BAYESIAN SEMI-BLIND COMPONENT SEPARATION FOR FOREGROUND REMOVAL

dizer

D

PETER TIMBIE & LE ZHANG 2014.10.09

dust

free-free

CMB reconstruction: ICA Approach

POLarized Expectation-Maximization Independent Component Analysis adaptation to polarization of the Spectral Matching ICA (SMICA) algorithm [Delabrouille et al. 2003]

$$
R_Y = AR_S A^T + R_N
$$

sets of parameters to extract, several levels of a priori

$$
\theta_{\text{blind}}(b) = \left\{A, R_s(b), \text{diag}\big(R_n(b)\big)\right\}
$$

 $\theta_{\rm CMB-fixed}(b) = \left\{A_{i,j \neq \rm CMB}, R_s(b), \text{diag}(R_n(b))\right\}$ **CMB-fixed**

A-fixed

Blind

 $\theta_{A-\text{fixed}}(b) = \left\{ R_s(b), \text{diag}(R_n(b)) \right\}$

Expectation-Maximization (EM) algorithm [Dempster et al. 1977]

Application to 21cm data cube

- Data model: $V(u,v,v) = s(u,v,v) + \sum M_{vc}f_c(u,v) + n(u,v,v)$
- Power spectrum: $\langle \text{ss}^* \rangle = \mathbf{F}_{\parallel} \cdot \mathbf{P}_{3D}(k) \mathbf{F}_{\parallel}$; $\langle \text{f}_{c} \text{f}_{c}^* \rangle = C_c(1)$
- Semi-Blind search: find the best-fitted $P_{3D}(k)$, C(1) and M to data without any assumption about foregrounds and signal and only fix $N = < n n^*$
- Instrument effects: beam pattern, bandpass and frequency-dependent uv-coverage could mix the angular Fourier modes and radial Fourier modes. We will consider these effects in future

Basic steps in the EM algorithm

The implementation of the EM algorithm starts by choosing an initial guess for the unknown parameters, θ^0 , which is used in the first iteration of the algorithm. Then, at each iteration $j + 1$ the following basic steps are performed

- \cdot **i**) $\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}^j$.
- **ii**) E-step: Compute $Q(\boldsymbol{\theta}', \boldsymbol{\theta})$.
- **iii**) M-step: Find $\boldsymbol{\theta}^{j+1}$ such that $Q(\boldsymbol{\theta}^{j+1}, \boldsymbol{\theta}) \ge Q(\boldsymbol{\theta}', \boldsymbol{\theta})$ for all $\boldsymbol{\theta}' \in \Theta$.

The iterative procedure is stopped when a fixed point is reached so that $\theta^{j+1} = \theta^{j+1}$. **IMPLEMENTATIVE procedure** is stopped when a fixed **p**

 $\sum_{k=1}^{\infty}$ **Performal** $O(\mathbf{0}, \mathbf{0}^k)$ The functional $Q(\boldsymbol{\theta},\boldsymbol{\theta}^k)$ is given by

$$
Q\left(\boldsymbol{\theta}|\boldsymbol{\theta}^{j}\right) = \mathbb{E}_{\boldsymbol{s}|\boldsymbol{\theta}^{j}}\left[\log p(\boldsymbol{y}_{1..K}, \boldsymbol{s}_{1..K}|\boldsymbol{\theta})|\boldsymbol{y}_{1..K}, \boldsymbol{\theta}^{j}\right]
$$

$$
= \int_{\boldsymbol{s}_{1..K}} \log p(\boldsymbol{y}_{1..K}, \boldsymbol{s}_{1..K}|\boldsymbol{\theta}) p(\boldsymbol{s}_{1..K}|\boldsymbol{y}_{1..K}, \boldsymbol{\theta}^{j}) d\boldsymbol{s}_{1..K}
$$

y=As+n Consider a probability model $p(y, s | \theta)$ for a pair (y, s) of random variables with θ a parameter set. The maximization of the log-likelihood $I(\theta)$ can be made easier by considering the EM functional: \mathbf{r} = \mathbf{r} of the likelihood and maximization is completed by a q eten technique For the this reason, the third point in this reason, the third is reason, the third in the thin α . *roamity moder* $p(y, s\omega)$ *for a pair* (y, s) or random variables we μ the log-fikelinood μ (θ) can be made easier by considering the ENI functional:

$$
l(\theta, \theta') = \int \log(p(y, s | \theta)) \ p(s | y, \theta') ds.
$$

Both the E step and the M step turn out to be straight- forward; EM step amounts to solving involves diagonal covariance matrices so that the actual paand out to be straight forward, and s blving C. L., Limon

$$
0=\int \frac{\partial \log(p(y,s|\theta^{(n+1)}))}{\partial \theta} \ p(s|y,\theta^{(n)}) ds.
$$

composition by e.g.Bourse **update scheme:**

$$
A = \widetilde{R}_{ys}(\theta')\widetilde{R}_{ss}(\theta')^{-1}
$$

\n
$$
\sigma_i^2 = \left[\widetilde{R}_{yy}(\theta') - \widetilde{R}_{ys}(\theta')\widetilde{R}_{ss}(\theta')^{-1}\widetilde{R}_{sy}(\theta')\right]_{ii}
$$

\n
$$
P_i(q) = [\widetilde{R}_{ss}(\theta', q)]_{ii}
$$

be a simple function of y and s, allowing the conditions of \mathcal{L} and \mathcal{L}

(C23)

 where

$$
C(q) = (A^{\dagger} R_n^{-1} A + R_s(q)^{-1})^{-1}
$$

\n
$$
W(q) = (A^{\dagger} R_n^{-1} A + R_s(q)^{-1})^{-1} A^{\dagger} R_n^{-1}
$$

\n
$$
\widetilde{R}_{ss}(q) = W(q) \hat{R}_y(q) W(q)^{\dagger} + C(q)
$$

\n
$$
\widetilde{R}_{sy}(q) = W(q) \hat{R}_y(q)
$$

HI Power spectrum recovery

