V(H → WW*) in Run 1 Higgs Hunting 2015

Joe Taenzer (University of Toronto) On behalf of the ATLAS collaboration

July 30th 2015

- WH and ZH have 3^{rd} and 4^{th} highest cross-sections at the LHC for mH ~ 125 GeV
- $H \rightarrow WW^* 2^{nd}$ largest branching fraction for mH ~ 125 GeV
- Access to tree-level Higgs-Vector boson coupling strength (κV)
- Run 1 V(H \rightarrow WW*) paper on arXiv (arXiv:1506.06641) and accepted by JHEP

Global analysis strategy in Run1

Two fully leptonic and two semi-leptonic channels:

 $Z(H \rightarrow WW^*) \rightarrow IIIvIv$ 4 lepton analysis

W(H → WW*) → lvlvqq Same sign dilepton analysis

 $W/Z(H \rightarrow WW^*) \rightarrow qqlvlv$ Opposite sign dilepton analysis

Joe Taenzer (University of Toronto)

- Use lepton multiplicity and charge to divide processes into different signal regions
- Cut & count experiments with each process also having several signal regions (jet multiplicity, lepton flavour, etc)
- Shape fit only in WH channel with 3 lepton final state
- Signal region selections optimized independently
- Combine results with ggF and VBF analysis for couplings measurement

WH \rightarrow 3 lepton analysis

- Major backgrounds are WZ/Wy*, ZZ*, VVV
- Split into Z enriched and Z depleted regions using number of same flavour (SF) opposite sign (OS) lepton pairs
- Both cut&count and shape fit (BDT) analyses

Backgrounds in bold are normalized via a CR

SR selections

Channel		3ℓ	
Category	3SF	1SFOS	0SFOS
Trigger	singl	le-lepton trig	ggers
Num. of leptons	3	3	3
$p_{\rm T, leptons}$ [GeV]	> 15	> 15	> 15
Total lepton charge	±1	± 1	± 1
Num. of SFOS pairs	2	1	0
Num. of jets	≤ 1	≤ 1	≤ 1
$p_{\mathrm{T,jets}}$ [GeV]	> 25 (30)	> 25 (30)	> 25 (30)
Num. of <i>b</i> -tagged jets	0	0	0
$E_{\rm T}^{\rm miss}$ [GeV]	> 30	> 30	_
$p_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 20	> 20	
$ m_{\ell\ell} - m_Z $ [GeV]	> 25	> 25	
Min. $m_{\ell\ell}$ [GeV]	> 12	> 12	> 6
Max. $m_{\ell\ell}$ [GeV]	< 200	< 200	< 200
$\Delta R_{\ell_0\ell_1}$	< 2.0	< 2.0	_

Boxed cuts are unique/important to the analysis

Event yields (8 TeV)

	Signal	Tot. Bkg	Observed
3SF SR	0.7 ± 0.1	22 ± 4	22
1SFOS SR	1.6 ± 0.2	34 ± 6	38
0SFOS SR	1.4 ± 0.2	12 ± 2	14

$ZH \rightarrow 4$ lepton analysis

- Main background is ZZ*
- Split SR into 1SFOS and 2SFOS to better control ZZ* bkg
- Require small $\Delta \phi$ between Higgs cand. leptons

🔶 Data

Others

 $VH (H \rightarrow WW^*)$ ZZ*

Channel	4	l
Category	2SFOS	1SFOS
Trigger	single-lept	on triggers
Num. of leptons	4	4
$p_{\mathrm{T,leptons}}$ [GeV]	> 25, 20, 15	> 25, 20, 15
Total lepton charge	0	0
Num. of SFOS pairs	2	1
Num. of jets	≤ 1	≤ 1
$p_{\rm T,jets}$ [GeV]	> 25 (30)	> 25 (30)
Num. of <i>b</i> -tagged jets	0	0
$E_{\rm T}^{\rm miss}$ [GeV]	> 20	> 20
$p_{\rm T}^{\rm miss}$ [GeV]	> 15	> 15
$ m_{\ell\ell} - m_Z $ [GeV]	$< 10 \ (m_{\ell_2 \ell_3})$	$< 10 \ (m_{\ell_2 \ell_3})$
Min. $m_{\ell\ell}$ [GeV]	$> 10 \ (m_{\ell_0 \ell_1})$	$> 10 \ (m_{\ell_0 \ell_1})$
Max. $m_{\ell\ell}$ [GeV]	$< 65 \ (m_{\ell_0 \ell_1})$	$< 65 \ (m_{\ell_0 \ell_1})$
$m_{4\ell} [{ m GeV}]$	> 140	—
$p_{\mathrm{T},4\ell} \; [\mathrm{GeV}]$	> 30	—
$\Delta \phi_{\ell_0 \ell_1}$ [rad]	$< 2.5 \ (\Delta \phi_{\ell_0 \ell_1}^{\text{boost}})$	$< 2.5 \ (\Delta \phi_{\ell_0 \ell_1}^{\text{boost}})$

