Introduction	Improving calibration	Update of cosmological constraints	Conclusion
●00000	0000	000	0

Cosmological Constraints from SNLS/SDSS: Pushing down the Systematics

$\label{eq:marcBetoule} \begin{array}{c} \mbox{Marc Betoule} \\ \mbox{on behalf of the SNLS/SDSS JLA collaboration} \end{array}$

LPNHE

Marseille, SFP 2013

Probe of the expansion history at late time

- Independent of the CMB
- Very complementary for dark energy studies

$$d_L(z) = (1+z)\frac{c}{H_0} \int dz \left(\Omega_m (1+z)^3 + \Omega_x (1+z)^{3(1+w)}\right)^{-1/2} \quad \text{with: } w = \frac{p_x}{\rho_x}$$

Update of cosmological constraints 000

Conclusion O

SNLS3 and measurement systematics

SNLS3 Analysis (Guy et al. 2010, Conley et al. 2011, Sullivan et al. 2011)

- Systematic uncertainties: half of the error budget
- Mostly photometric calibration

Highest priority: tackling measurement systematics

Introduction	Improving calibration	Update of cosmological constraints	Conclusion
000000	0000	000	0

The measurement basics

Required ingredients

Introduction	Improving calibration	Update of cosmological constraints	Conclusion
000000	0000	000	0

The measurement basics

Required ingredients

- Being able to measure flux ratios between different observer-frame band
 - \rightarrow inter-calibration

Introduction	Improving calibration	Update of cosmological constraints	Conclusion
000000	0000	000	0

The measurement basics

Required ingredients

• Being able to measure flux ratios between different observer-frame band

\rightarrow inter-calibration

• Being able to interpolate in time and wavelength

 $\rightarrow \mathsf{Light}\mathsf{-}\mathsf{curve} \,\,\mathsf{model}$

Working on measurement systematics

SNLS/SDSS collaboration: Joint Light-curve Analysis

- Transverse WG joining the two main SNe-Ia surveys
- Started in June 2010
- Share data, code and expertise

Two main axes:

- Photometric calibration
 - Joint calibration paper
 - Blind in regard to cosmology
 - Concluded at the end of 2012
- Model systematics
 - intrinsic dispersion of SNe-Ia
 - light-curve fitter biases

Betoule et al. (2013), A&A 552

Introduction	Improving calibration	Update of cosmological constraints	Conclusion
000000	0000	000	0

Outline

1 Introduction

- 2 Improving calibration
- Opdate of cosmological constraints

4 Conclusion

Introduction	Improving calibration	Update of cosmological constraints	Conclusion
000000	●000	000	0

What is calibration ?

I) Characterization of the instrument response

• Enable measurement of **flux ratios** in a single image

Introduction	Improving calibration	Update of cosmological constraints	Conclusion
000000	●000	000	0

What is calibration ?

I) Characterization of the instrument response

• Enable measurement of **flux ratios** in a single image

II) Calibration transfer

- HST standard stars as primary calibration source
- Enable comparison of flux in different bands/instruments

Introduction	Improving calibration	Update of cosmological constraints	Conclusion
000000	•000	000	0

What is calibration ?

I) Characterization of the instrument response

• Enable measurement of **flux ratios** in a single image

II) Calibration transfer

- HST standard stars as primary calibration source
- Enable comparison of flux in different bands/instruments

Result I: "Flat-fielding" 2 wide-field camera at 0.3%

Comparison of SDSS/SNLS photometry

- SNLS and SDSS flat-fields obtained independently
- Achievement of wider interest (e.g. Photo-z)

Result II: $\sim 0.5\%$ accuracy in absolute calibration

Short and redundant paths for calibration transfer

New data

- Direct observation of HST stars
- Direct SNLS/SDSS cross-calibration

Enable:

- Comparison of several paths
- 0.3% accuracy in gri

Final uncertainty dominated by HST calibration

Introduction	Improving calibration	Update of cosmological constraints	Conclusion
000000	000●	000	0

In Summary

New SNLS and SDSS calibration

- More robust
- More accurate

Changes at the percent level

band	g	r	i	Ζ
ΔZ_{SNLS} (mmag)	-12.9	-0.9	1.3	-17.9
ΔZ_{SDSS} (mmag)	-4.0	0.0	0.0	-6.0

Thanks to

- New and better calibration data
- Correction of instrumental effects
 - filter aging
 - improved flat-fielding
 - PSF size variation (with color, flux ...)

roduction	Improving calibration	Update of cosmological constraints
00000	0000	•00

The recalibrated JLA Hubble diagram

- Low-z+SNLS3+SDSS3+HST
- SNLS and SDSS sample firmly tied together by the joint calibration

Impact of recalibration on the uncertainty in distance ratios

• Dominated by the uncertainty on HST calibration

Conclusion

Introduction	Improving calibration	Update of cosmological constraints	Conclusion
000000	0000	000	0

ACDM constraints

SNe-Ia/CMB tension on the Ω_m measurement noticed in Planck papers

- No need for new physics
- Solvable in:
 - SALT2/SiFTO differences
 - Calibration changes

Dark Energy constraints in combination with CMB (flat universe)

- Improved CMB constraints from Planck
- Improvement on SNe-Ia systematics from the JLA work
- Accuracy on *w* reaches 5.6%
- Compatible with a cosmological constant

Introduction	Improving calibration	Update of cosmological constraints	Conclusion
000000	0000	000	•

Conclusion

Current SNe-Ia data do not require anything else than ACDM

- Improved accuracy on photometric calibration
- Best constraints on w from the combination of CMB+BAO+JLA: 5.6%
- Paper in prep.

Going further with SNe-Ia

- Forthcoming new data
 - SNLS5 spectroscopic sample close to ready
 - New low-z data available
- Important pending questions
 - Supernovae evolution
 - Nature of the color law and its variations
 - Nature of the luminosity-host properties relation
- Upcoming surveys (DES, LSST, EUCLID) with important improvements
 - $\bullet \ \text{wider-deeper} \to \text{increased statistic} \\$
 - Infrared photometry
 - Associated with instrumental calibration projects

THANK YOU

Error estimate: Comparing SALT2 and SiFTO (SNLS3)

More physical assumptions / less free parameters in SiFTO

- Stretch model
- Based on a spectral template, recalibrated with few parameters.

Testing SALT2 with simulations (Mosher et al. in prep.)

Adress concerns such as

- Is the method flexible enough to fit different models
- How much bias is introduced by regularization for missing data
- Dependencies on assumptions on the intrinsic variability

Preliminary results: General validation of the method

• Bias on distance modulii at the 2% level ($\sim 2\times$ smaller than the Salt/Sifto difference)

Combination with latest CMB results and BAO

choosing good references

"Observable" to ease the transfer

19/26

Adressing new small effects

- Better understanding of fine photometry effects
 - Aperture corrections
 - Background residuals
 - PSF variations

Calibration overview

- well understood
- reasonably well understood (color transformation of the standard star + internal systematics)
- recipe taken from C11

BD17

Relation to the host Galaxy properties (e.g. Sullivan et al. 2010)

• SNe-Ia in massive (older) hosts appears in average brighter at 4σ

Solution: Add the host properties as an observable in the cosmological fit.

New MegaCam filter measurements

New MegaCam filter measurements

New MegaCam filter measurements

