Observation and properties of a Higgs boson and search for additional Higgs bosons in the Two-Photon Decay Channel with CMS

Benoit Courbon

IPN Lyon/Universite Claude Bernard Lyon 1, on behalf of the CMS collaboration

Higgs Hunting, 30/07/2015

Introduction

Conclusion

Overview of the Standard Model $H \rightarrow \gamma \gamma$ analysis

- Diphoton channel : Small branching fraction (~ 2.10⁻³ at m_H = 125 GeV) but clean signature : 2 high-p_T isolated photons
- Analysis strategy : Search for a **narrow peak** on a smoothly decreasing background in the diphoton mass spectra
- Large diphoton background : Reducible (jet-jet or γ-jet with jet faking photon) and irreducible (γ-γ)
- Mass resolution is crucial (energy corrections and vertex identification)
- Categorization of diphoton events to gain in sensitivity and to tag production modes

Eur. Phys. J. C 74 (2014) 3076; Hgg Public TWiki

- We use the full run 1 dataset : 5.1 fb^{-1} (2011, 7 TeV) + 19.6 fb^{-1} (2012, 8 TeV)
- **Trigger** : $p_{T,\gamma} > 26(18)$ or $p_{T,\gamma} > 36(22)$ on the leading (trailing) photon + loose isolation, shower shape criteria and mass cut \rightarrow 99.5 % efficiency
- Challenging Pile-Up conditions : <PU>=21, up to 40

	$m_{\gamma\gamma} = \sqrt{2E_1E_2\coslpha_{1,2}}$	arXiv :1502.02702				
Energ	gy measurment :	Energy resolution vs η 19.7 fb ⁻¹ (8 Te ¹				
٩	ECAL performance (crystal intercalibration, response changes correction)	$\begin{bmatrix} 0.05 \\ 0.05 \\ Data, R_{g} \ge 0.94 \end{bmatrix}$				
۹	High-level correction : Photon energy regression method. Multivariate approach aiming to take in account showering, gap/crack effects, PU					
•	Final energy scale extraction from $Z ightarrow ee$ events (cross-check with $Z ightarrow \mu \mu \gamma$)	00 0.5 1 1.5 2 Supercluster T				
Verte	ex identification :					
٩	The angular term is negligible if $\delta z < 1$ cm					
٩	• CMS has no intrisic pointing capability					
۲	We use Boosted Decision Trees to identify kinematics of the recoiling tracks + the track	the primary vertex, based on the as of identified conversions				
٩	More than 80% average vertexing efficiency					

Analysis strategy

Conclusion

Selection and categorization

- We apply a first BDT classifier (**photon ID**) to discrimate prompt photons from fakes (neutral hadrons), based on shower shape and isolation
- Then we categorize diphoton events :
 - We build exclusive classes (1% of the events) in order to tag specific production modes, by requiring additional objects (forward jets, leptons, MET...) in the event.
 - We apply another classifier (**diphoton BDT**) to categorize the remaining diphoton events (99%) based on their mass resolution, their kinematics and the photon ID.
 - 5 (4) untagged categories + 9 (7) exclusive categories for 2012 (2011) dataset

Conclusion

Signal and background modelling

• Signal model :

- We fit MC signal samples with a sum of gaussians, with granularity of 5 GeV, for each process
- Then the signal model is interpolated between these points.

Background model :

- It is data driven : We choose the functional form with the best fit to data, among a class of different functions (exponentials, power laws, polynomials...).
- The choice of the bkg model is treated as a discrete nuisance parameter.
- We make sure that the potential bias on the signal strength is negligible.

