Ultra-high energy cosmic rays at the Pierre Auger Observatory

Karim Louedec

Laboratoire de Physique Subatomique et de Cosmologie Université Joseph-Fourier, CNRS/IN2P3, Grenoble, France

Mardi 2 juillet 2013

Cosmic ray energy spectrum

Origin of cosmic rays

- flux in power law $J \propto E^{-\gamma}$,
- up to a few 10^{17} eV : \rightarrow galactic,
- beyond a few 10^{18} eV : \rightarrow extragalactic.

Cosmic ray energy spectrum

Up to the knee: direct detection

- outside atmosphere (almost),
- :) \rightarrow particle identification,
- :(\rightarrow only at low energies.

Beyond the knee: indirect detection

- atmospheric showers,
- :) \rightarrow large collecting area,
- :(→ particle identification more difficult.

Indirect detection – Extensive Air Showers

Indirect detection – Extensive Air Showers

Energy spectrum at Ultra-High Energy: status of some years ago

Acceleration – astrophysical shocks (-> Hillas criterion)

$$E_{\rm max} = Z \left(\frac{B}{1\,\mu{\rm G}}\right) \left(\frac{L}{1\,{\rm kpc}}\right) {\rm EeV}$$

Z: particle charge / *L*: size of acceleration region / *B*: magnetic field \rightarrow *candidates:* AGNs, GRBs, young pulsars, etc...

A plenty of questions...

3 observables

arrival direction distribution / primary composition / energy spectrum

- What is the source of ultra-high energy cosmic rays
 - \rightarrow what is the fundamental physics process for ultimate energies ?
 - ightarrow how do they get their energy / acceleration mechanism ?
- What are ultra-high energy cosmic rays
 - \rightarrow which mass composition for primary cosmic rays ?
 - ightarrow does their mass composition changes with the energy ?

Is it possible to identify the source(s) of ultra-high energy cosmic rays ?

charged astronomy: could they be used as astrophysical messengers ?

Currently, two main observatories all around the world

Pierre Auger Observatory (30 x AGASA)

- \rightarrow Mendoza / Argentina,
- ightarrow 3 000 km 2 array,
- ightarrow 500 collaborators / 19 countries,
- ightarrow collecting data since 2004,
- \rightarrow annual expo: $6 \times 10^3 \text{ km}^2 \text{ sr yr.}$

PIERRE AUGER OBSERVATORY

Telescope Array (7 x AGASA)

- \rightarrow Utah / USA,
- \rightarrow 680 km^2 array,
- \rightarrow 140 collaborators / 5 countries,
- \rightarrow collecting data since 2007,
- \rightarrow annual expo: $1.4\times10^3~{\rm km^2\,sr\,yr}.$

1600 water tanks: the Surface Detector / SD

- particle detector array at ground
- emission of Cherenkov light in the water
- 100% duty cycle
- only last stage of shower development observed
- energy scale, hadronic model dependent
- \implies lateral shower profile

Karim Louedec (LPSC / Grenoble)

24 telescopes: the Fluorescence Detector / FD

- views atmosphere above array
- fluorescence light emitted by excited N₂
- 13% duty cycle (nights without moon)
- full observation of longitudinal shower development
- (almost) hadronic model independent
- \implies longitudinal shower profile

The Surface Detector \longrightarrow Lateral profile

Simulated proton shower $E = 10^{19} \text{ eV}, \theta = 45^{\circ}$,

 \rightarrow muonic signals are less dispersed in time, stronger in intensity,

 \rightarrow EM signal is seen as a diffusive background.

The Fluorescence Detector \longrightarrow Longitudinal profile

Longitudinal profile and mass composition

The Fluorescence Detector \longrightarrow Longitudinal profile

Longitudinal profile and mass composition

Karim Louedec (LPSC / Grenoble)

Auger hybrid detector – observables

Karim Louedec (LPSC / Grenoble)

An extensive atmospheric monitoring

- Atmospheric state variables
 - \rightarrow 5 ground-based weather stations,

 \rightarrow balloon lunches.

- Aerosol and cloud monitoring
 - \rightarrow 4 'elastic' lidars,
 - \rightarrow 2 central lasers (CLF/XLF),
 - \rightarrow 2 optical telescopes (HAM/FRAM),
 - \rightarrow 2 aerosol phase functions (APF),
 - \rightarrow 4 IR cameras,
 - \rightarrow ... and soon, a Raman lidar.

