Fast Luminosity Monitoring Using Diamond Sensors For The Super Luminous Flavor Factory SuperKEKB

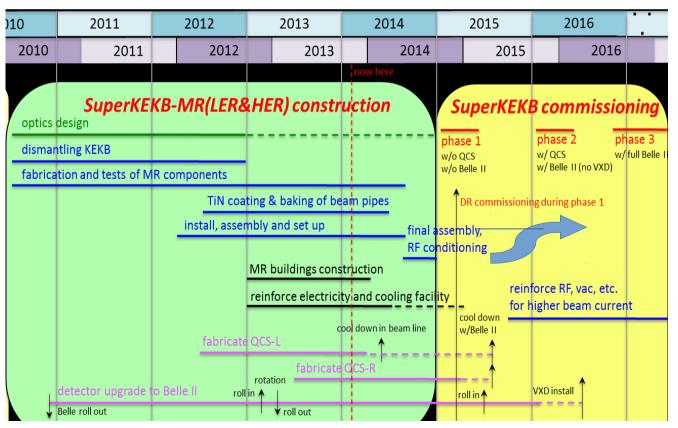
Dima El Khechen
Cécile Rimbault
Philip Bambade
Viacheslav Kubytskyi
Didier Jehanno

Outline

- Thesis activities and goals
- SuperKEKB: Definition and Status
- Fast luminosity monitoring:
- Sensor location in LER
- Geometry of the vacuum chamber
- ✓ HER
- Preliminary results on Cherenkov and Scintillator detectors
- Readout and electronics
- Conclusion & Next Plans

Thesis Activities And Goals

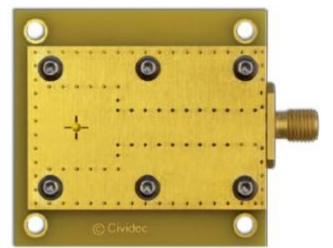
- Development of methodology for fast monitoring of the SuperKEKB high luminosity B meson factory
- Characterisation of diamond sensor technology
- Beam dynamics simulation to establish optimal measurement locations
- GEANT4 simulation to optimise mechanical set-up and define readout of the ZDLM of Belle II experiment at SuperKEKB
- Simulation of Background processes (ex: Beam-gas Bremsstrahlung)
- Installation and first tests at KEK during beam commissioning
- Development and implementation of fast analog electronic shaping and fast digitisation for on-line bunch-to-bunch and overall luminosity averaging

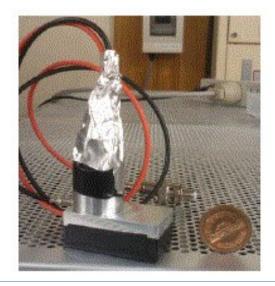

SuperKEKB

Belle II @ SuperKEKB: e+e- collider (e+@ 4 GeV (LER) & e-@ 7 GeV (HER))

High Luminosity (8 10³⁵ cm⁻² s⁻¹)

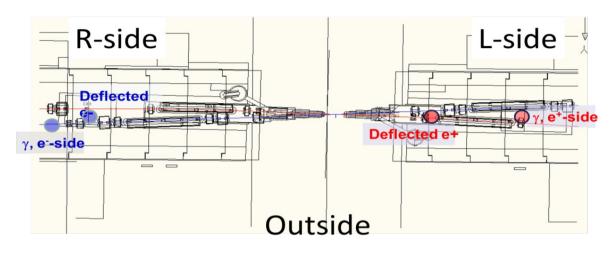
→ Nano-beam scheme, very small beam sizes (60 nm)

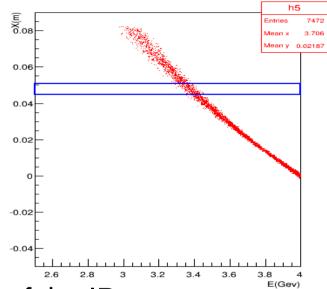

→ High currents (beams collide @ 0.25 GHz)