SR selections

Event vields (8 TeV)

	Signal	Tot. Bkg	Observed
2SFOS SR	0.20 ± 0.03	1.30 ± 0.23	0
1SFOS SR	0.23 ± 0.03	0.41 ± 0.09	3

// Bkg. Uncer

 m_{AI} [GeV]

W/ZH \rightarrow DFOS dilepton analysis

- Major backgrounds are top and $Z \rightarrow \tau \tau$
- Only consider eµ events to suppress ZDY
- Require dijet invariant mass close to W/Z mass
- VBF contamination suppressed by reversing VBF selections

SR selections

Channel	
Category	DFOS
Trigger	
Num. of leptons	2
$p_{\rm T, leptons}$ [GeV]	> 22, 15
Total lepton charge	0
Num. of SFOS pairs	0
Num. of jets	≥ 2
$p_{\mathrm{T,jets}} \; [\mathrm{GeV}]$	> 25 (30)
Num. of b -tagged jets	0
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 20
Min. $m_{\ell\ell}$ [GeV]	> 10
Max. $m_{\ell\ell}$ [GeV]	< 50
$m_{\tau\tau}$ [GeV]	$<(m_Z - 25)$
$\Delta \phi_{\ell_0 \ell_1} [\mathrm{rad}]$	< 1.8
$m_{ m T} [{ m GeV}]$	< 125
Δy_{jj}	< 1.2
$ m_{jj} - 85 $ [GeV]	< 15

Event yields (8 TeV)

	WH	ZH*	Tot. Bkg	Observed
DFOS SR	1.5 ± 0.1	0.67 ± 0.04	50 ± 5	63

*ZH contamination in the 3I and SS dilepton analysis is less than 10%

 $\Delta y_{\rm i}$

WH \rightarrow SS dilepton analysis

- Major backgrounds are W+jets, WZ/Wy*, Wy
- Require SS leptons to suppress SM backgrounds
- Include 1 jet events, often lose a jet in signal for $W^* \rightarrow qq$

SS1jet

• Split SR by jet multiplicity and lepton flavor

02 10 ³ ATLA (s = 8 Te SS 2-lept	5 V, 20.3 fb ⁻¹ on (2jet)		//, Bkg. Uncer ///, Bkg. Uncer ///, Bkg. Uncer ///, Bkg. Uncer //, Bkg. Uncer //, Bkg. Uncer	
10 ² 0 50 MijjMin (after F	in SS	2jet SF	0 250 3 <i>m</i> ^{min} _{l_p,jj} [Ge	00 V]

m ·

Ingger	single-lepton & d	llepton triggers
Num. of leptons	2	2
$p_{\rm T,leptons}$ [GeV]	> 22, 15	> 22, 15
Total lepton charge	± 2	± 2
Num. of SFOS pairs	0	0
Num. of jets	2	1
$p_{\mathrm{T,jets}} \; [\mathrm{GeV}]$	> 25 (30)	> 25 (30)
Num. of b -tagged jets	0	0
$E_{\rm T}^{\rm miss}$ [GeV]	> 50	> 45
$p_{\rm T}^{\rm miss}~[{ m GeV}]$		
$ m_{\ell\ell} - m_Z $ [GeV]	> 15	> 15
Min. $m_{\ell\ell}$ [GeV]	$> 12 \; (ee, \mu\mu)$	$> 12~(ee, \mu\mu)$
	$> 10 \; (e\mu)$	$> 10 \ (e\mu)$
$m_{\rm T} ~[{ m GeV}]$		$> 105 \ (m_{\rm T}^{\rm lead})$
Min. $m_{\ell_i j(j)}$ [GeV]	< 115	< 70
Min. $\phi_{\ell_i j}$ [rad]	< 1.5	< 1.5

Event yields (8 TeV)

	Signal	Tot. Bkg	Observed
1 jet SR	2.04 ± 0.30	44 ± 6	62
2 jet SR	1.04 ± 0.18	21 ± 5	25

Combined H \rightarrow WW Results (mH = 125.36 GeV)

Significance and signal strength summary table (7 + 8 TeV)

Joe Taenzer (University of Toronto)

THANK YOU!