Mass composition – evolution with the energy

 \rightarrow longitudinal development: $X_{\rm max} \propto \log A$

 \rightarrow only hybrid data (13% of the whole Auger data set),

 \rightarrow transition from a mixed or light to a heavy composition at highest energies.

P Facal, for the Pierre Auger Coll., 32nd ICRC, Beijing (2011) Pierre Auger Observatory

Energy spectrum – spectral features

 \rightarrow cutoff in the flux observed around 6×10^{19} eV with a high significance,

- \rightarrow high energy flux drops at different energies,
- ightarrow Auger and Telescope Array: northern sky and southern sky events different ?
- ightarrow origin of this cutoff: does it come mainly from the source or from the propagation ?

Karim Louedec (LPSC / Grenoble)

Energy spectrum – possible astrophysics scenarios

Upper end of source energy spectrum ? Single local source without GZK ?

 \rightarrow mixed composition similar to galactic,

 $\rightarrow E_{\rm max} = Z \times 4 \times 10^{18}$ eV,

 \rightarrow hard spectral index at sources ($\gamma = 1.6$),

\rightarrow superposition of upper energy limit and GZK suppression (Allard)

- \rightarrow ankle would be transition p to He/CNO,
- \rightarrow 2nd knee as transition gal to X-gal,

 \rightarrow single local source dominating, GZK unimportant (*Aloisio et al.*)

Karim Louedec (LPSC / Grenoble)

Anisotropy – arrival directions of highest energy events

- \rightarrow search for anisotropy using nearby AGN (Veron-Cetty Veron catalog),
- \rightarrow AGNs trace the nearby extragalactic matter,
- \rightarrow scan over a three dimensional parameter space: $E \geq 57$ EeV, $z \leq 0.018, \, \psi \leq 3.1^\circ$

28 out of 84 correlate, $\mathsf{P}_{\mathrm{chance}}=1\%$

11 out of 25 correlate, $\mathsf{P}_{\mathrm{chance}}=2\%$

- ightarrow weaker (but still significant) AGN correlation than previously published,
- ightarrow excess around the Centaurus A vicinity.

The Pierre Auger Collaboration, Astropart. Phys. 34 (2010) 314–326

Karim Louedec (LPSC / Grenoble) UHECR @ the Pierre Auger Observatory Congrès SFP – Marseille 15 / 18

Anisotropy – arrival directions of highest energy events

- \rightarrow search for anisotropy using nearby AGN (Veron-Cetty Veron catalog),
- \rightarrow AGNs trace the nearby extragalactic matter,
- \rightarrow scan over a three dimensional parameter space: $E \ge 57$ EeV, $z \le 0.018$, $\psi \le 3.1^{\circ}$

- ightarrow weaker (but still significant) AGN correlation than previously published,
- \rightarrow excess around the Centaurus A vicinity.

The Pierre Auger Collaboration, Astropart. Phys. 34 (2010) 314–326

Karim Louedec (LPSC / Grenoble) UHECR @ the Pierre Auger Observatory Congrès SFP – Marseille 15 / 18

Summary

- \rightarrow a cutoff is clearly observed in the energy spectrum at 6×10^{19} eV,
- \rightarrow transition from a mixed or light to a heavy composition at highest energies,
- \rightarrow ... and no photons/neutrinos detected at ultra-high energies (upper limits),
- \rightarrow an anisotropy is still observed at UHE, but the sources are not yet identified.

A plenty of questions... (still)

- \rightarrow what is the source of ultra-high energy cosmic rays ?
- \rightarrow how do they get their energy ?
- ightarrow what are the processes involved in the cutoff in flux ?

Is it possible to identify the source(s) of ultra-high energy cosmic rays ?

proton astronomy ?

The Pierre Auger Observatory – beyond 2015

improve cosmic ray composition measurement seems to be the key

- composition at low energies 10^{17} to a few 10^{18} eV
 - \rightarrow search cutoff of proton spectrum,
 - \rightarrow improve sensitivity to photons from GZK effect,
 - \rightarrow fluorescence telescopes and surface detectors for lower energies
- composition at highest energies need a composition estimation event-by-event
 - \rightarrow search for small proton fraction at higher energies proton astronomy ?,
 - \rightarrow investigate the end of the spectrum and compatibility with iron primaries,
 - \rightarrow particle physics and proton–air cross section,

 \rightarrow several possibilities: modified SD, scintillator array, radio antenna MHz/GHz, etc...

search protons and study their anisotropy at highest energies

Thanks for your attention !