CMS Higgs Couplings and Spin/CP

Ben Kreis (FNAL) Higgs Hunting, Orsay, France July 31, 2015

Outline

- Couplings
 - Signal strengths
 - Coupling modifiers
 - Vector bosons and fermions
 - Generic modifier ratios
 - New physics
- Spin/CP
 - Exotic spin
 - Spin 0 anomalous couplings

Up to 5.1 fb⁻¹ (7 TeV) and 19.7 fb⁻¹ (8 TeV) Eur. Phys. J. C 75 (2015) 212 Phys. Rev. D 92, 012004 (2015)

Combined Higgs Channels

- Comprehensive set of production and decay modes targeted
- Over 250 mutually exclusive event categories

Event category targets

- Included in coupling combinations
- Considered in certain interpretations

S		ggH	VBF	VH	ttH	
	Н→үү	~	~	~	~	
d	H→ZZ	<	~	~	~	
е	H→WW	~	~	~	~	
С	Н→тт	~	~	~	~	
а	H→bb		~	~	~	
у	H→µµ	~	~	~		
-	H→invisible		~	~		

production

- m_H=125.0 GeV and narrow-width approximation assumed
 - Off-shell measurements treated separately
 - See David Sperka's talk yesterday on CMS diboson results

CMS Couplings and Spin/CP

Ben Kreis

Signal Strength (σ/σ_{SM})

- Best fit signal strength for production- and decay-tag pairs
 - Tag by production and decay mode expected to dominate sensitivity in SM
 - All signal contributions to tag pair scaled together
 - p-value wrt SM = 0.84
- Overall combination
 1.00 ± 0.09(stat)^{+0.08}/_{-0.07} (theo)±0.07(syst)
 - Theory uncertainties: QCD scales PDFs, branching fractions, underlying event

Coupling Modifiers (κ_i)

• With additional assumption that signal arises from single particle with $J^{PC} = 0^{++}$,

$$(\sigma \mathcal{B}) (x \to H \to yy) = \frac{\sigma_x \Gamma_{yy}}{\Gamma_{tot}}$$

- $\Gamma_{tot} = \Sigma \Gamma_{ii} + \Gamma_{BSM}$, where $\Gamma_{BSM} = \Gamma_{inv} + \Gamma_{undet}$
- Introduce coupling modifiers (κ_i) to test for deviations from SM
 - Production: $\kappa_i^2 = \sigma_i / \sigma_i^{SM}$
 - Decay: $\kappa_i^2 = \Gamma_{ii}/\Gamma_{ii}^{SM}$
 - Total width: $\kappa_{H^2} = \Gamma_{tot}/\Gamma_{SM}$

Couplings to Massive Vector Bosons and Fermions

Most general model proposed by LHCXSWG (arXiv:1307.1347)

- Parameters are
 - $\kappa_{gZ} = \kappa_g \kappa_Z / \kappa_H$, where $\kappa_H^2 = \Gamma_{tot} / \Gamma_{SM}$ modifies the width
 - Ratios of couplings $\lambda i j = \kappa_i / \kappa_j$
- No assumption on scaling of total width.
- Most significant deviation is driven by excess in ttH channels

New Physics

In loops

- ggH production and $H \rightarrow \gamma \gamma$ decay are loop-• induced at leading order
- Likelihood scan of κ_g and κ_γ assuming SM • tree-level couplings and $\Gamma_{BSM} = 0$
- Best fit (κ_g , κ_v) = (1.14,0.89) is compatible • with SM within 68% CL region

Undetected and invisible decays

- Include $H \rightarrow inv$ search results to constrain ullet $BR_{inv} = \Gamma_{inv} / \Gamma_{tot}$
 - Uncombined: BR_{inv} observed (expected) 95% CL upper limit = 0.58 (0.44)
- Simultaneous fit for BR_{inv} and BR_{undet} = $\Gamma_{undet}/\Gamma_{tot}$ while profiling κ_{γ} , κ_{g} , $\kappa_{V} \leq 1$, κ_{b} , κ_{τ} , κ_{t}
 - Very general!

