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CMB reconstruction: 
ICA Approach  

PolEMICA's algorithm

POLarized Expectation-Maximization Independent Component Analysis
adaptation to polarization of the Spectral Matching ICA (SMICA) algorithm
[Delabrouille et al. 2003]

Expectation-Maximization (EM) algorithm [Dempster et al. 1977]
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Application to 21cm data cube

• Data model: V(u,v,𝜈)= s(u,v,𝜈)+ ∑M𝜈c.fc(u,v) +n(u,v,𝜈) "

• Power spectrum: <ss*>= F‖†P3D(k)F‖; <fcfc*>= Cc(l)"

• Semi-Blind search: find the best-fitted P3D(k), C(l) 
and M to data without any assumption about 
foregrounds and signal and only fix N=<nn*>"

• Instrument effects: beam pattern, bandpass and 
frequency-dependent uv-coverage could mix the 
angular Fourier modes and radial Fourier modes. 
We will consider these effects in future



The EM algorithm

An optimal estimate of , can be obtained by maximizing its incomplete log-
likelihood function,

However, in many practical cases, this function is complex and difficult to work with
and it is more convenient to solve the complete-data problem.

The EM algorithm permits to solve the incomplete data problem. It is an iterative
algorithm which generates a sequence of approximations to find the maximum observed
likelihood estimator when only partial information is available, by marginalizing at each
iteration over the missing data.

At iteration of the algorithm we can write

(5)

where is a mapping function, named the re-estimation transformation. After the
initialization to an arbitrary point , the new estimate of is computed using
equation (5), until a fixed point is obtained such that . The mapping is
performed in two steps

• -step: Computation of
• M-step: Find

where and denote the incomplete and the complete probability
distributions respectively.

A fundamental property of the EM algorithm is the fact that it ensures the
monotonous increasing of the incomplete likelihood function. Any value of
such that increases as well the incomplete log-likelihood, ,

. Moreover, is a critical point of the incomplete likelihood
if and only if it is a fixed point of the re-estimation transformation, . A more de-
tailed description of the convergence properties of the EM algorithm can be found in [8].

Basic steps in the EM algorithm
The implementation of the EM algorithm starts by choosing an initial guess for the

unknown parameters, , which is used in the first iteration of the algorithm. Then, at
each iteration the following basic steps are performed

• i) .
• ii) -step: Compute .
• iii)M-step: Find such that for all .

The iterative procedure is stopped when a fixed point is reached so that .

Penalized EM algorithm

as:

Because of this independence, is replaced by the integer index and is a
fixed arbitrary arrangement, where is the number of Fourier modes.
We can write the complete data probability distribution as

so that, the complete log-likelihood function is given by

(6)

Implementation of the Spectral EM algorithm

The functional is given by

and using equation 6, we get,

Tr

where

(7)

To obtain the parameter at iteration , we solve the following
gradient equations with respect to and in order to maximize the functional .



y=As+n   Consider a probability model p(y, s|θ) for a pair (y, s) of random variables with θ a parameter 
set. The maximization of the log-likelihood l(θ) can be made easier by considering the EM functional:	
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• The real part and the imaginary part of ỹ(f) are Gaus-
sian, uncorrelated, with the same covariance matrix and
Eỹ(f)ỹ(f)† = R(f).

• For 0 < p ̸= p′ < T/2 (assuming T even and for p, p′

integers), ỹ(p/T ) is uncorrelated with ỹ(p′/T ).

This is a standard approximation: it has been used for the
blind separation of noise free mixtures of components by
Pham & Garat (1997) and in the context of astronomi-
cal component separation by e.g.Bouchet & Gispert (1999);
Tegmark & Efstathiou (1996).

Expression (B3) thus shows3 that the minimization
of (12) is equivalent to maximizing (the Whittle approxi-
mation to) the likelihood provided we model the spectra of
the sources as being constant over spectral domains.

APPENDIX C: AN EM ALGORITHM IN THE

SPECTRAL DOMAIN

The Expectation-Maximization (EM) algorithm (Dempster
et al. 1977) is a popular technique for computing maximum
likelihood estimates. This section first briefly reviews the
general mechanism of EM and then shows its specific form
when applied to our model.