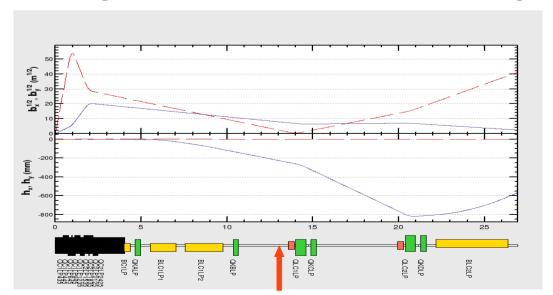
Fast Luminosity Monitoring

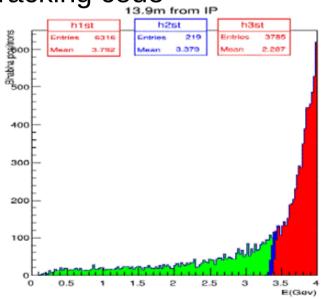
- Fast luminosity monitoring is required in the presence of dynamical imperfections, for feedback and optimization.
- Precision $\delta L/L = 10^{-3}$ in 1 ms
- Lumi monitoring for each bunch crossing: 2500 bunches, collide each 4 ns
- Measurement: Radiative Bhabha process at zero photon scattering angle, Large cross-section ~ 0.2 barn
- Technologies: Sensors set immediately outside beam pipe
 - 5x5 mm² diamond sensors
 (Radiation hardness, Fast charge collection)


-Scintillator + Cherenkov detector

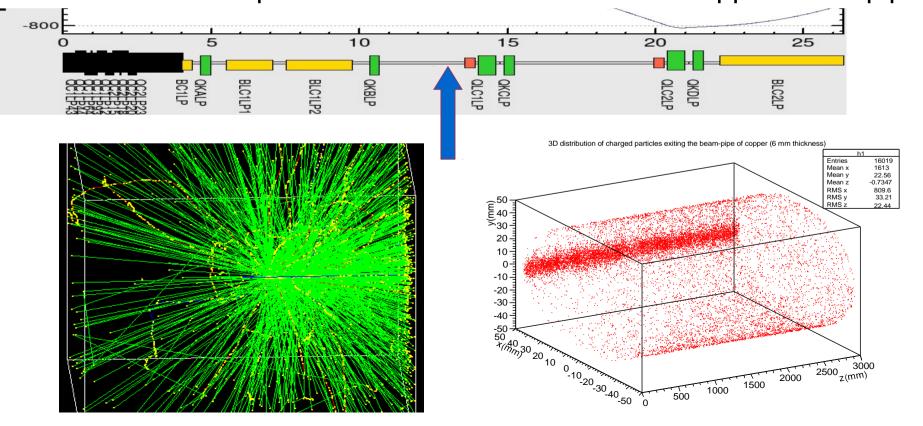


ZDLM group at KEK, S.Uehara San


Sensor Location in LER

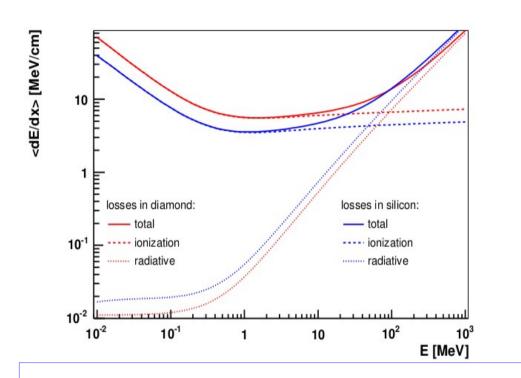

Bhabha dynamics have been generated by GUINEA-PIG++
 13.9m from

- Low energy e+/e-will be deflected downstream of the IP
- Exiting Bhabha rates are studied using SAD tracking code