BACKUPS

Joe Taenzer (University of Toronto)

MC generators

Process	Generator	$\sigma(\times Br)$ [pb]	Cross-section normalisation
Higgs boson			
$VH (H \rightarrow WW^*)$	Pythia [25, 26] v8.165, v6.428	0.24, 0.20	NNLO $QCD + NLO EW$
$VH (H \rightarrow \tau \tau)$	Pythia v8.165, v6.428	0.07, 0.06	NNLO $QCD + NLO EW$
$gg \to H \ (H \to WW^*)$	POWHEG-BOX [27-30] v1.0 (r1655)+ PYTHIA v8.165, v6.428	4.1, 3.3	NNLO+NNLL QCD + NLO EW
VBF $(H \rightarrow WW^*)$	POWHEG-BOX [31] v1.0 (r1655)+ PYTHIA v8.165, v6.428	0.34, 0.26	NNLO $QCD + NLO EW$
$t\bar{t}H (H \rightarrow WW^*)$	Pythia v8.165	0.028, 0.019	NLO
Single boson			
$Z/\gamma^* (\to \ell \ell) + \text{jets} \ (m_{\ell \ell} > 10 \text{ GeV})$	Alpgen [32] v2.14 + Herwig [33] v6.52	16540, 12930	NNLO
HF $Z/\gamma^*(\rightarrow \ell\ell)$ +jets $(m_{\ell\ell} > 30 \text{ GeV})$	Alpgen v2.14 + Herwig v6.52	126, 57	NNLO
VBF $Z/\gamma^*(\to \ell\ell) \ (m_{\ell\ell} > 7 \text{ GeV})$	Sherpa [34] v1.4.1	5.3, 2.8	LO
Top-quark			
$t\bar{t}$	Powheg-Box[35] v1.0 (r2129)+Pythia v6.428 MC@NLO [36] v4.03	250, 180	NNLO+NNLL
$t\bar{t}W/Z$	MadGraph [37] v5.1.5.2, v5.1.3.28 +Pythia v6.428	0.35, 0.25	LO
tqb	AcerMC [38] v3.8 +Pythia v6.428	88, 65	NNLL
tb, tW	POWHEG-BOX [39, 40] v1.0 (r2092)+ PYTHIA v6.428	28, 20	NNLL
tZ	MadGraph v5.1.5.2, v5.1.5.11 +Pythia v6.428	0.035, 0.025	LO
Dibosons			
$WZ/W\gamma^*(\to \ell\ell\ell\nu)(m_{\ell\ell} > 7 \text{ GeV})$	Powheg-Box[41] v1.0 (r1508)+Pythia v8.165, v6.428	12.7, 10.7	NLO
$WZ/W\gamma^*(\rightarrow \ell\ell\ell\nu)$ (min. $m_{\ell\ell} < 7 \text{ GeV}$)	Sherpa v1.4.1	12.2, 10.5	NLO
other WZ	Powheg-Box[41] v1.0 (r1508) + Pythia v8.165	21.2, 17.2	NLO
$q\bar{q}/qg \rightarrow Z^{(*)}Z^{(*)}(\rightarrow \ell\ell\ell\ell, \ell\ell\nu\nu) \ (m_{\ell\ell} > 4 \text{ GeV})$	Powheg-Box[41] v1.0 (r1556) +Pythia v8.165, v6.428	1.24, 0.79	NLO
$q\bar{q}/qg \to Z^{(*)}Z^{(*)}(\to \ell\ell\ell\ell, \ell\ell\nu\nu)$ (min. $m_{\ell\ell} < 4 \text{ GeV}$)	Sherpa v1.4.1	7.3, 5.9	NLO
other $q\bar{q}/qg \rightarrow ZZ$	Powheg-Box[41] v1.0 (r1556) + Pythia v8.165	6.9, 5.7	NLO
$gg \rightarrow Z^{(*)}Z^{(*)}$	gg2ZZ [42] v3.1.2 + HERWIG v6.52 (8 TeV only)	0.59	LO
$q\bar{q}/qg \rightarrow WW$	POWHEG-BOX[41] v1.0 (r1556) + PYTHIA v6.428	54, 45	NLO
	SHERPA v1.4.1 (for 2 <i>l</i> -DFOS 8 TeV only)	54	NLO
$gg \rightarrow WW$	gg2WW [43] v3.1.2 + HERWIG v6.52	1.9, 1.1	LO
VBS $WZ, ZZ(\rightarrow \ell\ell\ell\ell, \ell\ell\nu\nu)$ ($m_{\ell\ell} > 7$ GeV), WW	SHERPA v1.4.1	1.2, 0.88	LO
$W\gamma \ (p_{\rm T}^{\gamma} > 8 \ { m GeV})$	Alpgen v2.14 +Herwig v6.52	1140, 970	NLO
$Z\gamma \ (p_{\rm T}^{\gamma} > 8 \ { m GeV})$	Sherpa v1.4.3	960, 810	NLO
Tribosons		,	
$WWW^*, ZWW^*, ZZZ^*, WW\gamma^*$	MadGraph v5.1.3.33, v5.1.5.10 + Pythia v6.428	0.44, 0.18	NLO

