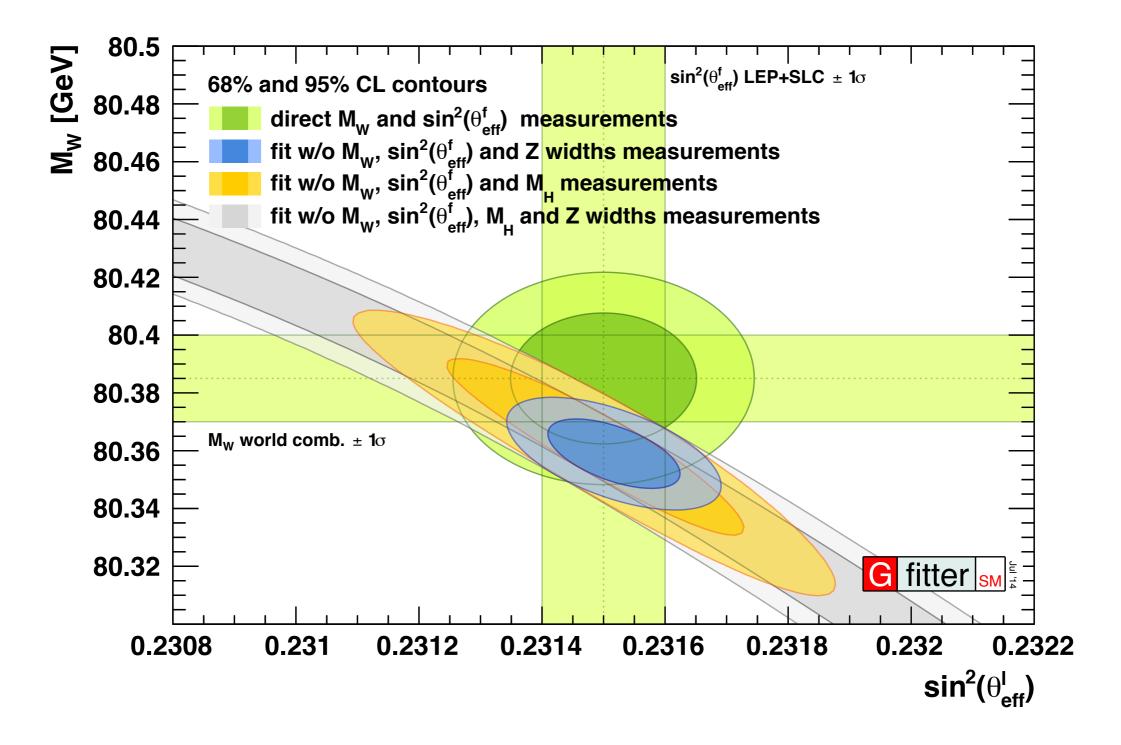
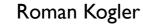
News From The Global Electroweak Fit

