Tevatron Highlights

Dmitri Denisov, Fermilab Higgs Hunting 2015, LAL Orsay July 31 2015

Tevatron Collider

- Proton-antiproton collisions with1.96 TeV collision energy
- Peak luminosity 4x10³² cm⁻²s⁻¹
 - Up to ~10 interactions per beams crossing at 396 ns crossing time
- Two general purpose experiments: CDF and DØ
- ~ 10 fb⁻¹ of luminosity integrated
- Data collection 2001 to 2011

Tevatron Integrated Luminosity

- Total luminosity collected by each experiment is ~10 fb⁻¹
 - Luminosity doubled in the last ~1.5 year of data collection
- All results presented in this talk are on the full data set
- Large fraction of luminosity collected with 2-3 interactions per crossing

The CDF and DØ Collaborations

CDF collaboration has 405 scientists in 55 institutions

DØ collaboration has 380 scientists in 71institutions

Unique Features of the Tevatron Data

CDF publications summer 2012 to summer 2015

Group	2012	2013	2014	2015	Totals
Higgs	12	6	1	2	21
Тор	4	11	9	5	29
EWK	2	3	3	2	10
BSM	2	5	2		9
QCD	1	4	2	3	10
Flavor	3	4	4		11
Totals	24	33	21	12	90

- Unique features of the Tevatron data set
 - Proton-antirpoton collisions: valence quark-antiquark interactions
 - 2 TeV center of mass energy
 - Well understood detectors/algorithms
 - Unique detector features, including changes in the magnets polarities
- Many combinations between Tevatron experiments
 - More in the last 3 years than in 20 years before
 - Doubling data set, cross checks of methods/uncertainties
- Results highlighted today are from the past 6-12 months, many new for EPS 2015

New Phenomena – Search for W'

- An example where Tevatron analyses can fill "low mass gaps" in the exclusion space
 - Better signal/background ratio at low masses vs LHC
- Missing energy based triggers
 - Optimized for channels with or without charged lepton
- Examine a benchmark left-right symmetric standard model extension
- Best (only) limits below W' mass of 550 GeV

Search for CPT violation in $B_s^0 \rightarrow \mu^{+}D_s^{-+} X$ Decay

- For B⁰_s oscillations the fractional difference between mass eigenvalues is very small (10⁻¹²) and the oscillations are sensitive to couplings between quarks and possible Lorentz-invariance violating field
- Search for difference in number of B_s^0 vs \overline{B}_s^0 using $B_s^0 \rightarrow \mu^{+}D_s^{-+}X$ decay
 - With respect to the detector orientation with respect to the Sun
- No asymmetry vs sidereal phase observed and stringent limits on Lorentz violating field set
 - Use of well established B⁰_s reconstruction technique and cancellation of detector charge asymmetries by magnetic field changes

Single Top Quark Tevatron Combinations

- Single top quark s-channel observed with 6.3σ significance
 - Combining CDF and DØ data
- Finished combination of s- and t-channels independent measurements in I+jets and missing energy + jets channels
 - Many MVAs combined to combat small signals, large backgrounds

Single Top Quark Final Combination

- Independent measurements of s- and t-channels cross sections limits BSM scenarios
- Independent vs number of quark families and unitarity of CKM matrix determination of V_{tb} with ~5% accuracy
 Fermilab

July 31 2015

Forward-Backward Quark-Antiquark Asymmetries

- No forward-backward asymmetry in gg production
- Contributions to asymmetry via interference between qqbar and qg at NLO
- New particles, like axigluons, could change A_{fb} substantially
- New CDF result for A_{fb} in di-lepton channel and DØ result using matrix element method in di-lepton events
 - DØ and CDF combinations of A_{fb} measurements in di-lepton channel and I+jets channel

Di-lepton A_{fb} and Polarization Measurement

- Top quark A_{fb} Tevatron summary
 - Theoretical values increased with higher orders calculations and EW corrections
 - Experimental values decreased (within uncertainties)
- Theoretical predictions are overall in agreement with the experimental results
 - Final Tevatron top quark A_{fb} combination in progress

- Studies stimulated by initial anomaly in top quark A_{fb}
 - Similar mechanisms could cause bb asymmetry

- Depends upon flavor excitations
- Depends on invariant mass $m_{b\bar{b}}$
- Small contribution from electroweak Drell-Yan $q \bar{q}
 ightarrow Z/\gamma
 ightarrow b ar{b}$

$$y < 0 \qquad y > 0$$

$$p \qquad b$$

$$\overline{p} \qquad (\overline{b}) \qquad y$$

$$A_{\rm FB} = \frac{N_{\rm F} - N_{\rm B}}{N_{\rm F} + N_{\rm B}}$$

CDF: tagged $b\overline{b}$ jets at low and high $m_{b\overline{b}}$ DØ: fully reconstructed B^- ($b\bar{u}$)

$$y = y_b - y_{\overline{b}}$$

with $m_{b\overline{b}}$

Forward-Backward bb Production Asymmetry

- CDF studies use two methods
 - Soft lepton tagging for low mass m_{bb} jets provided $A_{fb} = (1.2 \pm 0.7)\%$
 - Jet charge algorithm for high m_{bb} jets
- DØ used exclusive B decays