Background modeling

Channel	41	3ℓ	2ℓ	
Category	2SFOS, 1SFOS	3SF, 1SFOS, 0SFOS	DFOS	SS2jet, SS1jet
Process				
VVV	MC	MC	MC	MC
$WZ/W\gamma^*$		3ℓ -WZ CR, 3ℓ -Zjets CR	MC	2ℓ - WZ CR
ZZ^*	4ℓ -ZZ CR	3ℓ -ZZ CR, 3ℓ -Zjets CR	MC	MC
OS WW		MC	MC	2ℓ -WW CR
SS WW		MC		MC
$W\gamma$				2ℓ - $W\gamma$ CR
$Z\gamma$		3ℓ - $Z\gamma$ CR	MC	MC
Z/γ^*	_	3ℓ -Zjets CR, 3ℓ -ZZ CR	2ℓ - $Z\tau\tau$ CR	2ℓ -Zjets CR
W+jets			Data	Data
Multijets	—		Data	Data
Top	MC	3ℓ -Top CR	2ℓ -OSTop CR	2ℓ -SSTop CR

Background modeling summary table

- Many backgrounds are shared, but contribute differently to the different SRs
- CRs are used to normalize important backgrounds
- Fake lepton backgrounds (W+jets and QCD dijet) are estimated using a data driven technique

Control region definitions (3I and 4I)

Channel	4ℓ			3ℓ		
CR	ZZ	WZ	ZZ	Z jets	Top	$Z\gamma$
Number of leptons	4	3	3	3	3	3
Total lepton charge	0	±1	± 1	± 1	± 1	± 1
Number of SFOS	2	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1
			$(ee\mu \text{ or } \mu\mu\mu)$			$(\mu\mu e \text{ or } eee)$
Number of jets	≤ 1	≤ 1	≤ 1	≤ 1	≥ 1	≤ 1
Number of b -jets	0	0	0	0	≥ 1	0
$E_{\rm T}^{\rm miss}$ (and/or) $p_{\rm T}^{\rm miss}$ [GeV]		> 30 and > 20	< 30 or < 20	< 30 and < 20	> 30 and > 20	< 30 or < 20
$ m_{\ell\ell} - m_Z $ [GeV]	$<10(m_{\ell_2\ell_3})$	< 25		< 25	> 25	
$ m_{\ell\ell\ell} - m_Z $ [GeV]	—	—	< 15	> 15	—	< 15
Min. $m_{\ell\ell}$ [GeV]	$> 65(m_{\ell_0\ell_1})$	> 12	> 12	> 12	> 12	> 12
Max. $m_{\ell\ell}$ [GeV]		< 200	< 200	< 200		< 200
$\Delta R_{\ell_0 \ell_1}$		< 2.0	< 2.0	< 2.0		< 2.0

Control region definitions (dilepton)

