CMS Higgs Couplings and Spin/CP

Outline

- Couplings
- Signal strengths
- Coupling modifiers
- Vector bosons and fermions
- Generic modifier ratios
- New physics

- Spin/CP

- Exotic spin
- Spin 0 anomalous couplings

Up to $5.1 \mathrm{fb}^{-1}$ (7 TeV) and $19.7 \mathrm{fb}^{-1}$ (8 TeV)
Eur. Phys. J. C 75 (2015) 212
Phys. Rev. D 92, 012004 (2015)

Combined Higgs Channels

- Comprehensive set of production and decay modes targeted
- Over 250 mutually exclusive event categories

Event category targets

\checkmark Included in coupling combinations
\checkmark Considered in certain interpretations

- $\mathrm{m}_{\mathrm{H}}=125.0 \mathrm{GeV}$ and narrow-width approximation assumed
- Off-shell measurements treated separately
- See David Sperka's talk yesterday on CMS diboson results

Signal Strength (б/бзм)

- Best fit signal strength for production- and decay-tag pairs
- Tag by production and decay mode expected to dominate sensitivity in SM
- All signal contributions to tag pair scaled together
- p -value wrt SM $=0.84$
- Overall combination
1.00 ± 0.09 (stat) ${ }_{-0.07}^{+0.08}$ (theo) ± 0.07 (syst)
- Theory uncertainties: QCD scales PDFs, branching fractions, underlying event

Coupling Modifiers (K_{i})

- With additional assumption that signal arises from single particle with $\mathrm{JPC}=0^{++}$,

$$
(\sigma \mathcal{B})(x \rightarrow \mathrm{H} \rightarrow y y)=\frac{\sigma_{x} \Gamma_{y y}}{\Gamma_{\mathrm{tot}}}
$$

- $\Gamma_{\text {tot }}=\Sigma \Gamma_{\text {ii }}+\Gamma_{\text {BSM }}$, where $\Gamma_{\text {BSM }}=\Gamma_{\text {inv }}+\Gamma_{\text {undet }}$
- Introduce coupling modifiers (K_{i}) to test for deviations from SM
- Production: Ki $^{2}=\sigma_{i} / \sigma_{i}{ }^{S M}$
- Decay: $\mathrm{ki}^{2}=\Gamma_{\mathrm{ij}} / \Gamma_{\mathrm{ij}} \mathrm{SM}$
- Total width: $\mathrm{KH}^{2}=\Gamma_{\text {tot }} / \Gamma_{\mathrm{sm}}$

Couplings to Massive Vector Bosons and Fermions

Test of custodial symmetry

- Likelihood scan of $\lambda_{w z}=K w / K z$ while profiling $k z$ and K_{f}
- Assume single Kf_{f} and $\Gamma_{\text {BSm }}=0$
- Consistent with SM value of 1, resulting from protection against large radiative corrections

Couplings to vector boson and fermions

- 68\% CL regions for kv and Kf
- Assume $\Gamma_{\mathrm{Bsm}}=0$
- Shows complementarity of combined channels
- Consistent with SM value of $(1,1)$

Generic Modifier Ratio Model

- Most general model proposed by LHCXSWG (arXiv:1307.1347)
- Parameters are
- $\mathrm{Kgz}=\mathrm{Kg} \mathrm{Kz} / \mathrm{KH}$, where $\mathrm{KH}^{2}=\Gamma_{\mathrm{tot}} / \Gamma_{\mathrm{sm}}$ modifies the width
- Ratios of couplings $\lambda_{i j}=\mathrm{K}_{\mathrm{i}} / \mathrm{K}_{\mathrm{j}}$
- No assumption on scaling of total width.

- Most significant deviation is Parameter value driven by excess in ttH channels

New Physics

In loops

- ggH production and $\mathrm{H} \rightarrow \mathrm{\gamma} \mathrm{\gamma}$ decay are loopinduced at leading order
- Likelihood scan of K_{g} and k_{y} assuming SM tree-level couplings and $\Gamma_{\mathrm{BSM}}=0$
- Best fit $\left(\mathrm{Kg}_{\mathrm{g}}, \mathrm{K}_{\mathrm{y}}\right)=(1.14,0.89)$ is compatible with SM within 68% CL region

Undetected and invisible decays

- Include $\mathrm{H} \rightarrow$ inv search results to constrain $\mathrm{BR}_{\text {inv }}=\Gamma_{\text {inv }} / \Gamma_{\text {tot }}$
- Uncombined: BRinv observed (expected) 95\% CL upper limit = 0.58 (0.44)
- Simultaneous fit for $\mathrm{BR}_{\text {inv }}$ and $\mathrm{BR}_{\text {undet }}=$ $\Gamma_{\text {undet }} / \Gamma_{\text {tot }}$ while profiling $\mathrm{K}_{\mathrm{v}}, \mathrm{K}_{\mathrm{g}}, \mathrm{Kv} \leq 1, \mathrm{~Kb}_{\mathrm{b}}, \mathrm{K}_{\mathrm{T}}, \mathrm{K}_{\mathrm{t}}$
- Very general!