Roman Kogler University of Hamburg for the Gfitter group

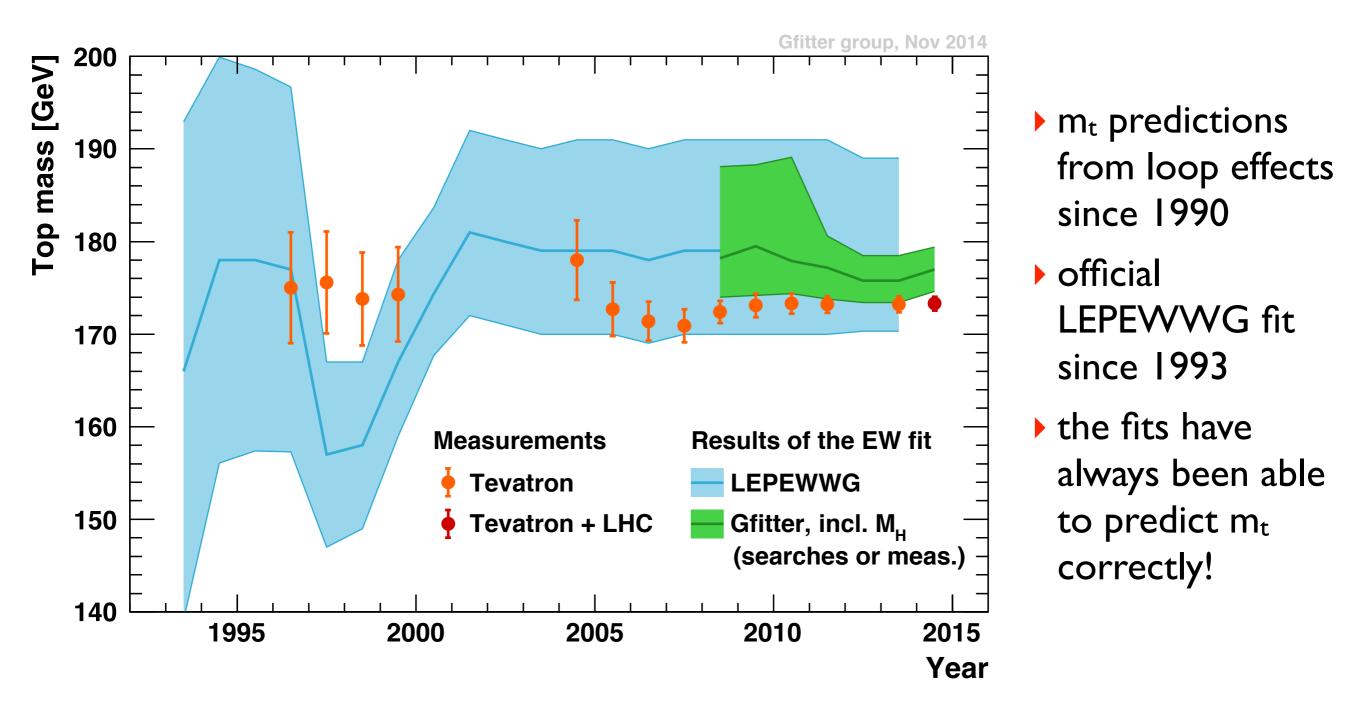

Higgs Hunting LAL, August 1st, 2015

G fitter


The Gfitter group: M. Baak (CERN), J. Cùth (Univ. of Mainz), J. Haller (Univ. Hamburg), A. Hoecker (CERN), R. K. (Univ. Hamburg), K. Mönig (DESY), T. Peiffer (Univ. Hamburg), M. Schott (Univ. of Mainz), J. Stelzer (Univ. of Michigan)

State of the Standard Model

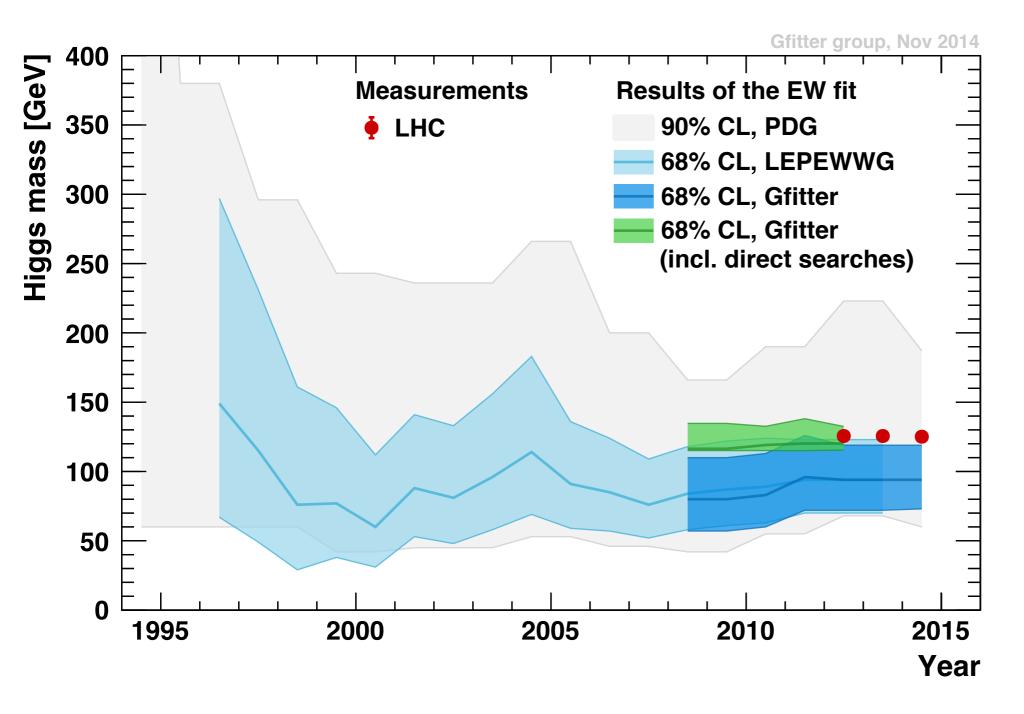
(see also talk by Tongguang Cheng)



UΗ

茁

2


Prediction of Top Quark Mass

What precision is needed to see significant deviations between measurements and predictions?

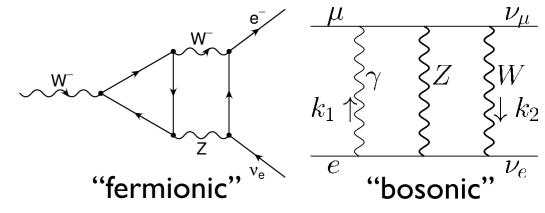
Prediction of Higgs Mass

 M_H predictions from loop effects since the discovery of the top quark 1995

- weaker
 constraints than
 for mt because
 of logarithmic
 dependence
- still, the fits have always predicted
 M_H correctly!