Results

Source of uncertainty	Uncertainty in \widehat{m}_{H} (GeV)	
Imperfect simulation of electron-photon differences	0.10	
Linearity of the energy scale	0.10	
Energy scale calibration and resolution	0.05	
Other	0.04	
All systematic uncertainties in the signal model	0.15	
Statistical	0.31	
Total	0.35	

 $\mu(m_H = 124.7 \, GeV) = 1.14^{+0.26}_{-0.23} \\ [\pm 0.21(stat)^{+0.09}_{-0.05}(syst)^{+0.13}_{-0.09}(theo)]$

Conclusion

Low-mass search

CMS-HIG-14-037

- Light scalar searches in the diphoton channel are performed in the range [80,110] GeV
- Motivations of this search : NMSSM, 2HDM ...
- The **Z** peak contamination, with 2 electrons misidentified as photons, needs to be added to the diphoton continuum background
- 4 categories (using the diphoton classifier from standard $H \rightarrow \gamma \gamma$ analysis)
- No evidence for new particle production has been observed

No evidence for new particle production has been observed

$\Gamma = 0.1 GeV$

$\Gamma = 10\% m_X$

Introduction	Analysis strategy	Results	Additional Higgs bosons?	Conclusion
Conclusion				

- H $\rightarrow \gamma \gamma$ is one of the **most sensitive channels** and allows precise measurement of the Higgs sector :
 - Observation with 5.7σ significance (single-channel discovery)
 - $m_H = 124.7 \pm 0.34$ GeV
 - $\mu = 1.14 \pm 0.24$
- All the measured properties are compatible with the SM Higgs boson
- Additional Higgs bosons searches, motivated by BSM scenarios, have been performed at low and high mass, showing no evidence of a new scalar

BACK-UP

Conclusion

$H \rightarrow \gamma \gamma$ vertexing efficiency

Conclusion

$H \rightarrow \gamma \gamma$ categories

Label	No. of 7 TeV	classes 8 TeV	Main requirements	
tīH lepton tag	*	1	$p_{\rm T}^{\gamma 1} > m_{\gamma \gamma}/2$ 1 b-tagged jet + 1 electron or muon	
VH tight ℓ tag	1	1	$ \begin{array}{l} p_{\rm T}^{\gamma 1} > 3m_{\gamma \gamma} / 8 \\ [{\rm e} \mbox{ or } \mu, p_{\rm T} > 20 \mbox{ GeV}, \mbox{ and } E_{\rm T}^{\rm miss} > 45 \mbox{ GeV}] \mbox{ or } \\ [2e \mbox{ or } 2\mu, p_{\rm T}^\ell > 10 \mbox{ GeV}; 70 < m_{\ell\ell} < 110 \mbox{ GeV}] \end{array} $	
VH loose ℓ tag	1	1	$p_{\rm T}^{\gamma 1} > 3m_{\gamma\gamma}/8$ e or μ , $p_{\rm T} > 20 \text{GeV}$	
VBF dijet tag 0-2	2	3	$p_{T}^{\gamma 1} > m_{\gamma\gamma}/2$ 2 jets; classified using combined diphoton-dijet BDT	
VH $E_{\rm T}^{\rm miss}$ tag	1	1	$p_{T}^{\gamma 1} > 3m_{\gamma \gamma}/8$ $E_{T}^{miss} > 70 \text{GeV}$	
tīH multijet tag	*	1	$p_{T}^{\gamma 1} > m_{\gamma \gamma}/2$ 1 b-tagged jet + 4 more jets	
VH dijet tag	1	1	$p_T^{\gamma 1} > m_{\gamma\gamma}/2$ jet pair, $p_T^j > 40$ GeV and $60 < m_{ m ij} < 120$ GeV	
Untagged 0-4	4	5	The remaining events, classified using diphoton BDT	

* For the 7 TeV dataset, events in the tiH lepton tag and multijet tag classes are selected first, and combined to form a single event class.

$H \rightarrow \gamma \gamma$ significance plot

$H ightarrow \gamma \gamma$ mass measurment

$H \rightarrow \gamma \gamma$ reduced couplings

 $H\to\gamma\gamma$ width

Conclusion

Low-mass Data/MC comparison

Low-mass exclusion limits (ggh+tth)

Low-mass significance plot (ggh+tth)

Low-mass exclusion limits (vbf+vh)

Low-mass significance plot (vbf+vh)

Conclusion

High-mass Data/MC comparison

High-mass exclusion limits in spin 2 interpretation