Exotic Spin Scenarios

- Spin-two
- with gravity-like minimal couplings excluded at 99.87\% CL in combination of $\mathrm{H} \rightarrow \mathrm{ZZ}, \mathrm{H} \rightarrow \mathrm{WW}$, and $\mathrm{H} \rightarrow \gamma \gamma$.
- Another ten models excluded at 99\% CL or higher.
- Any mixed-parity spin-one state is excluded at $>99.999 \% \mathrm{CL}$ in combination of $\mathrm{H} \rightarrow \mathrm{ZZ}$ and $\mathrm{H} \rightarrow \mathrm{WW}$
- Fraction of non-interfering exotic spin state in addition to $\mathrm{JP}^{\mathrm{P}}=\mathrm{O}^{+}$state also considered.

Spin 0 Anomalous Couplings Phenomenology

- Generic $\mathrm{HV}_{1} \mathrm{~V}_{2}(\mathrm{~V}=\mathrm{W}, \mathrm{Z}, \mathrm{V}, \mathrm{g})$ scattering amplitude, expanded up to q^{2}

$$
\begin{aligned}
& A(\mathrm{HVV}) \sim\left[a_{1}^{\mathrm{VV}}+\frac{\kappa_{1}^{\mathrm{VV}} q_{\mathrm{V} 1}^{2}+\kappa_{2}^{\mathrm{VV}} q_{\mathrm{V} 2}^{2}}{\left(\Lambda_{1}^{\mathrm{VV}}\right)^{2}}\right] \\
& \quad \text { tree level scalar (0+) leading momentum }
\end{aligned} m_{\mathrm{V} 1}^{2} \epsilon_{\mathrm{V} 1}^{*} \epsilon_{\mathrm{V} 2}^{*}+a_{2}^{\mathrm{VV}} f_{\mu \nu}^{*(1)} f^{*(2), \mu \nu}+a_{3}^{\mathrm{VV}} f_{\mu \nu}^{*(1)} \tilde{f}^{*(2), \mu \nu}
$$

higher order scalar

Interaction	Anomalous Coupling	Coupling Phase	Effective Fraction
HZZ	Λ_{1}	$\phi_{\Lambda 1}$	$f_{\Lambda 1}$
	a_{2}	$\phi_{a 2}$	$f_{a 2}$
	a_{3}	$\phi_{a 3}$	$f_{a 3}$
HWW	$\Lambda_{1}^{\text {WW }}$	$\phi_{\wedge 1}^{\mathrm{WW}}$	$f_{\wedge 1}^{W W}$
	$a_{2}^{\text {WW }}$	$\phi_{\text {a }}{ }^{W}{ }^{W}$	$f_{\text {a }}{ }^{W} \mathrm{~W}$
	$a_{3}^{\text {WW }}$	$\phi_{a 3}^{W W W}$	$f_{a 3}^{W W}$
$\mathrm{HZ} \gamma$	$\Lambda_{1}^{\mathrm{Z} \gamma}$	$\phi_{11}^{\mathrm{Z} \gamma}$	$f_{\Lambda 1}^{Z \gamma}$
	$a_{2}^{Z \gamma}$		$f_{a_{2}}^{Z \gamma}$
	$a_{3}^{Z_{\gamma}}$	$\phi_{a 3}^{Z,}$	$f_{a 3}^{Z \gamma}$
$\mathrm{H} \gamma \gamma$	$a_{2}^{\gamma \gamma}$	$\phi_{02}^{\gamma \gamma}$	$f_{0}^{\gamma \gamma}$
	$a_{3}^{\gamma \gamma}$	$\phi_{a 3}^{\gamma 2 \gamma}$	$f_{a 3}^{\gamma \gamma}$

Example phase and effective fraction:

$$
\phi_{a 2}=\arg \left(\frac{a_{2}}{a_{1}}\right) \quad f_{a 2}=\frac{\left|a_{2}\right|^{2} \sigma_{2}}{\left|a_{1}\right|^{2} \sigma_{1}+\left|a_{2}\right|^{2} \sigma_{2}+\left|a_{3}\right|^{2} \sigma_{3}+\tilde{\sigma}_{\Lambda_{1}} /\left(\Lambda_{1}\right)^{4}}
$$

where σ_{i} is the cross section for $a_{i}=1$ and $a_{j \neq i}=0$
One non-zero anomalous coupling:
A. real, $\phi_{\mathrm{a}}=0, \pi$
B. complex, $\phi_{\text {ai }}$ unconstrained Two non-zero anomalous couplings:
C. real, $\phi_{\mathrm{a}, \mathrm{a}, \mathrm{j}}=0, \pi$
D. complex, $\phi_{\mathrm{ai}, \mathrm{aj}}$ unconstrained

