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Séparation de RFI sur SMOS

& Video Inpainting

Andrés Almansa

GT SPU ”Traitement données spatiales”
27 septembre, 2014

Andrés Almansa Données Manquantes



SMOS images restoration from L1a data:
A sparsity-based variational approach

Andrés Almansa (Telecom ParisTech)
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Interferometry principle

Measure the phase di↵erence of incident radiation
Cross-correlation between all pairs of receivers to obtain the
Visibility Function Vkl

Tb can be obtained indirectly from Vkl

Vk,l =
1
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[Corbella et. al. 2004]
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The MIRAS instrument

Antenna configuration

Support of Tb is the unit circle

Optimum sampling grid on visibilities is an hexagonal grid
Two possible configurations: triangular or Y shaped arrays
Frequency coverage is larger for Y-shaped (but does not cover
the entire hexagonal domain)

[Camps et al. 1998]

A. Almansa SMOS images restoration from L1a data



Recovering T
b

from visibilities

Vk,l =
1
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Consider the discrete version of this linear operator, it can be
stated by means of matrix G:

GT = V

dim(T ) > dim(V ): the problem is under constrained
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Generation of L1B: Zero padding regularization

Anterrieu 2004

min
T

kV � GTk22
s.t. (I � P⌦)T = 0

withP⌦ = F�1
Z⌦Z

⇤
⌦F

This problem can be reformulated as:

T̂ = argmin
t̂2⌦

kV �
Az }| {

GF�1
Z⌦ t̂k22

T̂ is SMOS L1B data product, V is SMOS L1A data product

T can be simply recovered from T̂ by T = F�1
Z⌦T̂
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Zero padding limitations

Strong Gibbs e↵ects: illegal transmitters introduce outliers

Poor spectral extrapolation: limited resolution

Direct Method: Tb = F�1(T̂ ) Regularized Method -
Blackmann: Tb = F�1(BT̂ )
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Objetives of the present work

Recover the brightness temperature directly from visibilities

Remove noise and signal e↵ects generated from illegal
emissions (outliers)

Extrapolate the image spectrum to minimize Gibbs e↵ects
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Proposed method

Main idea : Separate 3 sources

u : Original brightness temperature image
) TV semi-norm

o : RFI Outliers
) Sparsity norm (`1 or `0)

n : Gaussian measurement noise
) `2 data fidelity term
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Variational Formulation

Proposed method

min
u,o
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where

µ Trade-o↵ between sparsity and regularity

� is chosen to satisfy kG(o + u)� V k22  |⌦|�2

TVH(u): Total Variation for H-bandlimited images [Moisan
2007] ! reduces staircaising e↵ect

[Moisan 2007] How to discretize the total variation of an image? Proc. Appl. Math. Mech., 2007
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Proposed Method: Numerical Implementation

Two stage process:

Stage one

Solve the minimization problem with sparsity term S(o) = kok1
the problem is convex

can be solved iteratively with a Forward-Backward algorithm

converges to a global minimum

Stage two

Starting from the previous solution, we solve the same problem
with S(o) = kok0

the problem is non-convex due to the `0 norm

for this functional the Forward-Backward algorithm converges
to a local minimum [Blumensath and Davies 2005]
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Proposed Method: Numerical Implementation

Algorithm

The k-th iteration starting from seed x

0 = (u0, o0) is

⇢
x

k+1/2 = x

k � �rE1(x
k)

x

k+1 = prox�E2
(xk+1/2).

Di↵erential operator

rE1(u, o) = (G⇤G(u + o)� V ,G⇤G(u + o)� V ) .

Proximal operators

prox�E2
(u, o) =

�
prox��TV(u), prox��µS(o)

�

prox�TV : modified version of [Chambolle 2004] with spectral
projection

prox�k·k1 : the soft-threshold or shrinkage operator

prox�k·k0 : the hard-threshold operator

A. Almansa SMOS images restoration from L1a data



Proposed Method: Numerical Implementation

Implementation limitations

G⇤G is a huge full matrix of size 16384x16384

Explicit multiplication by this matrix on each iteration is
impractical.

Change of basis to Fourier domain:

rE1(u, o) = F

⇤((GF⇤)⇤GF⇤
F (u + o)� (GF⇤)⇤V )

FG⇤GF⇤ is even bigger than G⇤G (32768⇥ 32768) but highly
sparse: to keep 99.99% we need 0.008 coe�cients.
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Final algorithm

Final algorithm

1 Set S(·) = k · k1
2 Initialize �

a Iterate until convergence (FB)
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k+1 = s��µ(o
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b If kGF⇤
F (o + u)� V k22 � |⌦|�2|  ✏, update � and go to a)

3 Set S(·) = k · k0 and go to 2)
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Numerical implementation: µ selection

We model an outlier as a cylinder c of radius r and height h:

µ selection

If `1 then c is an outlier if TV (c) � µkck1, leading to a µ  2
r

If `0 then c is an outlier if TV (c) � µkck0, i.e. µ  2h
r
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Experiments on real data

Google Earth view of two of the regions used on the experiments.
The left one corresponds to snapshot 996 and the right one to
snapshot 1050
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Experiments on real data
Comparison between previous works and our method.

F

�1 Blackman

Using L1b method The proposed method

This snapshot corresponds to Central Europe, with Italy clearly visible. Color scale mapped between 0 and 300 K.
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Experiments on real data
Comparison between previous works and our method.

F

�1 Blackman

Using L1b method The proposed method

This snapshot corresponds to North Europe. Color scale mapped between 0 and 300 K.
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Experiments on simulated data

ugt uL1a uL1b
T
em

p
er
at
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L1 L2 L1
uL1a � ugt 3.197598 5.418558 57.679203

uL1b � ugt 9.587280 12.994680 87.467700

Results from simulated data. The error is measured over all the image, not only the free of aliasing (FOA) zone.
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Conclusions

We propose a variational method to restore images from the L1A
SMOS data product.

The method models the observations as the superposition of
three components on the spatial domain:

The target brightness temperature map u

The outliers image o due to the illegal emissions
A gaussian noise image n

The method is numerically tractable by a change of basis from
spatial to spectrum domain

The method also extrapolates the spectral domain of u thanks
to the total variation semi-norm

The method is general enough to be used for other restoration
problems
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Future work

Better separation if RFI are finely localized [Veterli 2002],
[Candes 2013], [Duval 2014]

More detailed restoration with patch-based (non-local)
regularization
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