Channel	DFOS 2	l			$\mathrm{SS}~2\ell$		
CR	OSTop	$Z\to\tau\tau$	$W\gamma$	WZ	WW	SSTop	Zjets
Number of leptons	2	2	2	3	2	2	2
			≥ 1 conversion e				
Total lepton charge	0	0	± 2	± 1	0	0	0
Number of SFOS	0	0	_	—	—	—	—
Number of jets	≥ 2	≥ 2	2 or 1	2 or 1	2 or 1	2 or 1	2 or 1
Number of <i>b</i> -jets	0	0	0	0	0	≥ 1	0
$E_{\rm T}^{\rm miss}$ [GeV]	> 20	> 20	> 45 (1j)	$> 45 \; (1j)$	> 85 (1j)	$>45~(1\mathrm{j},\!ee,\mu\mu)$	$> 45 \; (1j)$
						$>60~(1{ m j},e\mu)$	$< 85~(1{ m j},e\mu)$
			> 50 (2j)	$> 50 \; (2j)$	$> 80 \; (2j)$	$>50~(2\mathrm{j},\!ee,\mu\mu)$	$>50~(2\mathrm{j},\!ee,\mu\mu)$
						$>60~(2{ m j},e\mu)$	$< 80~(2{ m j},e\mu)$
$ m_{\ell\ell} - m_Z $ [GeV]	—	—	_	$< 15~({ m OS}~ee,\mu\mu)$	$>15~(ee,\mu\mu)$	$>15~(ee,\mu\mu)$	$< 15 \; (ee, \mu\mu)$
Min. $m_{\ell\ell}$ [GeV]	> 90 (8 TeV)	> 10	$> 12 \; (ee, \mu\mu)$	$> 12~(ee, \mu\mu)$	$> 12~(ee,\mu\mu)$	$> 12~(ee,\mu\mu)$	$> 12~(ee,\mu\mu)$
	$> 80 \ (7 \ { m TeV})$						
			$>10~(e\mu)$	$>10~(e\mu)$	$>10~(e\mu)$	$> 12~(e\mu)$	$>55~(e\mu)$
Max. $m_{\ell\ell}$ [GeV]	—	< 70	< 50	—	—	—	$< 80~(e\mu)$
$m_{\tau\tau}$ [GeV]	$<(m_Z-25)$	—				_	
$\Delta \phi_{\ell_0 \ell_1}$ [rad]	—	> 2.8	< 2.5	—	—	—	
$m_{\rm T} \; [{\rm GeV}]$	—	—	> 105 (1j)	$> 105 \; (1j)$	$> 105 \; (1{ m j})$	$> 105 \; (1j)$	—
Min. $m_{\ell_i j}$ [GeV]	—	_	< 70	< 70	< 70	< 70	< 70
Min. $m_{\ell_i j j}$ [GeV]			< 115	< 115	< 115	< 115	< 115
Min. $\phi_{\ell_i j}$ [rad]	_		< 1.5	< 1.5			
$p_{\rm T}^{\ell\ell}$ [GeV]	—		> 30			—	

Control region event yields

(a) 8 TeV data sample	e							
Channel	4ℓ			3ℓ			DFOS	2ℓ
CR	ZZ	WZ	ZZ	Zjets	Top	$Z\gamma$	$Z\tau\tau$	OSTop
Observed events	122	578	60	251	55	156	328	1169
MC prediction	121 ± 16	576 ± 63	60 ± 10	$249{\pm}46$	55 ± 12	155 ± 31	$326{\pm}55$	1160 ± 150
MC (no NFs)	$118{\pm}10$	543 ± 50	48 ± 4	351 ± 40	48 ± 6	188 ± 17	$354{\pm}56$	$1120{\pm}140$
Composition (%)								
$WZ/W\gamma^*$	_	$89.3 {\pm} 1.5$	5.5 ± 1.0	25.9 ± 3.5	20 ± 4	$1.68{\pm}0.31$	_	_
ZZ^*	$99.49 {\pm} 0.17$	$6.7{\pm}1.2$	$90.1 {\pm} 2.1$	38 ± 5	$3.6{\pm}1.2$	47 ± 6	_	
$Z\gamma$	—	$0.54{\pm}0.17$	0.6 ± 0.5	5.5 ± 1.5	$2.4{\pm}0.9$	43 ± 7	_	
Z+jets	—	$1.1{\pm}0.5$	$2.1{\pm}1.5$	29 ± 7	5.50 ± 3.34	8.3 ± 3.4	78.2 ± 2.8	$0.7{\pm}0.4$
Top	$0.019{\pm}0.012$	$0.66{\pm}0.18$	$0.27 {\pm} 0.13$	$0.081{\pm}0.034$	64 ± 6	$0.13 {\pm} 0.06$	$10.5{\pm}1.6$	71.3 ± 3.3
Others	$0.49{\pm}0.17$	$0.80{\pm}0.16$	$1.16 {\pm} 0.20$	0.87 ± 0.13	$3.6{\pm}0.6$	$0.33 {\pm} 0.06$	$11.2{\pm}1.9$	27.8 ± 3.2
$VH \ (H \to WW^*)$	$0.026 {\pm} 0.006$	$0.93{\pm}0.16$	$0.26{\pm}0.11$	$0.37 {\pm} 0.09$	$0.52{\pm}0.13$	$0.052{\pm}0.011$	$0.100{\pm}0.018$	$0.21{\pm}0.04$