 $- A_{fb} = [-0.24 \pm 0.41 \text{ (stat)} \pm 0.19 \text{ (syst)}]\%$

Within experimental uncertainties no deviations from the theoretical predictions observed

PRL 114, 051803 (2015)

July 31 2015

Top Quark Mass and Cross Sections

 DØ di-lepton v-weighting analyses uses jet energy scale from l+jets channel calibration

 $m_t = 173.3 \pm 1.4(stat) \pm 0.5(JES) \pm 0.7(sys) \text{ GeV}$

- Using full data set DØ measured σ_{tt} using all final/improved algorithms
 - $\sigma_{tt} = 7.73 \pm 0.13$ (stat.) ± 0.55 (syst.) pb at $m_t = 172.5 \text{ GeV}$
 - 7.3% precision
- Extracted top quark pole mass
 - 169.5^{+3.3}-3.4 (tot.) GeV
 - 1.9% precision

Top Quark Mass

- Tevatron combination and CMS combinations are already more precise than 2014 World Combination
- Expect DØ di-lepton matrix element method and all jets channel measurements and CDF matrix element
 - Then final Tevatron combination
- Combination with LHC is in progress
 - Including to understand/address tension between CMS and DØ most accurate results

- W+c process is a probe of s-quark PDFs
 - Tevatron W+c proceeds via 85% s-quark initial state
- W+c and W+b are backgrounds to WH(\rightarrow bb), ttH and beyond the standard model signals
- Measurement based on b/c-jets tagging using secondary vertex tagging algorithms

- First differential measurements of these processes published
- Excess at high P_t for W+c production
 - Missing higher order corrections, enhanced cc splitting, strange sea?

Double Parton Interactions Studies

- Use unique features of the Tevatron
 - pp collisions, large data set and low number of interactions per beam crossing
- Double parton interactions studies provide information about both structure of the proton as well as backgrounds to high P_t new physics searches

• $\sigma_{\rm eff}$: a factor characterizing the size of the effective interacting region, contains info on spatial distribution of partons inside proton (large if uniform; small if "clumpy")

- Double J/ ψ production observed with ~50% from double parton interactions
- Studies of large number of processes helps understanding double parton production
 - Smaller σ_{eff} for gg initial state processes suggests smaller volume for gluons vs quarks?

- WW+jets production is an interesting process in the gauge sector being produced both by radiation from quarks and multiple gauge boson coupling
 - Important background for WH production
 - Use methods similar to H to WW searches at the Tevatron
 - Combined discriminant for inclusive WW measurement

5 Fermilab

July 31 2015

- First differential cross section measurement in a massive di-boson state
 - Somewhat higher than, but consistent with predictions

WW and WZ Decays in Heavy Flavor States

- Di-boson WW and WZ production with semi-leptonic W decay plus heavy flavor quarks for second W/Z decay
 - W \rightarrow cs, Z \rightarrow bb, cc

Analysis of the di-jet invariant mass spectrum 3.7σ evidence of WW+WZ in HF final states

Cross section measurement σ_{WW+WZ} = 13.7 +/- 3.9 pb

Use different HF decay pattern of the W and Z
 Via analysis of the secondary-decay vertex

 Independently measure the WW and WZ production cross section in a hadronic final state

. For the first time at hadron colliders

2.1σ for WZ and 2.9σ for WW production
 Fermilab

Electron Production Asymmetry in W to ev Decay

- Electron asymmetry in $pp \rightarrow W + X \rightarrow ev + X$ process probes valence quark parton distributions PDFs
 - Convolves W production asymmetry and V-A decay

- Most precise measurement, benefits all hadronic measurements via PDFs improvements
- Extended kinematic range to η_e = 3.2
- Improvement of PDF models in the region of interest for W mass at the Tevatron
 - Estimated to reduce the PDF uncertainty in the M_w measurement by approximately 30% (2-3 MeV)

- Weak mixing angle measured using forward-backward asymmetry of lepton polar angle distribution
 - Sensitive to $\sin^2\theta_{W}$ through interference of vector and axial vector couplings of Z boson
- Measure A_{FR} vs di-lepton pair invariant mass

- Weak mixing angle measured from forward-backward asymmetry of lepton polar angle
 - $\sin^2 \theta_{\text{eff}}^{\text{I}} = 0.23147 \pm 0.00047 \text{world best from a hadron collider}$
 - Periodic magnet polarities changes important
- Helps to understand long standing tension in $\sin^2 \theta_{off}^{I}$ measurements

