Analysis strategy

Selection

- muon-based trigger
- Soft selection to reduce size of dataset
- Similar to control channels $(B_{d/s} \rightarrow h^+h^-, B^+ \rightarrow J/\psi K^+)$
- Blind signal region (M_{Bd}-60MeV, M_{Bs}+60MeV)
- Signal and background discrimination:
 - boosted decision tree combining kinematic and geometrical properties
 - Invariant mass
- Data driven calibration through control channels to get signal and background expectations
- Translate number of observed events into branching fraction measurement by normalizing with channels of known BR
- Limit measurement using the modified frequentist CLs method in bins of mass and BDT
- BR measurement using a maximum likelihood fit

Experimental observable

• Neutral B_s^0 mesons undergo mixing:

$$\langle \Gamma(B_s^0(t) \to f) \rangle \equiv R_H^f e^{-\Gamma_H^s t} + R_L^f e^{-\Gamma_L^s t}$$

• Experimental observable is the time integrated *B*:

$$B(B_s^0 \to f)_{\exp} \equiv \frac{1}{2} \int_0^\infty \langle \Gamma(B_s^0(t) \to f) \rangle dt$$

• Theoretical definition for the prediction:

$$B(B_s^0 \to f)_{\text{theo}} \equiv \frac{\tau_{B_s^0}}{2} \langle \Gamma(B_s^0(t) \to f) \rangle \Big|_{t=0}$$

• Time integrated prediction:

De Bruyn et al., PRL 109, 041801 (2012), uses $\Delta\Gamma_s$ from LHCb-CONF-2012-002

CPV in charm decay

$$\Delta(\mathcal{A}^{\rm CP}) = \mathcal{A}^{\rm CP}(D^0 \to K^+ K^-) - \mathcal{A}^{\rm CP}(D^0 \to \pi^+ \pi^-)$$

Results with 2011 data, [LHCb-CONF-2013-003], [arXiv:1303.2614]:

$$\Delta(\mathcal{A}^{CP})_{prompt} = [-0.34 \pm 0.15(stat) \pm 0.10(syst)]\%$$
$$\Delta(\mathcal{A}^{CP})_{semilep} = [0.49 \pm 0.30(stat) \pm 0.14(syst)]\%$$

- Previous evidence not confirmed with update.
- More precise/complementary measurements coming soon.

Upgrade

40 MHz Detector Upgrade