Exotic Spin Scenarios

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 Te

30

 $-2 \times \ln(L_{P} / L_{0^{+}})$

40

20

10

 \rightarrow ZZ + WW + $\gamma\gamma$

CMS Preliminary

0+

 2_{m}^{+}

Observed

[>]seudoexperiments

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

- Spin-two
 - with gravity-like minimal couplings excluded at 99.87%
 CL in combination of H→ZZ, H→WW, and H→γγ.
 - Another ten models excluded at 99% CL or higher.
- Any mixed-parity spin-one state is excluded at >99.999% CL in combination of H→ZZ and H→WW
- Fraction of non-interfering exotic spin state in addition to J^P=0⁺ state also considered.

CMS Couplings and Spin/CP

Ben Kreis

Observables

- Use 5 angles and 3 masses to describe
 H→VV→4l kinematics
 - Matrix elements define event by event probabilities for observed kinematics (MELA)
 - Construct kinematic discriminants from probabilities

$$\exists .g. \quad \mathcal{D}_{J^{P}} = \frac{\mathcal{P}_{\mathrm{SM}}}{\mathcal{P}_{\mathrm{SM}} + \mathcal{P}}$$

- H→WW→lvlv contains reduced information due to v's
 - Use $m_{\rm II}$ and $m_{\rm T}$ distinguish signal models
- CMS Couplings and Spin/CP

11

HZZ: complex a_i

Example: fa2

CMS Unpublished

 φ_{a2}

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV)

-95%

· 68% CL

× Best fit -SM

14 <u>–</u>

⊲ 12 ଦ

-10

8

6

CMS Couplings and Spin/CP

HZZ: real ai

$H \rightarrow ZZ + H \rightarrow WW$ Combination

- A priori, no relationship between HZZ and HWW couplings
- Combine $H \rightarrow ZZ$ and $H \rightarrow WW$ after assuming a relationship

$$r_{ai} = \frac{a_i^{WW} / a_1^{WW}}{a_i / a_1}$$
, or $R_{ai} = \frac{r_{ai} |r_{ai}|}{1 + r_{ai}^2}$

• Custodial symmetry implies $a_1 = a_1^{WW}$

 $f_{\Lambda 1}$ and f_{a2} in backup all consistent with SM

- Additional term depending only on invariant mass of Higgs boson
- Must be tested in off-shell region
- Joint constraint on width and $\Lambda_{\rm Q}$ anomalous coupling

CMS Couplings and Spin/CP

$$f_{\Lambda Q} = \frac{m_{\rm H}^4 / \Lambda_Q^4}{|a_1|^2 + m_{\rm H}^4 / \Lambda_Q^4}$$

Conclusions

- Comprehensive sets of Higgs measurements combined to test compatibility of couplings with SM
- Constraints placed on exotic spin states and spin-zero anomalous couplings,
- Including new results on $f_{\Lambda Q}$
- All observations are consistent with the standard model scalar J^{PC}=0++

CMS Couplings and Spin/CP

Scaling of couplings with mass

- Phenomenological parameterization relating masses to coupling modifiers with two parameters
 - $\kappa_f = v m_f \varepsilon / M^{1+\varepsilon}$
 - $k_V = v m_V^{2\epsilon}/M^{1+2\epsilon}$
- SM recovered for $(M,\epsilon) = (v,0)$, where v = 246 GeV
- Assume
 - Coupling to massive SM particles only, one parameter per tree-level coupling
 - SM loop structure

ω 0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3∟ 200

H→VV→4I Kinematics

CMS Couplings and Spin/CP

19

$H \rightarrow ZZ + H \rightarrow WW$ Combination

 $a_1 = a_1^{WW}$

CMS Couplings and Spin/CP

Ben Kreis

$HZ\gamma$ and $H\gamma\gamma$

- $H \rightarrow VV \rightarrow 4I$, where $VV = Z\gamma^*$, $\gamma^*\gamma^*$
- Currently, not competitive with direct cross section measurements from on-shell $H \rightarrow Z\gamma$ or $H \rightarrow \gamma\gamma$
- However, with sufficient luminosity, $f_{a3}^{V\gamma}$ and $f_{a2}^{V\gamma}$ can be measured separately in this channel. Also $f_{\Lambda 1}^{Z\gamma}$.

CMS Couplings and Spin/CP

 $f_{{\boldsymbol{\wedge}}{\boldsymbol{Q}}}$