Fermilab

EP and SLD Average

m(u*u*K*K*)-m(u*u*) GeV/c

10 MeV/c

andidat

July 31 2015

- X(4140) narrow stay was observed by CDF in 2009 in the decay B+->J/ψφK+ in the J/ψφ effective mass spectrum
 - Confirmed by CMS, not confirmed by LHCb
 - Confirmed in 2014 by DØ
- Nature of this state is still puzzling, so DØ studied inclusive production to separate prompt and non-prompt production channels

Higgs Studies

- In early 2013 ~20 publications summarized Tevatron Higgs searches and studies program
- Theorists predicted that effective mass of Vbb (V = W or Z) depends strongly upon spin/parity of the Higgs boson
 - Discriminate Higgs J^P based on production vs decay
- No theoretical predictions for cross section of exotic J^P production

- Assume standard model cross sections and provide fractional exclusion vs signal strength

• $J^P = 0^-$ is excluded at 4.9σ and $J^P = 2^+$ is excluded at 5.0σ

• This interesting Higgs study complimentary to LHC concludes Tevatron Higgs program

🗲 Fermilab

- Concentrating on the physics potential of the unique Tevatron data set
 - pp collisions: valence quark-antiquark interactions
 - 2 TeV center of mass energy: all standard model particles produced
 - Well understood detectors/algorithms
 - Low number of interactions per beam crossing
 - Unique detector features, including changes in magnet polarities
- Highlights of the coming results (~40 analyses in progress)
 - Top quark: top mass in di-lepton channel using matrix elements method, in all hadronic decay channel and I+jets with matrix element method, top quark mass Tevatron combination, top mass combination with LHC, A_{fb} Tevatron combination
 - Electroweak: W boson mass both experiments and the combination, A_{fb} for di-lepton production (sin² θ_W) and Tevatron combination, W production asymmetry
 - Heavy flavor: D⁺ and D⁰ cross section, Upsilon cross sections, B_s lifetime, A_{fb} in Omega and Lambda production
 - QCD: photon+jets cross sections, central exclusive meson production, double parton interactions, $J/\psi+$ Upsilon pair production

W Boson Mass

Source	0.2/fb (MeV)	2.2/fb (MeV)	10/fb (MeV)	Assume 50% reductio	
Lepton energy scale	23	7	3	→ in BC-NBC and QED/energy loss uncertainties	
Lepton energy resolution	4	2	1		
Recoil energy scale	8	4	2	Assume the same scaling as $0.2/\text{fb} \rightarrow 2.2/\text{fb}$	
Lepton removal	6	2	1		
Backgrounds	6	3	2	J	
pT(W) model	4	5	2	\rightarrow Assume 1/ \checkmark L scaling	
PDFs	11	10	5	Assume 50% reduction in PDF uncertainty Assume the same QED	
QED radiation	10	4	4		
Total systematics	34	15	8		
W statistics	34	12	6	\rightarrow Assume 1/ \checkmark L scaling	
Total	48	19	10		

2). BC-NBC difference

- 3). QED/energy loss modeling
- W boson mass is a fundamental parameter of the standard model
 - Input for the standard model self-consistency check —
- With newer PDFs (W asymmetry measurements) ~5 MeV PDF uncertainty (leading systematic) could be reached
- Projections demonstrate ~10-12 MeV uncertainty per experiment with 10 fb⁻¹ data set
 - Both experiments are working on the analysis **Fermilab**

Tevatron Highlights Summary

- Tevatron analyses are concentrating on unique features of the data set and detectors
 - High center of mass energy, initial pp state, magnets polarities changes, low number of interactions per crossing
 - Very high precision measurements of standard model parameters such as top quark and W boson masses, $sin^2\theta_W$ and many others obtained recently and more to come
- 50 results published by the collaborations over last year
 - Expect another ~40 papers based on the Tevatron data
- Tevatron data are preserved
 - Data on new tapes, software made compatible with long term supported operating system
 - ~20,000 CDF and DØ Notes are in Inspire (most recent are protected)
 - Agenda servers with ~100,000 talks migrated to Indico

Very productive Tevatron program with over 1,000 publications and over 1,000 PhDs defended is successfully converging

July 31 2015

- Large data set and charge symmetry of the detector due to magnetic polarities changes makes high accuracy charge asymmetry studies possible
- Measurement of CP violating parameters in Cabibbo-favored decays are crucial to establish experimental basis for CP violation searches in decays proceeding via box or penguin diagrams

$$A_{\rm CP}(D^+ \to K^- \pi^+ \pi^+) = \frac{\Gamma(D^+ \to K^- \pi^+ \pi^+) - \Gamma(D^- \to K^+ \pi^- \pi^-)}{\Gamma(D^+ \to K^- \pi^+ \pi^+) + \Gamma(D^- \to K^+ \pi^- \pi^-)}$$