Channel			SS 2ℓ		
CR	$W\gamma$	WZ	WW	SSTop	Zjets
Observed events	228	331	769	5142	39731
MC prediction	229 ± 41	$311{\pm}66$	742 ± 63	5080 ± 350	41000 ± 14000
MC (no NFs)	218 ± 35	335 ± 68	787 ± 58	4930 ± 330	47000 ± 16000
Composition (%)					
$W\gamma$	$85.0 {\pm} 2.4$	_	$0.46{\pm}0.14$	$0.049 {\pm} 0.018$	0.022 ± 0.007
$WZ/W\gamma^*$	$1.02{\pm}0.27$	85 ± 4	$2.34{\pm}0.24$	$0.200 {\pm} 0.029$	$0.38 {\pm} 0.09$
WW	$0.37 {\pm} 0.08$	$0.028 {\pm} 0.014$	$23.9 {\pm} 2.3$	$1.43 {\pm} 0.21$	$0.57 {\pm} 0.15$
Z+jets	$4.2{\pm}1.6$	$7.0{\pm}3.5$	$7.0{\pm}2.0$	$2.2{\pm}0.7$	$97.7 {\pm} 0.5$
Top	$0.68 {\pm} 0.20$	$1.50{\pm}0.29$	$62.7 {\pm} 2.8$	95.5 ± 0.8	$0.86{\pm}0.21$
Others	8.7 ± 1.2	5.3 ± 1.2	$3.2{\pm}0.4$	$0.63 {\pm} 0.11$	$0.44{\pm}0.11$
$VH \ (H \rightarrow WW^*)$	_	0.77 ± 0.17	$0.32{\pm}0.04$	$0.036 {\pm} 0.005$	$0.0077 {\pm} 0.0020$

(b) 7 TeV data sample

· · ·								
Channel	4ℓ			3ℓ			DFO	5 2 <i>l</i>
CR	ZZ	WZ	ZZ	Zjets	Top	$Z\gamma$	$Z\tau\tau$	OSTop
Observed events	24	101	18	68	9	123	55	137
MC prediction	24 ± 8	101 ± 16	18 ± 5	67 ± 15	8 ± 4	123 ± 26	55 ± 15	137 ± 20
MC (no NFs)	15 ± 5	$99{\pm}10$	$10.7{\pm}0.6$	81 ± 7	$8.1{\pm}1.4$	$208{\pm}12$	$51{\pm}12$	$145{\pm}18$
Composition (%)								
$WZ/W\gamma^*$	_	87.5 ± 2.5	3.1 ± 1.1	$6.9{\pm}1.4$	14 ± 5	$0.61 {\pm} 0.15$	_	_
ZZ^*	$99.71 {\pm} 0.12$	$7.4{\pm}2.1$	92.7 ± 2.3	26 ± 6	$4.2{\pm}2.5$	32 ± 7		_
$Z\gamma$	_	1.8 ± 0.8	$0.5{\pm}0.4$	48 ± 7	6 ± 4	59 ± 7	_	_
Z+jets	—	$1.5{\pm}0.8$	$3.0{\pm}1.4$	19 ± 5	$0.4{\pm}2.2$	$8.2{\pm}2.1$	76 ± 6	$0.14{\pm}0.15$
Top	$0.031 {\pm} 0.015$	0.7 ± 0.4	$0.01 {\pm} 0.20$	$0.07 {\pm} 0.13$	71 ± 10	$0.03{\pm}0.04$	13 ± 5	75.2 ± 3.2
Others	0.23 ± 0.11	$0.56 {\pm} 0.11$	$0.44{\pm}0.11$	$0.115 {\pm} 0.021$	$4.2{\pm}1.4$	$0.05 {\pm} 0.17$	11 ± 4	24.7 ± 3.2
$VH \ (H \to WW^*)$	$0.02{\pm}0.31$	$0.53{\pm}0.08$	$0.106 {\pm} 0.030$	$0.044{\pm}0.008$	$0.41{\pm}0.17$	$0.0154{\pm}0.0027$	$0.048 {\pm} 0.017$	$0.135{\pm}0.030$

15

CR distributions (3I)

Joe Taenzer (University of Toronto)

CR distributions (4I)

CR distributions (DFOS)

CR distributions (SS)

Joe Taenzer (University of Toronto)

Systematic uncertainties

(a) Uncertainties	on the	VH	$(H \rightarrow WW^*)$	process ((%))
----	-----------------	--------	----	------------------------	-----------	-----	---