Again: what precision should we strive for? What are the major challenges?

Experimental Input


	$\longrightarrow M_H \; [\text{GeV}]$	125.14 ± 0.24	LHC
Fit is overconstrained	$\longrightarrow M_W [\text{GeV}]$	80.385 ± 0.015 2.085 ± 0.042	Tev.
all free parameters measured	$\Gamma_W \text{ [GeV]}$ $M_Z \text{ [GeV]}$ $\Gamma_Z \text{ [GeV]}$	2.085 ± 0.042 91.1875 ± 0.0021 2.4952 ± 0.0023	
$(\alpha_s(M_Z) \text{ unconstrained in fit})$	$\sigma_{ m had}^0 ~[{ m nb}]$	41.540 ± 0.037	LEP
 most input from e⁺e⁻ colliders Mz : 2 · 10⁻⁵ 	$egin{array}{c} R^0_\ell\ A^{0,\ell}_{ m FB} \end{array}$	$\begin{array}{c} 20.767 \pm 0.025 \\ 0.0171 \pm 0.0010 \end{array}$	
 but crucial input from 	$A_\ell \stackrel{(\star)}{\sin^2 \theta_{\mathrm{eff}}^\ell}(Q_{\mathrm{FB}})$	$\begin{array}{c} 0.1499 \pm 0.0018 \\ 0.2324 \pm 0.0012 \end{array}$	SLD
hadron colliders:	$egin{array}{c} A_c \ A_b \end{array}$	$egin{array}{l} 0.670 \pm 0.027 \ 0.923 \pm 0.020 \end{array}$	SLD
- m_t : $4 \cdot 10^{-3}$ - M_H : $2 \cdot 10^{-3}$	$A^{0,c}_{ m FB}\ A^{0,b}_{ m FB}$	$\begin{array}{c} 0.0707 \pm 0.0035 \\ 0.0992 \pm 0.0016 \end{array}$	
- M_W : 2 · 10 ⁻⁴	$\begin{array}{c} R^0_c \\ R^0_b \end{array}$	0.1721 ± 0.0030 0.21629 ± 0.00066	
 remarkable precision (<1%) 	$\frac{\Delta \alpha_{\rm had}^{(5)}(M_Z^2)}{\Delta \alpha_{\rm had}^{(5)}(M_Z^2)}$	2757 ± 10	
require precision calculations	$\overline{m}_c [\text{GeV}]$ $\overline{m}_b [\text{GeV}]$	$\frac{1.27^{+0.07}_{-0.11}}{4.20^{+0.17}_{-0.07}}$	low E
	$\longrightarrow m_t \; [\text{GeV}]$	$4.20_{-0.07}$ 173.34 ± 0.76	Tev.+LHC

5

Calculations

All observables calculated at 2-loop level

 M_W : full EW one- and two-loop calculation of fermionic and bosonic contributions [MAwramik et al., PRD 69, 053006 (2004), PRL 89, 241801 (2002)]
 + 4-loop QCD correction [Chetyrkin et al., PRL 97, 102003 (2006)]

- sin²θ^I_{eff}: same order as M_W, calculations for leptons and all quark flavours [M Awramik et al, PRL 93, 201805 (2004), JHEP 11, 048 (2006), Nucl. Phys. B813, 174 (2009)]
- partial widths Γ_f : fermionic corrections in two-loop for all flavours (includes predictions for σ^{0}_{had}) [A. Freitas, JHEP04, 070 (2014)]

- Radiator functions: QCD corrections at N³LO [Baikov et al., PRL 108, 222003 (2012)]
- Fw: only one-loop EW corrections available, negligible impact on fit [Cho et al, JHEP 1111, 068 (2011)]
- all calculations: one- and two-loop QCD corrections and leading terms of higher order corrections

