Nature et masse du neutrino

22^{eme} Congrès Général de la Société Française de Physique

Marseille Juillet 2013

Jose Busto CPPM / Univ. Aix-Marseille

Neutrino

- Quarks up charm top strance bottom down Leptons u-Neutrino electron muon lau The Generations of Matter
- No charge
- Mass ??

Neutrino mixing and oscillations

Pontecorvo – Maki – Nakagawa - Sakata (PMNS) matrix

Neutrinos oscillation experiments

- Solar Neutrinos

- Atmospheric Neutrinos
- Accelerator Neutrinos
- Nuclear Reactor Neutrinos

>
$$m_v \neq 0$$
, $m_v = ???$

Direct measurements of neutrino masses

$$v_e: {}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \overline{v}_e \quad \langle m_e \rangle < 2.2 \,\text{eV}$$

$$\nu_{\mu}: \pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \langle m_{\mu} \rangle < 170 \,\mathrm{keV}$$

$$v_{\tau}: \tau \rightarrow v_{\tau} + 5\pi \langle m_{\tau} \rangle < 18 \,\mathrm{MeV}$$

Beta decay

KATRIN experiment

aim: improvement of m_v by one order of magnitude (2eV \rightarrow 0.2eV)

Dirac neutrino vs Majorana neutrino

Dirac particles

Majorana particles

Special case: particle is it's own anti-particle $\overline{V} \equiv V$

only neutral particles are candidates for beeing Majorana particle

Double Beta Decay

Even - Even nucleous

Double beta decay

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}_e$

Neutrinoless Double beta decay

$$\Delta$$
 L = 2

> Majorana Neutrino $v \equiv \overline{v}$

 $> m_v \neq 0$

Other possible process

$$\succ$$
 RHC (V+A) \rightarrow v_R, $\overline{v_L}$

 \succ Majoron \rightarrow B-L

> Supersymetry

Neutrinoless Double beta decay

Mass Hierarchy

If dominant process : light Majorana ν

Future experiments : start exploring at least the inverse hierarchy area

$(\beta\beta)_{0\nu}$ observables

Angular distribution

Individual electron energy

Allow to distinguish the mechanism

Background : natural radioactivity, radon, neutrons, muons, ββ(2v)

Experimetal techniques

$$T_{1/2}^{0\nu}(y) > \frac{\ln 2 \cdot \mathcal{N}}{k_{C.L.}} \cdot \frac{\varepsilon}{A} \cdot \sqrt{\frac{M \cdot t}{N_{Bckg} \cdot \Delta E}}$$

 $\begin{array}{l} M: \mbox{ masse (g)} \\ \epsilon: \mbox{ efficiency } \\ K_{C.L}: \mbox{ Confidence level } \\ {\cal N}: \mbox{ Avogadro number } \\ t: \mbox{ time (y) } \\ N_{Bckg}: \mbox{ Background events (keV^{-1}.g^{-1}.y^{-1})} \\ \Delta E: \mbox{ energy resolution (keV) } \end{array}$

Calorimeter Semi-conductors (Loaded) Scintillator Bolometers Source = detector

Tracko-calo Source ≠ detector

NEMO-3 detector

20 sectors

Fréjus Underground Laboratory : 4800 m.w.e.

<u>Source</u>: 10 kg of ββ isotopic foils area = 20 m², thickness ~ 60 mg/cm²

Tracking detector:

drift wire chamber operating (9 layers) in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

Calorimeter:

1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: pure iron (d = 18cm) Neutron shield: 30 cm water (ext. wall)

Wire chamber

Calibration tube

NEMO3 results

- Limits on $\beta\beta0\nu$:
- ${100 Mo} T_{1/2} ~(\beta \beta 0 \nu) > 1.0 ~10^{24} ~y~(90\% ~C.L) \\ < m_{\nu} > ~< 0.31 0.96 ~eV$
- $\overset{82}{\sim} Se \ T_{1/2} \ (\beta\beta0\nu) > 3.2 \ 10^{23} \ y \ (90\% \ C.L.) \\ < m_{\nu} > \ < 0.94 2.6 \ eV$
- Phys Rev Lett95(2005)182302

 $\beta\beta2\nu$ periods also measured for many isotopes (¹⁰⁰Mo, ⁸²Se, ¹¹⁶Cd, ⁹⁶Zr, ¹⁵⁰Nd, ⁴⁸Ca, ¹³⁰Te) => constrain nuclear models parameters.

Limits from Majoron (right currents) searches

• Performances correspond to expectations

NEMO 3 → SuperNEMO

NEMO-3		SuperNEMO
¹⁰⁰ Mo	isotope (¹⁵⁰ Nd ou	⁸² Se – option principale 1 ⁴⁸ Ca s'ils peuvent être enrichi
7 kg	masse d'isotope M	100-200 kg
${}^{208}\text{Tl:} < 20 \ \mu\text{Bq/kg} \\ {}^{214}\text{Bi:} < 300 \ \mu\text{Bq/kg} \\ {}^{222}\text{Rn} \sim 4 \ \text{mBq/m}^3$	Contaminations internes ²⁰⁸ Tl et ²¹⁴ Bi dans la feuille source ββ	208 Tl $\leq 2 \mu$ Bq/kg si 82 Se: 214 Bi $\leq 10 \mu$ Bq/kg 222 Rn $< 0,1 m$ Bq/m ³

8% @ 3MeV Résolution en énergie du calorimètre (FWHM) 4% @ 3 MeV

$T_{1/2}(0\nu\beta\beta) > 10^{24}$ ans	$T_{1/2}(0\nu\beta\beta) > 10^{26}$ ans
$< m_{v} > < 0.3 - 0.9 \text{ eV}$	$< m_v > < 0.04 - 0.11 \text{ eV}^{20}$

The CUORE project

The GERmanium Detector Array (GERDA)

Overview

Location LNGS Isotope 17.8 kg (Phase I) and ~40 kg (Phase II) of ⁷⁶Ge Ionization Naked high purity semiconductor diodes placed

in liquid argon

Phase I goals

Exposure 15 kg y Background 10^{-2} cts/(keV kg y) Half-life $T_{1/2} > 2.2 \times 10^{25}$ Majorana mass $m_{ee} < 0.27$ eV

Phase II goals

Exposure 100 kg y Background 10^{-3} cts/(keV kg y) Half-life $T_{1/2} > 15 \times 10^{25}$ Majorana mass $m_{ee} < 0.11$ eV

The EXO-200 Detector

EXO – 200 results

$$\left(T_{1/2}^{0\nu\beta\beta}\right)^{-1} = G^{0\nu} \left| M_{nucl} \right|^2 \langle m_{\beta\beta} \rangle^2$$

From profile likelihood:

(90% C.L.)

Phys. Rev. Lett. 109 (2012) 032505

Conclusion

- Les oscillations ont montré que les neutrinos sont massifs, mais ni l'échelle de masse ni leur hiérarchie est connue précisément.
- Les expériences de mesure directe (KATRIN) sont difficiles mais espèrent gagner un ordre de grandeur sur la masse du neutrino (~0.2 eV).
- La nature du neutrino est une question fondamentale à laquelle les expériences ββ peuvent répondre. Une physique fondamentale, très riche, est également ouverte par ces expériences à basse énergie.
- > Un grand nombre de projet $\beta\beta$ existent mais qui doivent atteindre de valeurs de bruit de fond de plus en plus contraignantes.
- La physique du neutrino à basse énergie peut nous apporter encore beaucoup de surprises.