Channel	4	l		3ℓ			2ℓ	
Category	2SFOS	1SFOS	3SF	1SFOS	0SFOS	DFOS	SS2jet	SS1jet
Theoretical uncertainties								
VH acceptance	9.2	9.3	9.9	9.9	9.9	10	10	9.9
Higgs boson branching fraction	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
QCD scale	3.1	3.0	1.2	1.0	1.0	1.3	1.0	1.0
PDF and α_S	1.0	1.1	2.1	2.2	2.2	1.9	2.3	2.2
VH NLO EW corrections	1.7	1.8	1.9	1.9	1.9	1.9	1.9	1.9
Experimental uncertainties								
Jet	2.0	3.1	2.5	2.5	2.9	3.2	8.9	5.8
$E_{\rm T}^{\rm miss}$ soft term	0.2	0.3	-	-	-	0.3	0.6	0.2
Electron	2.6	2.8	1.6	2.2	2.2	1.5	2.1	1.7
Muon	2.6	2.4	2.2	1.8	1.7	0.8	1.8	1.9
Trigger efficiency	0.2	_	0.4	0.3	0.3	0.5	0.6	0.5
b-tagging efficiency	0.9	0.9	0.9	0.8	0.8	2.9	3.5	2.4
Pile-up	1.9	0.7	2.0	1.4	0.8	1.7	1.0	2.4
Luminosity	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8

(b) Uncertainties on the total background (%)

Theoretical uncertainties								
QCD scale	0.2	0.1	1.0	0.9	-	3.7	13	2.3
PDF and α_S	0.2	2.4	0.3	0.3	1.6	1.4	0.5	0.6
VVV K-factor	2.8	8.1	1.1	1.9	0.5	_	_	0.3
MC modelling	5.3	4.3	7.0	6.6	-	4.1	0.8	1.4
Experimental uncertainties								
Jet	3.1	2.4	3.2	1.8	4.1	7.2	5.0	3.4
$E_{\rm T}^{\rm miss}$ soft term	2.3	0.6	1.8	1.9	0.5	1.1	0.2	0.7
Electron	1.0	1.4	1.0	0.4	1.1	0.7	1.1	0.8
Muon	1.1	1.2	0.4	0.7	0.2	0.2	0.4	0.8
Trigger efficiency	-	0.2	0.2	_	-	0.1	_	_
b-tagging efficiency	0.6	0.8	0.6	0.8	2.6	0.7	1.4	0.3
Fake factor	-	_	-	-	-	2.8	10	10
Charge mis-assignment	-	_	-	_	1.4	_	0.7	0.8
Photon conversion rate	-	_	-	-	-	_	1.1	0.9
Pile-up	1.2	1.1	1.4	0.3	1.2	0.9	1.0	1.0
Luminosity	0.4	0.8	0.1	0.2	0.7	_	0.7	0.3
MC statistics	5.3	8.0	3.8	3.2	5.5	3.1	7.3	3.9
CR statistics	8.1	6.6	4.2	3.9	8.8	2.5	2.8	3.5

20

Event yields

((a)	8	TeV	data	samp	le
---	-----	---	-----	------	------	----

Process	4ℓ			3ℓ			2ℓ	
Category	2SFOS	1SFOS	2SFOS	1SFOS	0SFOS	DFOS	SS2jet	SS1jet
Higgs boson								
$VH \ (H \to WW^*)$	$0.203 {\pm} 0.030$	$0.228{\pm}0.034$	$0.73 {\pm} 0.10$	$1.61{\pm}0.18$	$1.43 {\pm} 0.16$	$2.15{\pm}0.30$	$1.04{\pm}0.18$	$2.04{\pm}0.30$
$VH \ (H \to \tau \tau)$	$0.0084{\pm}0.0032$	$0.012{\pm}0.004$	$0.057 {\pm} 0.011$	$0.152{\pm}0.023$	$0.248{\pm}0.035$		$0.036{\pm}0.008$	$0.27{\pm}0.04$
ggF			$0.076 {\pm} 0.015$	$0.085 {\pm} 0.018$		$2.4{\pm}0.5$	—	
VBF					—	$0.180{\pm}0.025$	_	
ttH			—	—	—		—	
Background								
V			$0.22{\pm}0.16$	$1.9{\pm}0.6$	$0.37{\pm}0.15$	14 ± 4	8 ± 4	15 ± 5
VV	$1.17 {\pm} 0.20$	$0.31{\pm}0.06$	19 ± 3	28 ± 4	$4.7{\pm}0.6$	$10.1{\pm}1.6$	$11.2{\pm}2.1$	$26{\pm}4$
VVV	$0.12{\pm}0.04$	$0.10{\pm}0.04$	$0.8{\pm}0.3$	$2.2{\pm}0.7$	$2.93{\pm}0.29$		_	$0.47{\pm}0.05$
Top	$0.014{\pm}0.011$		$0.91{\pm}0.26$	$2.4{\pm}0.6$	$3.7{\pm}0.9$	24 ± 4	$0.75 {\pm} 0.19$	$1.3{\pm}0.5$
Others					_	$2.3{\pm}0.9$	0.71 ± 0.30	$0.60{\pm}0.24$
Total	$1.30{\pm}0.23$	$0.41{\pm}0.09$	22 ± 4	$34{\pm}6$	11.7 ± 1.8	50 ± 5	$21{\pm}5$	44 ± 6
Observed events	0	3	22	38	14	63	25	62