Theoretical Uncertainties

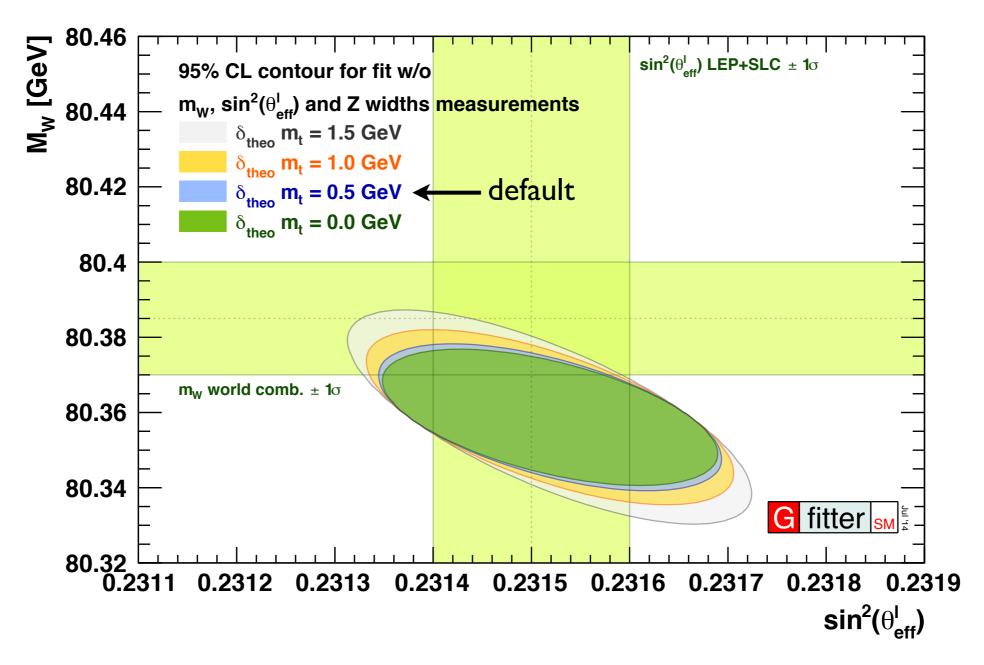
• estimated using a geometric series ($a_n = a r^n$), example: $\mathcal{O}(\alpha^2 \alpha_s) = \frac{\mathcal{O}(\alpha^2)}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha \alpha_s)$

- similar results from scale variations
- reasonable estimates for all observables

• exception: $m_t!$

$$M_{exp}^2 = \left(\sum_{i=1,...,n} p_i\right)^2 \xrightarrow[\mathbf{q}]{\mathbf{q}} \xrightarrow{\mathbf{q}}{\mathbf{t}} \xrightarrow{\mathbf{p}}{\mathbf{p}}$$

[A. Hoang arXiv:1412.3649, M. Mangano]


- MC definition, relation to m^{pole} unknown
- uncertainties from colour structure, hadronisation and $m^{pole} \rightarrow m_t(m_t)$ smaller
- IO additional free parameters, Gaussian likelihood
- important missing higher order terms:
 - $O(\alpha^2 \alpha_s)$, $O(\alpha \alpha_s^2)$, $O(\alpha^2_{bos})$ (in some cases), $O(\alpha^3)$, $O(\alpha_s^5)$ (rad. functions)

Observable	Exp. error	Theo. error
M_W	15 MeV	4 MeV
$\sin^2 \theta_{\text{eff}}^l$	$1.6 \cdot 10^{-4}$	$0.5 \cdot 10^{-4}$
Γ_Z	2.3 MeV	0.5 MeV
$\sigma_{ m had}^0$	37 pb	6 pb
R_b^0	$6.6 \cdot 10^{-4}$	$1.5 \cdot 10^{-4}$
m_t	0.76 GeV	0.5 GeV
_		1

important

new in fit

Theoretical uncertainty on m_t

impact of variation in $\delta_{\text{theo}}\,m_t\,\text{between}$ 0 and 1.5 GeV

- better assessment of uncertainty on mt important for the fit
- uncertainty of 0.5 GeV small impact on result

Future Improvements

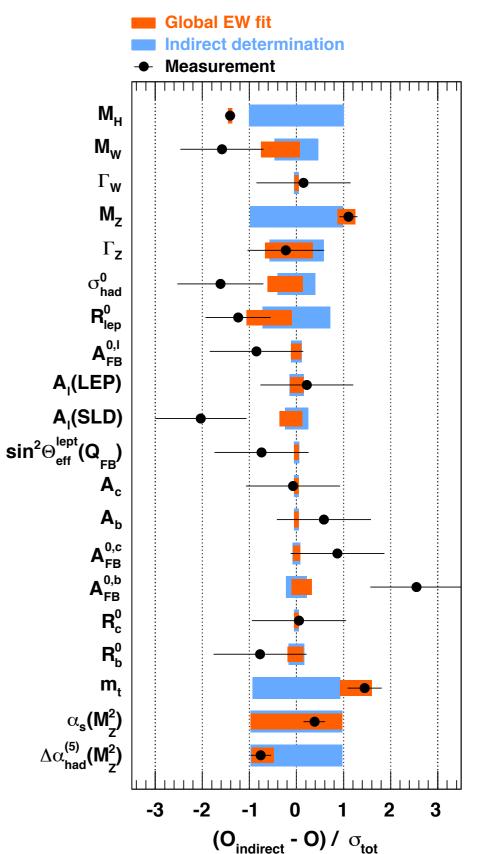
Parameter	Present LHC	ILC/Giga	$LHC = LHC \text{ with } 300 \text{ fb}^{-1}$ $ILC/GigaZ = \text{future } e^+e^-$ collider, option to run on
M_H [GeV]	$0.2 \rightarrow < 0.1$	< 0.1	Z-pole (w polarized beams)
M_W [MeV]	$15 \rightarrow 8$	→ 5	WW threshold
$M_Z \mathrm{[MeV]}$	2.1 2.1	2.1	
$m_t [{ m GeV}]$	$0.8 \rightarrow 0.6$	→ 0.1	tt threshold scan
$\sin^2 \theta_{ m eff}^\ell$ [10 ⁻⁵]	16 16	→ 1.3	$\delta A^{0,f}_{LR} \colon 0^{-3} \rightarrow 0^{-4} $
$\Delta \alpha_{\rm had}^5 (M_Z^2) \ [10^{-5}]$	$10 \rightarrow 4$	4	low energy data, better α_s
$R_l^0 [10^{-3}]$	25 25	→ 4	high statistics on Z-pole
$\kappa_V \ (\lambda = 3 \mathrm{TeV})$	$0.05 \longrightarrow 0.03$	→ 0.01	direct measurement of BRs