Simulated with JHUGen or POWHEG+JHUGen

Observables

- Use 5 angles and 3 masses to describe $\mathrm{H} \rightarrow \mathrm{VV} \rightarrow 4$ l kinematics
- Matrix elements define event by event probabilities for observed kinematics (MELA)
- Construct kinematic discriminants from probabilities

$$
\text { e.g. } \mathcal{D}_{J^{p}}=\frac{\mathcal{P}_{\mathrm{SM}}}{\mathcal{P}_{\mathrm{SM}}+\mathcal{P}_{J^{p}}}
$$

- $\mathrm{H} \rightarrow \mathrm{WW} \rightarrow$ Ivlv contains reduced information due to v's
- Use $m_{\|}$and m_{T} distinguish signal models

HZZ: complex ai

Example: $f_{\mathrm{a} 2}$

all consistent with SM

HZZ: real a_{i}

- Couplings assumed to be real, so $\phi_{\mathrm{ai}}=0$ or π and $\cos \left(\phi_{\mathrm{ai}}\right)=1$ or -1

CMS Couplings and Spin/CP

all consistent with SM

$\mathrm{H} \rightarrow \mathrm{ZZ}+\mathrm{H} \rightarrow \mathrm{WW}$ Combination

- A priori, no relationship between HZZ and HWW couplings
- Combine $\mathrm{H} \rightarrow \mathrm{ZZ}$ and $\mathrm{H} \rightarrow \mathrm{WW}$ after assuming a relationship

$$
r_{a i}=\frac{a_{i}^{\mathrm{WW}} / a_{1}^{\mathrm{WW}}}{a_{i} / a_{1}}, \text { or } R_{a i}=\frac{r_{a i}\left|r_{a i}\right|}{1+r_{a i}^{2}}
$$

- Custodial symmetry implies $a_{1}=a_{1} w w$

$$
a_{1}=a_{1} w w
$$

$$
\mathrm{r}_{\mathrm{ai}}=1, \text { or } \mathrm{R}_{\mathrm{a} 3}=0.5
$$

$f_{\wedge 1}$ and $f_{a 2}$ in backup all consistent with SM

- Additional term depending only on invariant mass of Higgs boson

$$
A(\mathrm{HVV}) \propto[a_{1} \underbrace{}_{+a_{2} f_{\mu \nu}^{*(1)} f^{*(2), \mu v}+a_{3} f_{\mu \nu}^{*(1)} \tilde{f}^{*(2), \mu v}, \frac{\left(q_{\mathrm{v} 1}+q_{\mathrm{V} 2}\right)^{2}}{\left(\Lambda_{Q}\right)^{2}}-e^{i \phi_{\Lambda 1}} \frac{\left(q_{\mathrm{V} 1}^{2}+q_{\mathrm{V} 2}^{2}\right)}{\left(\Lambda_{1}\right)^{2}} m_{\mathrm{V} 1}^{2} \epsilon_{\mathrm{V} 2}^{*} \epsilon^{*}}
$$

- Must be tested in off-shell region

$$
f_{\Lambda Q}=\frac{m_{\mathrm{H}}^{4} / \Lambda_{Q}^{4}}{\left|a_{1}\right|^{2}+m_{\mathrm{H}}^{4} / \Lambda_{\mathrm{Q}}^{4}}
$$

- Joint constraint on width and \wedge_{Q} anomalous coupling

Conclusions

- Comprehensive sets of Higgs measurements combined to test compatibility of couplings with SM
- Constraints placed on exotic spin states and spin-zero anomalous couplings,
- Including new results on f^Q
- All observations are consistent with the standard model scalar JPC= 0^{++}

Backup

Scaling of couplings with mass

- Phenomenological parameterization relating masses to coupling modifiers with two parameters
$-\mathrm{K}_{\mathrm{f}}=\mathrm{v} \mathrm{mf}_{\mathrm{f}} / \mathrm{M}^{1+\varepsilon}$
$-k v=v m v^{2 \varepsilon} / M^{1+2 \varepsilon}$
- SM recovered for $(\mathrm{M}, \varepsilon)=(\mathrm{v}, 0)$, where $v=246 \mathrm{GeV}$
- Assume
- Coupling to massive SM particles only, one parameter per tree-level coupling
- SM loop structure

$\mathrm{H} \rightarrow \mathrm{VV} \rightarrow 4 \mid$ Kinematics

$\mathrm{H} \rightarrow \mathrm{ZZ}+\mathrm{H} \rightarrow$ WW Combination

Ben Kreis

$\mathrm{HZ} \gamma$ and $\mathrm{H} \gamma \gamma$

- $\mathrm{H} \rightarrow \mathrm{VV} \rightarrow 4 \mathrm{I}$, where $\mathrm{VV}=\mathrm{Z} \gamma^{*}, \gamma^{*} \gamma^{*}$
- Currently, not competitive with direct cross section measurements from on-shell $\mathrm{H} \rightarrow \mathrm{Zy}$ or $\mathrm{H} \rightarrow \mathrm{\gamma} \mathrm{\gamma}$
- However, with sufficient luminosity, $f_{a 3} V_{r}$ and $f_{a 2} V_{r}$ can be measured separately in this channel. Also $f_{\wedge 1} z_{\gamma}$.

