

Les données du Web : quand nos vies numériques deviennent des bases des connaissances

Serge Abiteboul INRIA & ENS Cachan

@sergeabiteboul

1. The context

- 2. The Pims
- 3. The Pims are arriving
- 4. The advantages
- 5. From information to knowledge
- 6. Conclusion

Managing your digital life with a Personal information management system, with Benjamin André & Daniel Kaplan, to appear in Communications of the ACM ERC Webdam, http://webdam.inria.fr

Data explosion

- Data and metadata we produce
 - Pictures, reports, emails, tweets, annotations, recommendation, social network...
- Data we like/buy
 - Books, music, movies...
- Data various organizations & vendors produce about us
 - Public administration, schools, insurances, banks...
 - Amazon, retailers, netflix, applestore...
- Data that sensors capture with/without our knowledge
 - GPS, web navigation, phone, "quantified self" measurements, contactless card readings, surveillance camera pictures...
- Others data: work, social contacts, friends, family
- Security data: credentials on various systems

• • • •

Data dispersion

Computer, systems, clouds, devices (phone, tablet, car...)...

- Residential boxes (tvbox), NAS, electronic vaults...
- Mail, address book, agenda, todo-lists
- Facebook, LinkedIn, Picasa, YouTube, Tweeter
- Amazon (books), iTunes (music), Netflix (movies)
- Svn, Google docs, Dropbox
- Government & business services
- Also machine and systems from
 - family, friends, associations, work
- Systems even unknown to the user
 - third party cookies

Data heterogeneity

Type: text, relational, HTML, XML, pdf...

Terminology/structure/ontology

Systems: MS, Linux, IOS, Android

Distribution

Security protocols

Quality: incomplete / inconsistent information

Bad news

- Limited functionalities because of the silos
 - Difficult to do global search, synchronization, task sequencing over distinct systems...
- Loss of control over the data
 - Difficult to control privacy
 - Leaks of private information
- Loss of freedom
 - Vendor lock-in

Alternatives

- 1. Continue with this increasing mess
 - Use a shrink to overcome frustration
- 2. Regroup all your data on the same platform
 - Google, Apple, Facebook, ..., a new comer
 - Use a shrink to overcome resentment
- 3. Study 2 years to become a geek
 - Geeks know how to manage their information
 - Use a shrink to survive the experience
- 4. And, of course, there is the Pims' way

Information is a vital asset
We have little control over our personal info

Thesis 1: We should regain control of our information, e.g., with PTMS

The Pims

- Personal information management system
- What is a successful Web service today
 - Some great software
 - Some machines on which it runs
 - And a business model
- Separate the first two facets
 - Some company provides the software
 - It runs on your machine
 - With a business model

The Pims

- The user selects a server
 - The user owns/pays for a hosted server
 - Physically located at the user's home (e.g., a tvbox) or not
 - Running on a single machine or distributed
 - On the cloud so reachable from anywhere
- The Pims runs the application software
 - The user chooses the code to deploy on the server
 - The software is open source, a requirement for security
- The Pims manages the user's data
 - All the user's personal information
 - Possibly replicated from external services

The Pims: the 2 main issues

Security

- Hard to be riskier than today's model
- The Pims is ran by a professional operator
- Data of different users are isolated

System administration

- It should require epsilon competence
- It should be epsilon work

- 1. The context
- 2. The Pims
- 3. The Pims are arriving 3 angles
 - a) Society
 - b) Technology
 - c) Industry
- 4. The advantages
- 5. From information to knowledge
- 6. Conclusion

Society is ready to move

- Growing resentment
 - Against companies: intrusive marketing, cryptic personalization and business decisions (e.g., on pricing), creepy "big data" inferences
 - Against governments: NSA and its European counterparts)
- Increasing awareness of the dissymmetry
 - between what these systems know about a person, and what the person actually knows
- Emerging understanding of the value of personal data for individuals
 - Quantified self

Society is ready to move (2)

- Privacy control: regulations in Europe
- Information symmetry: Vendor relation management
- Many reports/proposals that affirm the ownership of personal data by the person
- Personal data disclosure initiatives
 - Smart Disclosure (US); MiData (UK), MesInfos (France)
 - Several large companies (network operators, banks, retailers, insurers...) agreeing to share with customers the personal data that they have about them