• theoretical uncertainties reduced by a factor of 4 (esp. M_W and $sin^2\theta_{eff}$)

- implies three-loop calculations!
- exception: $\delta_{\text{theo}} m_t (LHC) = 0.25 \text{ GeV} (factor 2)$
- central values of input measurements adjusted to $M_H = 125 \text{ GeV}$

[Baak et al, arXiv:1310.6708]

SM Fit Results

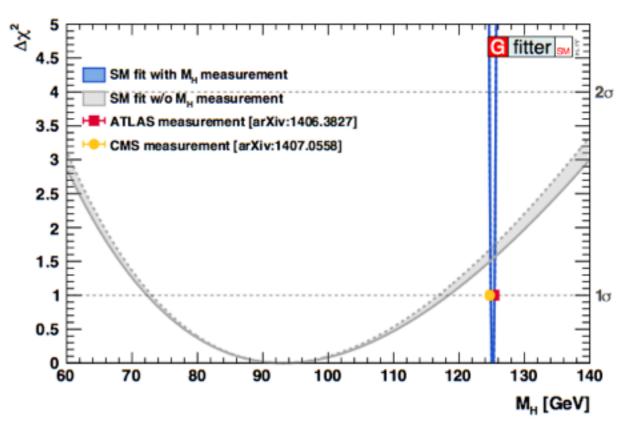

black: direct measurement (data) orange: full fit light-blue: fit excluding input from row

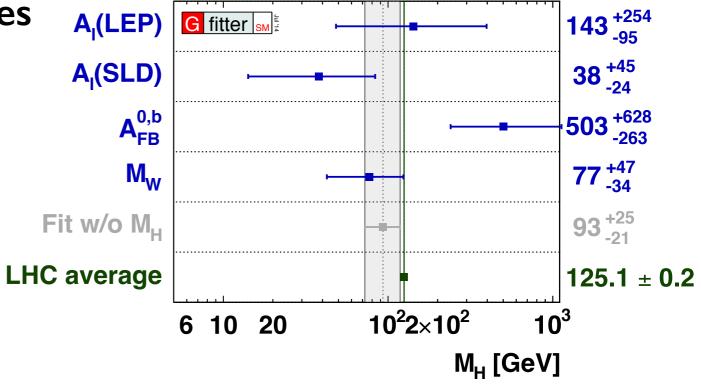
goodness of fit, p-value:
 χ²_{min}= 17.8 Prob(χ²_{min}, 14) = 21%
 Pseudo experiments: 21 ± 2 (theo)%

• $\chi^{2}_{min}(\Gamma_{i} \text{ in } I-loop) = 18.0$

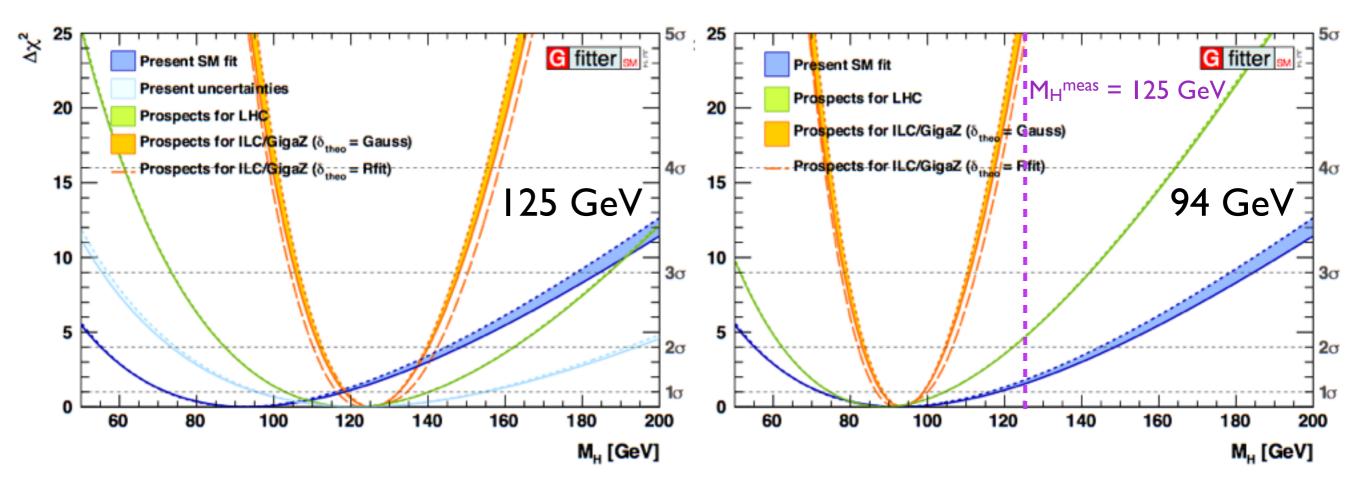
• χ^{2}_{min} (no theory uncertainties) = 18.2