7 TeV data sampl	e					
Process	44	2		3ℓ		2ℓ
Category	2SFOS	1SFOS	3SF	1SFOS	0SFOS	DFOS
Higgs boson						
$V(H \to WW^*)$	$0.0226 {\pm} 0.0033$	$0.0208 {\pm} 0.0031$	$0.129{\pm}0.013$	$0.325 {\pm} 0.034$	$0.291{\pm}0.031$	$0.28 {\pm} 0.05$
$V(H \to \tau \tau)$	$0.0031 {\pm} 0.0012$	$0.0014 {\pm} 0.0008$	$0.0163 {\pm} 0.0035$	$0.041 {\pm} 0.006$	$0.067 {\pm} 0.010$	$0.0075 {\pm} 0.0032$
ggF		—	$0.0045{\pm}0.0015$	$0.0045{\pm}0.0019$	$0.0048 {\pm} 0.0027$	$0.32{\pm}0.09$
VBF		—	—	—	—	$0.021{\pm}0.004$
$t\bar{t}\mathrm{H}$		_		$0.006 {\pm} 0.004$	$0.0041 {\pm} 0.0032$	_
Background						
V		—	$0.36 {\pm} 0.30$	$0.59 {\pm} 0.34$	$0.36 {\pm} 0.22$	$3.4{\pm}1.3$
VV	$0.37 {\pm} 0.14$	$0.031 {\pm} 0.013$	$4.1 {\pm} 0.6$	5.7 ± 1.0	$1.3 {\pm} 0.2$	$0.89 {\pm} 0.27$
VVV	$0.014 {\pm} 0.005$	$0.0095 {\pm} 0.0033$	$0.082 {\pm} 0.028$	$0.21 {\pm} 0.07$	$0.338 {\pm} 0.031$	_
Top	$0.006 {\pm} 0.004$	_	$0.12 {\pm} 0.14$	$0.4{\pm}0.3$	$0.44{\pm}0.29$	$3.2{\pm}0.8$
Others						
Total	$0.39 {\pm} 0.15$	$0.041{\pm}0.016$	$4.6{\pm}1.1$	$7.0{\pm}1.9$	$2.5 {\pm} 0.7$	$7.5 {\pm} 1.7$
Observed events	1	0	5	6	2	7

Kinematic variable distributions (3I)

Events / 6 GeV

 10^{4}

10³

 10^{2}

10⁻¹

10⁻²

20

40

60

10

ATLAS

√s = 8 TeV, 20.3 fb⁻¹

3-leptons (0SFOS)

Bkg. Uncert.

Other Higgs

VVV

 m_{l_0, l_2} [GeV]

Data

VV

Top

 $VH (H \rightarrow WW^*)$

80 100 120 140 160 180 200 220 240

Kinematic variable distributions (4I)

Kinematic variable distributions (DFOS)

Kinematic variable distributions (SS)

VH Results (mH = 125.36 GeV)

	S	ignal sig	nificance Z_0				•	Observed sig	nal strength μ
Category	Exp. Z_0	Obs. Z_0	Obs. Z_0	μ	Tot +	. err. _	Syst +	. err. —	μ
4ℓ	0.41	1.9		4.9	4.6	3.1	1.1	0.40	
2SFOS	0.19	0		-5.9	6.8	4.1	0.33	0.72	
1SFOS	0.36	2.5		9.6	8.1	5.4	2.1	0.64	
3ℓ	0.79	0.66	-	0.72	1.3	1.1	0.40	0.29	+
1SFOS and 3SF	0.41	0		-2.9	2.7	2.1	1.2	0.92	
0SFOS	0.68	1.2		1.7	1.9	1.4	0.51	0.29	
2ℓ	0.59	2.1		3.7	1.9	1.5	1.1	1.1	
DFOS	0.54	1.2		2.2	2.0	1.9	1.0	1.1	
SS2jet	0.17	1.4		7.6	6.0	5.4	3.2	3.2	
SS1jet	0.27	2.3		8.4	4.3	3.8	2.3	2.0	
			0 1 2	3				-10 -8	-6 -4 -2 0 2 4 6 8 10 12 14 16

Significance and signal strength summary table (7 + 8 TeV)