The EM algorithm. Consider a probability model
p(y, s|θ) for a pair (y, s) of random variables with θ a param-
eter set. If the variable s is not observed, the log-likelihood
of the observed y is

l(θ) = log p(y|θ) = log

∫
p(y, s|θ)ds (C1)

For some statistical models, the maximization of the log-
likelihood l(θ) can be made easier by considering the EM
functional:

l(θ, θ′) =

∫
log(p(y, s|θ)) p(s|y, θ′)ds. (C2)

The EM algorithm is an iterative method which computes
a sequence of estimates according to:

θ(n) → θ(n+1) = arg max
θ

l
(
θ, θ(n)

)
(C3)

It can be shown that

l(θ′′, θ′) > l(θ′, θ′) ⇒ l(θ′′) > l(θ′) (C4)

meaning that every step of the algorithm can only increase
the likelihood. Actually, a stationary point of the algorithm
also is a stationary point of the likelihood since

∂l(θ)

∂θ
=

∂l(θ, θ′)

∂θ

∣∣∣∣
θ′=θ

(C5)

The EM algorithm is an interesting technique for maximiz-
ing the likelihood if i) the computation of the conditional
expectation in definition (C2) (E step) is and ii) the maxi-
mization (C3) of the functional (M step) are computation-
ally tractable.

3 Actually some care is required to deal with the fact that the
Fourier coefficients are complex-valued and that ỹ(−f) = ỹ(f)⋆.
This introduces some minor complications in the computations
but does not affect the final result.

Both the E step and the M step turn out to be straight-
forward because one elementary EM step amounts to solv-
ing:

0 =

∫
∂ log(p(y, s|θ(n+1)))

∂θ
p(s|y, θ(n)) ds. (C6)

In our model, the partial derivative in (C6) turns out to
be a simple function of y and s, allowing the conditional
expectation to be easily computed and eq. (C6) to be easily
solved. This is sketched in the following.

A single Gaussian vector. In order to introduce the nec-
essary notations, we start by considering a simple case where
y = As+n where s and n are independent Gaussian vectors
with zero-mean and covariance matrices equal to Rs and Rn

respectively. Then the parameter set is θ = (A, Rs, Rn) and
one has

−2 log p(y|s, θ) = (y − As)†R−1
n (y − As) + log |Rn| + cst

−2 log p(s|θ) = s†R−1
s s + log |Rs| + cst

Using p(y, s) = p(y|s)p(s), the log derivatives of the joint
density with respect to the components of θ are:

∂ log p(y, s|θ)
∂A

= R−1
n

[
(y − As)s†

]
(C7)

∂ log p(y, s|θ)
∂R−1

n

= −1
2

[
(y − As)(y − As)† − Rn

]
(C8)

∂ log p(y, s|θ)
∂R−1

s

= −1
2

[
ss† − Rs

]
(C9)

Thus, in this simple model, computing the conditional ex-
pectations as in eq. (C6) would boil down to evaluating the
conditional expectations of the random variables ss†, sy†,
ys† and yy†. This is a routine matter in a Gaussian model
y = As + n for which one finds:

E(ss†|y, θ) = W (θ)yy†W (θ)† + C(θ) (C10)

E(sy†|y, θ) = W (θ)yy† (C11)

E(ys†|y, θ) = yy†W (θ)† (C12)

E(yy†|y, θ) = yy† (C13)

with the following definitions for matrices C(θ) and W (θ):

C(θ) = (A†R−1
n A + R−1

s )−1 (C14)

W (θ) = (A†R−1
n A + R−1

s )−1A†R−1
n (C15)

Note that C(θ) = Cov(s|y, θ) and that W (θ) is the Wiener
filter, that is E(s|y, θ) = W (θ)y.

The EM algorithm in the Whittle approximation

In our model, according to the Whittle approximation, the
DFT points y(k) are independent so that the EM func-
tional (C2) for the whole data set simply is a sum over
DFT frequencies of elementary functionals. Thus an EM
step θ′ → θ consists in solving

0 =
∑

k

E
{

∂
∂θ

log p (y(k), s(k)|θ) | y(k), θ′
}

. (C16)

To proceed further, eq. (C16) is specialized to the case of
interest by using two ingredients. First, we use the rela-
tion y(k) = As(k) + n(k) and the Gaussianity of each pair
(y(k), s(k)); this is expressed via eqs. (C7-C9). Second, we
use the approximation that the power spectra are constant
over each spectral domain. Combining these properties, the

Both the E step and the M step turn out to be straight- forward; EM step amounts to solving
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update scheme:
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cancellation (C16) of the gradient with respect to A, Rn and
each Rs(q) yields

0 = R̃ys(θ
′) − A(θ)R̃ss(θ

′) (C17)

0 = R̃yy(θ′) − A(θ)R̃sy(θ′) − R̃ys(θ
′)A(θ)†

+A(θ)R̃ss(θ
′)A(θ)† − Rn (C18)

0 = R̃ss(θ
′, q) − Rs(θ, q) (q = 1, . . . , Q) (C19)

where we have defined the matrix

R̃ss(θ, q) =
1
nq

∑

k∈Dq

E
(
s(k)s(k)†| y(k), θ

)
(C20)

and its weighted average over all domains

R̃ss(θ) =

Q∑

q=1

nq

n
R̃ss(θ, q). (C21)

The same definitions hold for R̃sy(q, θ) (resp. R̃yy(q, θ))
as an averaged conditional expectation of s(k)y(k)† (resp.

y(k)y(k)†) and R̃sy(θ) (resp. R̃yy(θ)) as its weighted aver-
age over spectral domains.