- \blacktriangleright no individual value exceeds 3σ
- Iargest deviations in b-sector:
 - $A^{0,b}_{FB}$ with 2.5σ
 - \rightarrow largest contribution to χ^2
- ▶ small pulls for M_H, M_Z
 - input accuracies exceed fit requirements

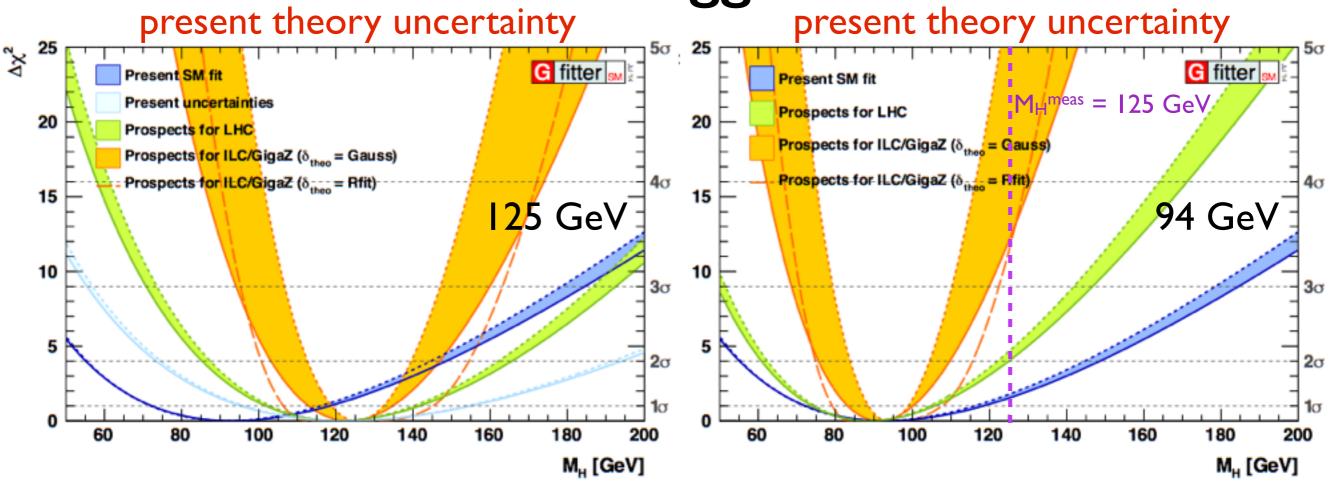

Present Results: Higgs


Determination of M_H

- ▶ grey band: fit without M_H measurement
 - M_H = 93⁺²⁵-21 GeV
 - consistent with measurement at 1.3σ
- blue line: full SM fit


- determination of M_H, removing all sensitive observables except the given one
- known tension (3σ)
 between A_I(SLD), A^{0,b}_{FB}, and M_W clearly visible

Future: Higgs Mass


- Logarithmic dependency on $M_H \rightarrow$ cannot compete with direct M_H meas.
 - no theory uncertainty:
 - future theory uncertainty (Rfit): $M_H = I$
 - present day theory uncertainty:

$$M_{\rm H} = 125 \pm 7 \, {\rm GeV}$$

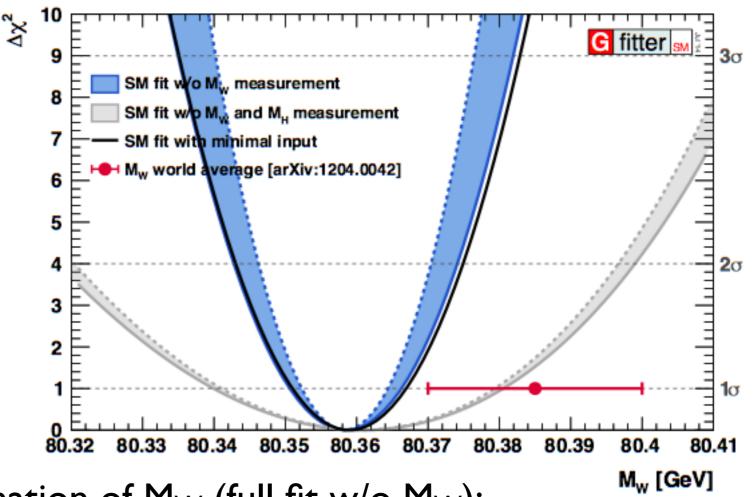
fit):
$$M_H = 125 {}^{+10}_{-9} \text{ GeV}$$

hty: $M_H = 125 {}^{+20}_{-17} \text{ GeV}$

 If EWPO central values unchanged (94 GeV), ~5σ discrepancy with measured Higgs mass

Future: Higgs Mass

• Logarithmic dependency on $M_H \rightarrow$ cannot compete with direct M_H meas.