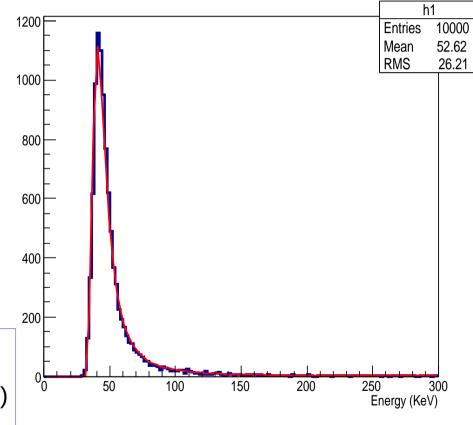

Sensor Location in LER

To reach the aimed precisions, the following counting rates are required:

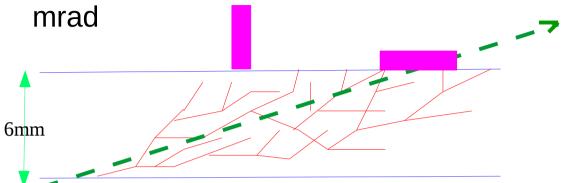
Luminosity (cm ⁻² s ⁻¹)	Aimed precision (in 1 ms)	Required fraction of $\sigma_{ee \rightarrow ee\gamma}$
10 ³⁴	10-2	2.1 x 10 ⁻³
8 10 ³⁵	10 ⁻³	2.6 x 10 ⁻³

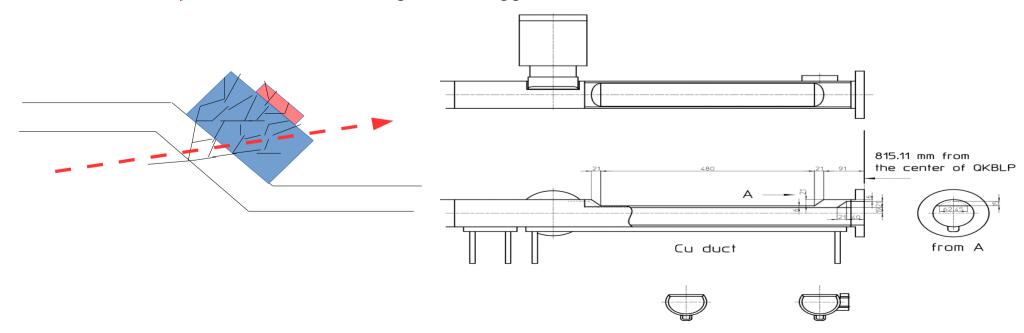

- The best candidate position is chosen to be at 13.9 meters from the IP:
- 3 meters drift, adequate to place our sensors

4.7% of Bhabha positrons will exit the 6 mm thick copper beam-pipe


Energy Deposition of e+/e- in a 100um Diamond

 Charged particles like e+ and e- will deposit energy in the diamond sensor according to a "Landau" distribution

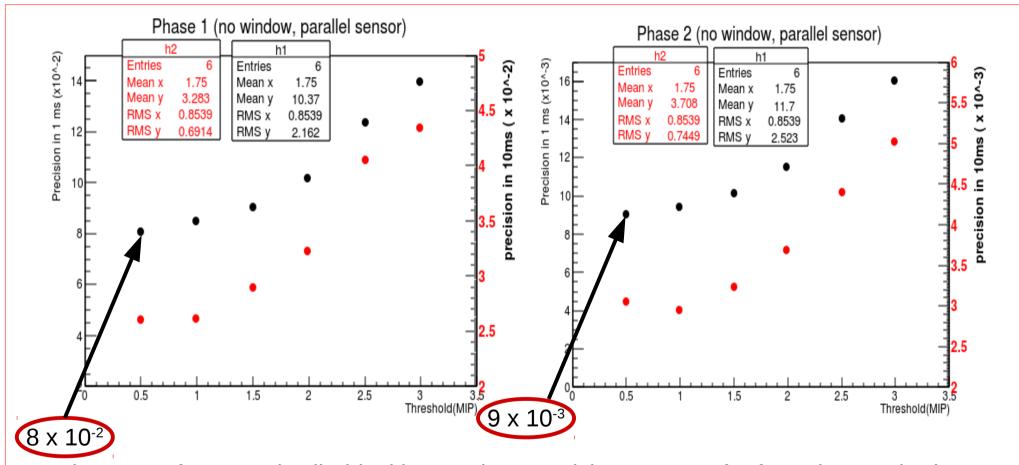

The mean energy losses of an electron in diamond (red curves) and silicon (blue curves)