Equations (C17-C19) are readily solved for uncon-
strained A, Rn and Rs(q). Recall however that our model
involves diagonal covariance matrices so that the actual pa-
rameter set is (A,Cj(q), σ

2
d)). This constraint, however, pre-

serves the simplicity of the solution of the M step since it
suffices to use the diagonal parts of the solutions of (C17-
C19). Thus, the M step boils down to

A = R̃ys(θ
′)R̃ss(θ

′)−1 (C22)

σ2
i =

[
R̃yy(θ′) − R̃ys(θ

′)R̃ss(θ
′)−1R̃sy(θ′)

]

ii
(C23)

Pi(q) = [R̃ss(θ
′, q)]ii (C24)

The E-step of the algorithm essentially consists in com-
puting the conditional covariance matrices R̃××(q). In this
step again, the linearity and the Gaussianity of the model,
together with the domain approximation, again provides us
with significant computational savings. Indeed, matrices C
and W defined at eqs. (C14) and (C15) are actually con-
stant over each spectral domain so that the E-step is imple-
mented by the following computations which directly stem
from (C14-C15) and from eqs.(C10-C13) :

C(q) = (A†R−1
n A + Rs(q)

−1)−1 (C25)

W (q) = (A†R−1
n A + Rs(q)

−1)−1A†R−1
n (C26)

R̃ss(q) = W (q)R̂y(q)W (q)† + C(q) (C27)

R̃sy(q) = W (q)R̂y(q) (C28)

From this, one easily reaches the EM algorithm as de-
scribed at algorithm 1. The description of this procedure is
completed by specifying the initialization, the rescaling of
the parameters and the stopping rule, as briefly discussed
next.

Some comments on EM implementation

Rescaling is required because, as noted above, the model
is not completely identifiable: the spectral density matrices
RY are unaffected by the exchange of a scalar factor between
each column of A and each component’s power spectrum.
We have found that this inherent indetermination must be
fixed in order for EM to converge. Our strategy is, after each

EM step, to fix the norm of each column of A to unity and to
adjust the corresponding power spectra accordingly. This is
an arbitrary choice which happens to work well in practice.

The algorithm is initialized with the following parame-
ters. We take Rn to be diag(R̂y) where R̂y =

∑
q

nq

n
R̂y(q).

This is a gross overestimation since it amounts to assume
no signal and only noise. The initial value of A is obtained
by using the Nc dominant eigen-vectors of R̂y as the Nc

columns of A. Again, this is nothing like any real estimate of
A, but rather a vague guess in ‘the right direction’. Finally,
the spectra Pi(q) are taken as to be the diagonal entries of

A†R̂y(q)A which would be a correct estimate in the noise
free case if A itself was. This ad hoc initialization procedure
seems satisfactory. Note that it is a common rule of thumb
to initialize EM with overestimated noise power.

Regarding the stopping rule, recall (from sec. 3.3) that
the EM algorithm is only used ‘halfway’ to the maximum
of the likelihood and maximization is completed by a quasi-
Newton technique For this reason, there is little point in
devising a sophisticated stopping strategy: in practice, the
algorithm is run for a pre-specified number of steps (based
on a few preliminary experiments with the data).
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tov V. V., Kaplan J., Lagache G., Lamarre J.-M., Lange
A. E., Madet K., Maffei B., Marrone D., Masi S., Murphy
J. A., Naraghi F., Nati F., Perrin G., Piat M., Puget J.-L.,

14 J. Delabrouille, J.-F. Cardoso, G. Patanchon

cancellation (C16) of the gradient with respect to A, Rn and
each Rs(q) yields

0 = R̃ys(θ
′) − A(θ)R̃ss(θ

′) (C17)

0 = R̃yy(θ′) − A(θ)R̃sy(θ′) − R̃ys(θ
′)A(θ)†

+A(θ)R̃ss(θ
′)A(θ)† − Rn (C18)

0 = R̃ss(θ
′, q) − Rs(θ, q) (q = 1, . . . , Q) (C19)

where we have defined the matrix

R̃ss(θ, q) =
1
nq

∑

k∈Dq

E
(
s(k)s(k)†| y(k), θ

)
(C20)

and its weighted average over all domains

R̃ss(θ) =

Q∑

q=1

nq

n
R̃ss(θ, q). (C21)

The same definitions hold for R̃sy(q, θ) (resp. R̃yy(q, θ))
as an averaged conditional expectation of s(k)y(k)† (resp.

y(k)y(k)†) and R̃sy(θ) (resp. R̃yy(θ)) as its weighted aver-
age over spectral domains.