- no theory uncertainty: $M_H = 125 \pm 7 \text{ GeV}$
- future theory uncertainty (Rfit): $M_H = 125 + 10_{-9} G$
- present day theory uncertainty:

t):
$$M_H = 125 {}^{+10}_{-9} \text{ GeV}$$

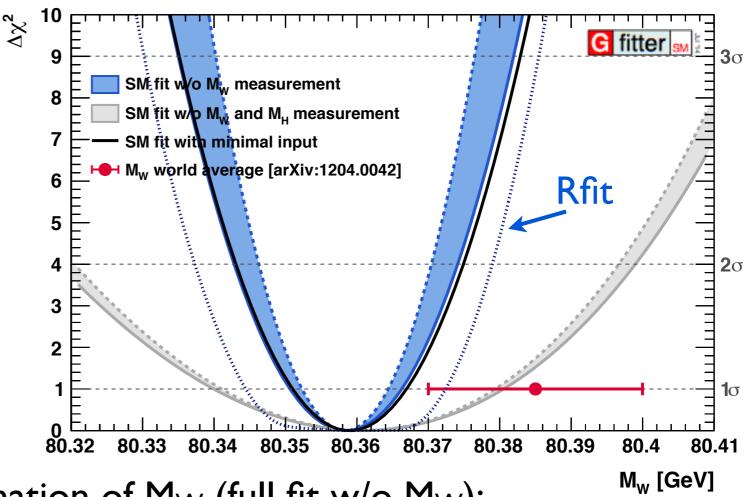
y: $M_H = 125 {}^{+20}_{-17} \text{ GeV}$

If EWPO central values unchanged (94 GeV), ~5σ discrepancy with measured Higgs mass compromised by present theory uncertainty!

Indirect determination of W mass

- also shown: SM fit with minimal input: M_Z, G_F, Δα_{had}⁽⁵⁾(M_Z), α_s(M_Z), M_H, and fermion masses
 - good consistency
- M_H measurement allows for precise constraint on M_W
 - agreement at 1.4σ

▶ fit result for indirect determination of M_W (full fit w/o M_W):


$$M_W = 80.3584 \pm 0.0046_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}}$$
$$\pm 0.0020_{\alpha_S} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV}$$
$$= 80.358 \pm 0.008_{\text{tot}} \text{ GeV}$$

more precise than direct measurement (15 MeV)

Indirect determination of W mass

- also shown: SM fit with minimal input: M_Z, G_F, Δα_{had}⁽⁵⁾(M_Z), α_s(M_Z), M_H, and fermion masses
 - good consistency
- M_H measurement allows for precise constraint on M_W
 - agreement at 1.4σ

▶ fit result for indirect determination of M_W (full fit w/o M_W):

$$M_W = 80.3584 \pm 0.0046_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{\text{had}}} \\ \pm 0.0020_{\alpha_S} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV} \\ = 80.358 \pm 0.008_{\text{tot}} \text{ GeV} \quad (\delta m_t (| \text{ GeV}): \pm 9 \text{ MeV}, \text{Rfit: } \pm | 3 \text{ MeV})$$

more precise than direct measurement (15 MeV)

Future: M_W

Present SM fit

80.34

Prospects for LHC

Prospects for ILC/GigaZ

Direct measurement (present/LHC/ILC)

80.35

80.36

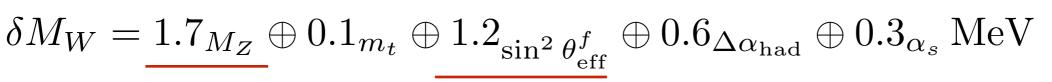
 $\Delta\chi^2$

20

15

10

5


LHC-300 Scenario

- moderate improvement (~30%) of indirect constraint
 - theoretical uncertainties already important

ILC Scenario

 improvement of factor 3 possible, similar to direct measurement

Fit Results:

80.33

 $\delta M_W = 1.3_{\text{theo}} \oplus 1.9_{\text{exp}} \text{MeV} = 2.3_{\text{tot}} \text{MeV}$

Measurement uncertainty for ILC: <u>5</u> MeV

80.37

80.38

80.39

5σ

4σ

3σ

2σ

1σ

80.4

M_w [GeV]

