Apple at the CERN LHC

Bleeding Edge Physics and Bleeding Edge Computing

Dr. Fons Rademakers

Senior Scientist, ALICE Software Architect CERN

The CERN Large Hadron Collider – LHC

- LHC is a proton-proton and heavy ion collider
- Proton-proton center-of-mass energy $\sqrt{s_{pp}} = 14 \text{ TeV}$
- Scheduled start: Sept 2007

The CERN Large Hadron Collider – LHC

- LHC is a proton-proton and heavy ion collider
- Proton-proton center-of-mass energy $\sqrt{s_{pp}} = 14 \text{ TeV}$
- Scheduled start: Sept 2007

The 15-m Long LHC Cryodipole

- High energy protons are bent in the ring by 1232 superconducting magnets that provide a field never reached before of 8.3T at 1.9K (-271°C)
- The largest cryogenic system in the world

The LHC Detectors

The LHC Detectors

ATLAS

CMS

The LHC Detectors

LHC Data

• The LHC generates:

- 40 million collisions per second
- Combined the 4 experiments record:
 - After filtering, 100 interesting collision per second
 - From 1 to 12 MB per collision \Rightarrow from 0.1 to 1.2 GB/s
 - 10¹⁰ collisions registered every year
 - ~ 10 PetaBytes (10¹⁵ B) per year
 - LHC data correspond to 20 millions CD per year!
 - Computing power equivalent to 100.000 of today's PC
 - Space equivalent to 400.000 large PC disks

LHC Data

- The LHC generates:
 - 40 million collisions per second
- Combined the 4 experiments record:
 - After filtering, 100 interesting collision per second
 - From 1 to 12 MB per collision \Rightarrow from 0.1 to 1.2 GB/s
 - 10¹⁰ collisions registered every year
 - ~ 10 PetaBytes (10¹⁵ B) per year
 - LHC data correspond to 20 millions CD per year!
 - Computing power equivalent to 100.000 of today's PC
 - Space equivalent to 400.000 large PC disks

LHC Data Processing Needs the Grid

- The LHC computing needs are enormous
- Computing resources cannot be concentrated in a single center
 - Nations prefers local investments
 - Competences are naturally distributed
 - Not enough real-estate to house all the computers at CERN
- Resources will be collocated in centers of different dimensions, running different hardware and OS's
- The Grid middleware integrates all these distributed centers into one large virtual center
- Actually we will need Grids of Grids

The EGEE Grid Project

"Enabling Grids for E-sciencE" started as an EU funded project, now world-wide deployed

- >180 sites
- >15 000 CPUs
- ~14 000 jobs completed per day

Apple in the Grid

Apple in the Grid

HEP Data Analysis

• Typical HEP analysis needs a continuous algorithm refinement cycle

HEP Data Analysis

- Ranging from I/O bound to CPU bound
- Need many disks to get the needed I/O rate
- Need many CPUs for processing
- Need memory to cache as much as possible

Some ALICE Numbers

- 1.5 PB of raw data per year
- 360 TB of ESD+AOD per year (20% of raw)
- One pass using 400 disks at 15 MB/s will take 16 hours

Some ALICE Numbers

- 1.5 PB of raw data per year
- 360 TB of ESD+AOD per year (20% of raw)
- One pass using 400 disks at 15 MB/s will take 16 hours

Using parallelism is the only way to analyze this amount of data in a reasonable amount of time

PROOF Design Goals

- System for running ROOT queries in parallel on a large number of distributed computers or multi-core machines
- PROOF is designed to be a transparent, scalable and adaptable extension of the local interactive ROOT analysis session
- Extends the interactive model to long running "interactive batch" queries

The ROOT Data Analysis Framework

- ROOT is a large Object-Oriented data handling and analysis framework
 - Efficient object data store scaling from KB's to PB's
 - C++ interpreter
 - Extensive 2D+3D scientific data visualization capabilities
 - Extensive set of data fitting and modeling methods
 - Complete set of GUI widgets
 - Classes for threading, shared memory, networking, etc.
 - Fully cross platform, Windows, Unix/Linux, Mac OS X
 - 1.5 million lines of C++
 - Licensed under the LGPL
- Used by all HEP experiments in the world
- Used in many other scientific fields and in commercial world

Lorentzian Peak on Quadratic Background

Lorentzian Peak on Quadratic Background

The ROOT Data Model Trees & Selectors

The Traditional Batch Approach

The PROOF Approach

Multi-Tier Architecture

Optimize for data locality or high bandwidth data server access

Current version of Mac OS X fully 8 core capable. Running my MacPro since 4 months with dual Quad Core CPU's.

Apple Software and LHC Computing

- All scientific computing is Unix based, Mac OS X a natural and good fit
- Possibility to mix scientific and office software on the same platform is a huge advantage
- Excellent software development tools
 - Xcode
 - gcc, gfortran, Intel's icc and ifort
 - Shark, mallocdebug, etc.
- Intel compilers deliver up to 25% faster executables
- Excellent cluster monitoring software
- Leopard will be even better with Xray and fully 64 bit

Apple Hardware and LHC Computing

- The move to Intel was an enormous step forward in terms of performance
- MacBook Pro's are now by far the most popular laptops at CERN
- Powerful OpenGL based graphics used for event displays
- ALICE uses an 8 node, 16 CPU, Xserve and Xserve RAID cluster as one of its Grid computing elements
- We are currently upgrading to an Intel based Xserve cluster

Meeting of the LCG Software Architects

Conclusions

- The LHC will generate data on a scale not seen anywhere before
- LHC experiments will critically depend on the Grid to process their enormous amounts of data
- Apple's move to Intel opens up tremendous possibilities in this market
- Wish us good luck!