Equations (C17-C19) are readily solved for uncon-
strained A, Rn and Rs(q). Recall however that our model
involves diagonal covariance matrices so that the actual pa-
rameter set is (A,Cj(q), σ

2
d)). This constraint, however, pre-

serves the simplicity of the solution of the M step since it
suffices to use the diagonal parts of the solutions of (C17-
C19). Thus, the M step boils down to

A = R̃ys(θ
′)R̃ss(θ

′)−1 (C22)

σ2
i =

[
R̃yy(θ′) − R̃ys(θ

′)R̃ss(θ
′)−1R̃sy(θ′)

]

ii
(C23)

Pi(q) = [R̃ss(θ
′, q)]ii (C24)

The E-step of the algorithm essentially consists in com-
puting the conditional covariance matrices R̃××(q). In this
step again, the linearity and the Gaussianity of the model,
together with the domain approximation, again provides us
with significant computational savings. Indeed, matrices C
and W defined at eqs. (C14) and (C15) are actually con-
stant over each spectral domain so that the E-step is imple-
mented by the following computations which directly stem
from (C14-C15) and from eqs.(C10-C13) :

C(q) = (A†R−1
n A + Rs(q)

−1)−1 (C25)

W (q) = (A†R−1
n A + Rs(q)

−1)−1A†R−1
n (C26)

R̃ss(q) = W (q)R̂y(q)W (q)† + C(q) (C27)

R̃sy(q) = W (q)R̂y(q) (C28)

From this, one easily reaches the EM algorithm as de-
scribed at algorithm 1. The description of this procedure is
completed by specifying the initialization, the rescaling of
the parameters and the stopping rule, as briefly discussed
next.

Some comments on EM implementation

Rescaling is required because, as noted above, the model
is not completely identifiable: the spectral density matrices
RY are unaffected by the exchange of a scalar factor between
each column of A and each component’s power spectrum.
We have found that this inherent indetermination must be
fixed in order for EM to converge. Our strategy is, after each

EM step, to fix the norm of each column of A to unity and to
adjust the corresponding power spectra accordingly. This is
an arbitrary choice which happens to work well in practice.

The algorithm is initialized with the following parame-
ters. We take Rn to be diag(R̂y) where R̂y =

∑
q

nq

n
R̂y(q).

This is a gross overestimation since it amounts to assume
no signal and only noise. The initial value of A is obtained
by using the Nc dominant eigen-vectors of R̂y as the Nc

columns of A. Again, this is nothing like any real estimate of
A, but rather a vague guess in ‘the right direction’. Finally,
the spectra Pi(q) are taken as to be the diagonal entries of

A†R̂y(q)A which would be a correct estimate in the noise
free case if A itself was. This ad hoc initialization procedure
seems satisfactory. Note that it is a common rule of thumb
to initialize EM with overestimated noise power.

Regarding the stopping rule, recall (from sec. 3.3) that
the EM algorithm is only used ‘halfway’ to the maximum
of the likelihood and maximization is completed by a quasi-
Newton technique For this reason, there is little point in
devising a sophisticated stopping strategy: in practice, the
algorithm is run for a pre-specified number of steps (based
on a few preliminary experiments with the data).

REFERENCES

Baccigalupi C., Bedini L., Burigana C., De Zotti G., Farusi
A., Maino D., Maris M., Perrotta F., Salerno E., Toffolatti
L., Tonazzini A., 2000, MNRAS, 318, 769

Bennett C. L., Halpern M., Hinshaw G., Jarosik N., Limon
M., Mather J., Meyer S. S., Page L., Spergel D. N., Tucker
G., Wilkinson D. T., Wollack E., Wright E. L., 1997, in
American Astronomical Society Meeting Vol. 191. p. 8701

Benoit A., Ade P., Amblard A., Ansari R., Aubourg E.,
Bargot S., Bartlett J., Bernard J.-P., Bhatia R. S., Blan-
chard A., Bock J. J., Boscaleri A., Bouchet F. R., Bour-
rachot A., Camus P., Couchot F., de Bernardis P., De-
labrouille J., Désert F.-X., Doré O., Douspis M., Du-
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Désert F.-X., Doré O., Douspis M., Dumoulin L., Du-
pac X., Filliatre P., Ganga K., Gannaway F., Gautier
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HI Power spectrum recovery

Data cube(323 grids):  20°x20° 
sky patch  800-830 MHZ(z~0.8)"

Foregrounds: synchrotron, 
free-free, points source"

PCA: remove the first 2 eigen-
foregrounds with largest 
eigenvalues"

EM: assume 3 independent 
foreground components"

Consider noise (S/N=~3) in 
uv-plane, but not include beam 
pattern and incomplete uv- 
coverage 

input 
PCA
EM