Geometry of Vacuum Chamber

Bhabha positrons escape the beam pipe at an average angle of 5

- The particle will cross 1.2 meters in the copper ~ 80 radiation lengths

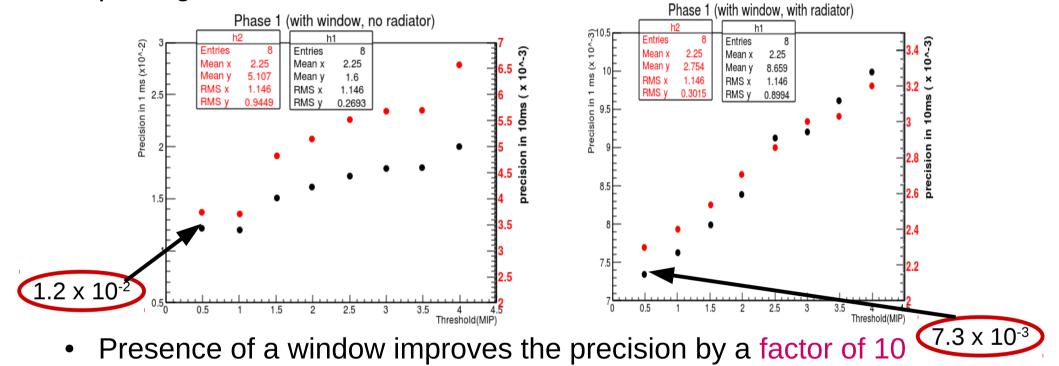
 Absorption of shower particles in the beam-pipe
- Modification of the beam pipe is suggested to increase the probability of having exiting showers
 A window at 45 degrees is suggested



A Summary Table of collected secondaries

	Luminosity (cm ⁻¹ s ⁻¹)	Required Precision in 1 ms (Nb of particles)	Number of particles collected in 1 ms	Number of particles per bunch crossing
No window	10 ³⁴	10 ⁻² (> 10 ⁴ part)	1.4 10 ²	0.00056
No window	8 10 ³⁵	10 ⁻³ (> 10 ⁶ part)	1.3 104	0.052
Window	10 ³⁴	10 ⁻² (> 10 ⁴ part)	4.4 10 ³	0.0176
Window	8 10 ³⁵	10 ⁻³ (> 10 ⁶ part)	3.5 10 ⁵	1.4
Window+Radiator	10 ³⁴	10 ⁻² (> 10 ⁴ part)	1.5 104	0.06
Window+Radiator	8 10 ³⁵	10 ⁻³ (> 10 ⁶ part)	1.2 10 ⁶	4.8

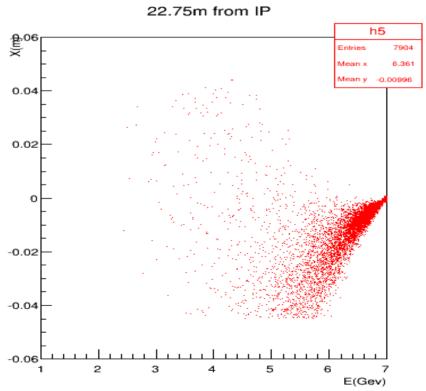
GEANT4 Simulation Results


 Geant4 simulations were performed, considering the material and the beam pipe geometry, to estimate the actual signals in the sensors

In the case of a normal cylindrical beam pipe, precisions are too far from the required one, even for the optimal luminosity (8 10³⁵ cm⁻² s⁻¹)

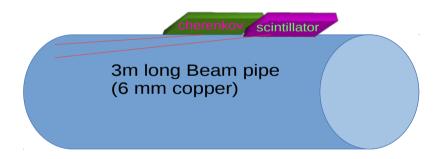
GEANT4 Simulation Results

 Advantage of having a window at 45 degrees is the possibility of placing a radiator at shower max to improve the signal in the sensor.