Technology is gearing up

- System administration is easier
 - Abstraction technologies for servers
 - Virtualization and configuration management tools
- Open source technology more and more available for services
- Price of machines is going down
 - A hosted-low cost server is as cheap as 5€/month
 - Paying is no longer a barrier for a majority of people

You may have friends already doing it

Technology is gearing up (2)

- Many systems & projects
 - Lifestreams, Stuff-I've-Seen, Haystack, MyLifeBits, Connections, Seetrieve, Personal Dataspaces, or deskWeb.
 - YounoHost, Amahi, ArkOS, OwnCloud or Cozy Cloud
- Some on particular aspects
 - Mailpile for mail
 - Lima for a Dropbox-like service, but at home.
 - Personal NAS (network-connected storage) e.g.
 Synologie
 - Personal data store SAMI of Samsung...
- Many more

- E.g., hotels or banks
- Disintermediated from their customers by pure Internet players such as Google, Amazon, Booking.com, Mint.
- In Pims, they can rebuild direct interaction
- The playing field is neutral
 - Unlike on the Internet where they have less data
- They can offer new services without compromising privacy

- Many boxes deployed at home or in datacenters
 - Internet access provider "boxes", NAS servers, "smart" meters provided by energy vendors, home automation systems, "digital lockers"...
- Personal data spaces dedicated to specific usage
- Could evolve to become more generic
- Control of private Internet of objects

- Amazon: great know-how in providing services
- Facebook, Google: cannot afford to be out of a movement in personal data management
- Very far from their business model based on personal advertisement
- Moving to this new market would require major changes & the clarification of the relationship with users w.r.t. data monetization

Advantages – rebalance the Web

- User control over their data
 - Who has access to what, under what rules, to do what
- User empowerment
 - They choose freely services & they can leave a service
- Participation to a more "neutral" Web
 - With the "network effects", the main platforms are accumulating data/customers and distorting competition
 - The Pims bring back fairness on the Web
 - Good practices are encouraged, e.g., interoperability, portability

Advantages – new functionalities

- Semantic global search with (personal) ontology
- Synchronization/backups across services
- Access control management across services
- Task sequencing across services
- Exchange of information between "friends"
- Connected objects control, a hub for the IoT
- Personal big data analysis

This is getting too complicated for humans We need the support of machines

Thesis 2: We should turn the Web into a distributed knowledge base

People like text but machines prefer data/knowledge

- Integration of information sources
 - It is easier to integrate knowledge than information
- Collaboration between services & devices
 - It is easier for services to collaborate using knowledge than with information
- Problem solving based on knowledge inference

Where can we find knowledge?

- In encyclopedia,
- In recommendations,
- In databases,
- In social networks,
- In personal data,
- In the crowd,

•

e.g., Wikipedia

e.g., TripAdvisor

e.g., IMDb

e.g., Facebook

e.g., Calendar, mail

e.g., Mechanical Turk

But often under the form of text

Digression: How is knowledge acquired?

- Edited by humans rarely
- Extraction by machines from text
 - In the style of Yago's extraction for Wikipedia
- By aligning different ontologies
 - Alignment between ontologies (Paris system)
- Production by services
- Mining by data analysis/mining
- Inference of knowledge (inference engines)

Most of the knowledge is produced by machines

The thesis

We should turn the Web into a distributed knowledge base with machines/systems

- Storing knowledge
- Producing knowledge
- Extracting knowledge
- Reasoning
- Exchanging knowledge

We need a simple language for distributed knowledge processing

Work on Webdamlog

Conclusion: The two thesis of this talk

- 1. We should regain control of our information, e.g., with PIMS
- 2. We should turn the Web into a distributed knowledge base where peers share facts and rules, and collaborate

Many R&D issues to consider

- The data is out there open world
- Data is imprecise, possibly missing, inconsistent
- Users want explanations
- Privacy should be guaranteed
- Too much adapted to you may be boring serendipity
- What to forget hypermnesia

http://abiteboul.com @sergeabiteboul binaire.blog.lemonde.fr