BUT such window may be costly and may introduce wakefields thus affecting the beam stability .. A new design is under discussion, it consists of a thinner beam pipe in the drift chosen to put our diamond

sensors


Study Of HER

- Unlike LER, the HER showed non-linear distributions in the x-E plane, mainly due to chromaticity corrections, in addition to very low Bhabha rates
- No candidate place for our sensor is yet considered
- Search for a candidate place will be on going as an internship work subject by Oleg Shkola, National University of "Kiev-Mohyla academy"

Preliminary Results on Cherenkov And Scintillator Detectors

- 15 mm x 15 mm x 50 mm
- Charged particles of path length $\lambda > 15$ mm are considered
- Cherenkov: Pure Quartz SiO₂, density= 2.7 g/cm³
- Scintillator: LGSO: Lu_{1.8}Gd_{0.2}SiO₅, density= 7.3 g/cm³

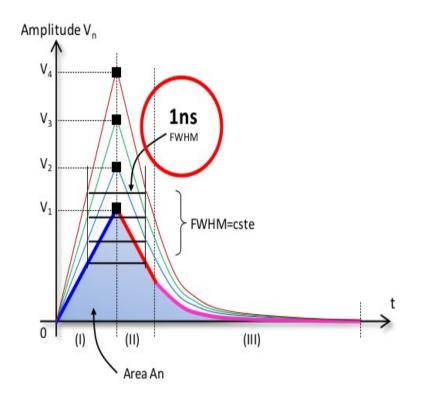
- Detectors are simulated in two manners
 - 1) Independently (events in each detector separately)
 - 2) In coincidence (Poisson distribution)

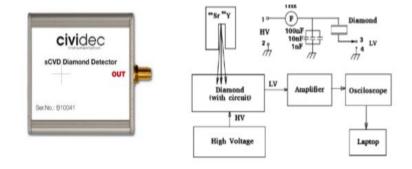
Preliminary Results

Independently

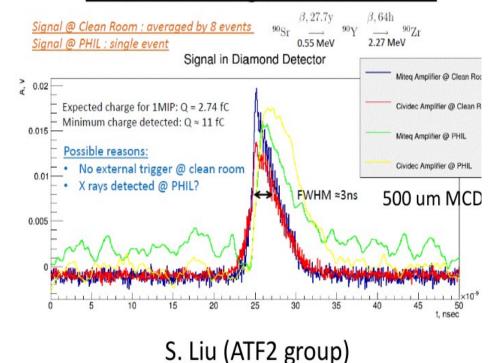
Luminosity (cm ⁻² s ⁻¹)	Precision in 1 ms	Precision in 10 ms
10 ³⁴	2 x 10 ⁻²	6.5 x 10 ⁻³
10 ³⁵	6.5 x 10 ⁻³	2.04 x 10 ⁻³

In coincidence

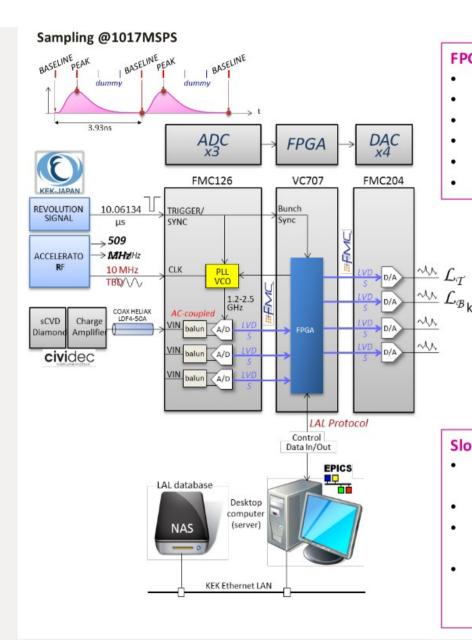

Luminosity (cm ⁻² s ⁻¹)	Precision in 1 ms	Precision in 10 ms
10 ³⁴	0.2	6.3 x 10 ⁻²
10 ³⁵	2.2 x 10 ⁻²	6.9 x 10 ⁻³


[→] Precisions are 4 times better than the case of 5x5 mm² diamond for independent detectors

[→] Precisions are 2.5 times worse than the case of 5x5 mm² diamond for coincidence case


Diamond Sensors

- Diamond sensor technology already exists at LAL since 2012 for Beam-halo study at ATF2 (prototype of ILC final focus)
- For SuperKEKB: signal width <1-2 ns,
 since bunch spacing is 4 ns
- Charge amplifier : $\sigma = 10$ ns (shaping time)
 - enough for phase 1 (average signal rate < 1 Bhabha per b.c)



Minimum Signal Detection

Readout

Work carried on by Didier Jehanno

FPGA-based digital acquisition

- Synchronized to acc. RF Clock @ 10MHz
- Sampling every 1ns
- · Phase adjustment by the ADC board
- · Peak value acquisition: determines Bhabha events nb
- 2015: signal FWHM 10ns (140μm diamond thickness)
- 2016: signal FWHM ~2ns (100μm diamond thickness)

Outputs

- Train Integrated Luminosity over 1ms
- Bunch Integrated Lumi over 1ms: 2500 values
 @254 MHz

Slow Control / Interface

- Sampling controlled by local Linux machine (LM) connected to FPGA board
- TIL and BIL directly computed by FPGA and read by LM
- EPICS protocol installed on LM and provides TIL + BIL to EPICS users in real time (1ms)
- DAQ also comes with 4 Analog outputs

 Controlled by EPICS users

 Used for tests, debug and orbit feedback

Conclusions & Next Plans

- Fast Luminosity monitoring is very important for a feedback system and for optimization
- Optimal position of the sensor is to be at 13.9 meters from the IP in the LER For the HER, to be studied in the coming two months
- Simulations in Geant4, results in the necessity of having a window to increase our signals in the diamond
- Study of the Cherenkov and Scintillation detectors to be improved (yet not a priority of our work)
- A deep study of the design of a new vacuum chamber is taking place, using GEANT4
- Fast readout and electronics are under development to be able to monitor bunch by bunch luminosity
- Characterization tests of the 140 $\,\mu m$, 4x4 mm² diamond sensor with the fast 10 ns charge amplifier using α and β sources will take place in the clean room at LAL
- Installation of the whole set-up will take place at KEK with the start of single beam commissioning at the end of 2015

THANK YOU!!!

Explanations & precisions

- Total number of positrons that exit the beam-pipe over 3 m is 971
 4.7% of the total cross-section
- Average number of positrons is $75.4^{\frac{Averaging}{-}}$ 75.4 / 971 = 0.078
- Number of signals per b.c is $v = 3 \times 0.078 \times 4.7\% = 0.01$ (each 4 ns)
- Number of signals in the sensor in 1 ms is N= 2500
- Precision is 1/sqrt(N)
- Detectors in coincidence implies to have at least one signal in both at the same time from the same bunch crossing
- Poisson distribution is given as $P(n,v) = \frac{v^n e^{-v}}{n!}$, probability to get n signals in the sensors for the case of an average of v signals
- $P_1=P_2=P(0,0.01)=0.99$; $P_1=P_2=1-P_1=0.01$ (is the probability to have at least one signal in one of the two counters)
- P₁' x P₂' = 1- P(0,v), v=?? Obtain precision from by calculating an effective number of signals corresponding to the coincidence