G fitter

Indirect determination of m_t

10

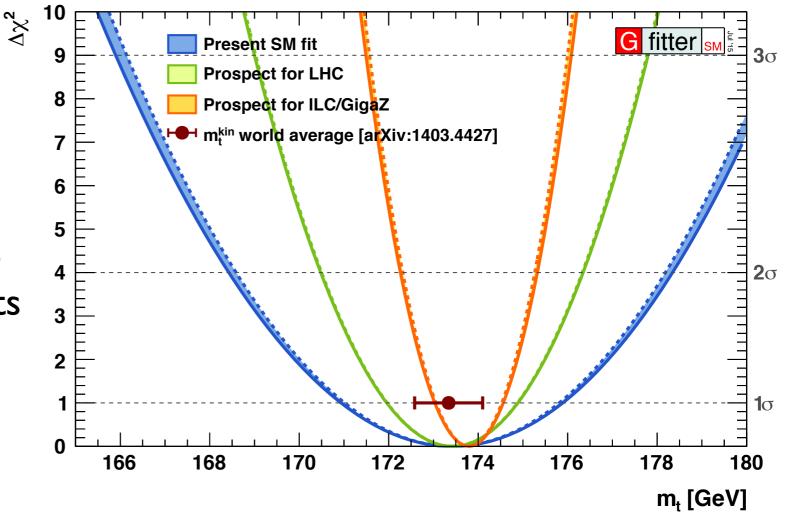
- $\Delta \chi^2$ G fitter SM fit w/o m, measurement determination of mt from SM fit w/om, and M_H measurements Z-pole data (fully obtained m^{kin} world werage [arXiv:1403.4427] 8 HDH mt from Tevatron ot [arXiv:1207.0980] from rad. Here a mt mt from CMS, σ, (CMS) [arXiv:1307.1907] corrections $\sim m_t^2$) HOH mt from ATLAS, ot [arXiv:1406.5375] ⁷ m^{pole} from ATLAS, σ_{tt+jet} [ATLAS-CONF-2014-053] alternative to direct measurements M_H allows for significantly more precise determination of m_t 165 170 175 180 185 m, [GeV] $m_t = 177.0 \pm 2.3_{M_{W, \sin^2 \theta_{eff}^f}} \pm 0.6_{\alpha_s} \pm 0.5_{\Delta \alpha_{had}} \pm 0.4_{M_Z} \text{ GeV}$ $= 177.0 \pm 2.4_{\rm exp} \pm 0.5_{\rm theo} \,\,{\rm GeV}$
- similar precision as determination from $\sigma_{t\bar{t}}$, good agreement
- In dominated by experimental precision

 2σ

 1σ

190

Future: Top Quark Mass

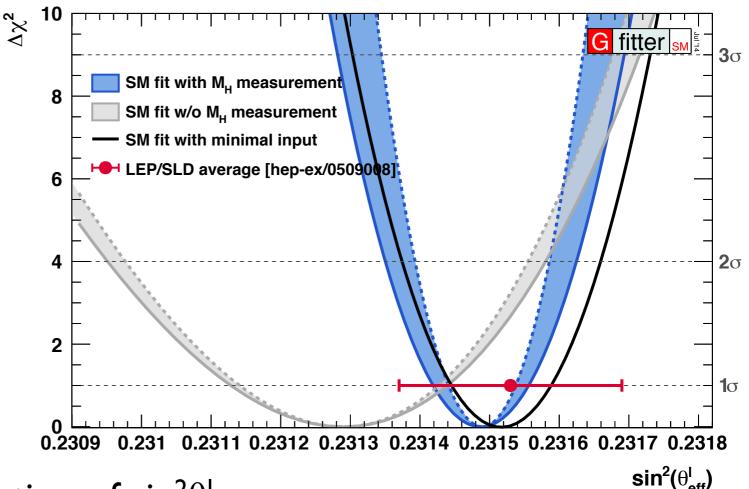

LHC-300 Scenario

improvement due to improved precision on M_W

ILC Scenario

• Comparable precision due to M_W and $\sin^2 \theta_{eff}^{I}$ measurements $(M_W: \delta m_t = I \text{ GeV})$ $\sin^2 \theta_{eff}^{I}: \delta m_t = 0.9 \text{ GeV})$

Fit Results:


 $\delta m_t = 0.6_{M_W} \oplus 0.5_{M_Z} \oplus 0.3_{\sin^2 \theta_{\text{eff}}^f} \oplus 0.4_{\Delta \alpha_{\text{had}}} \oplus 0.2_{\alpha_s} \text{ GeV}$ $\delta m_t = 0.2_{\text{theo}} \oplus 0.7_{\text{exp}} \text{ GeV} = 0.8_{\text{tot}} \text{ GeV}$

similar precision as present world average of mtkin from hadron colliders

still dominated by experimental precision

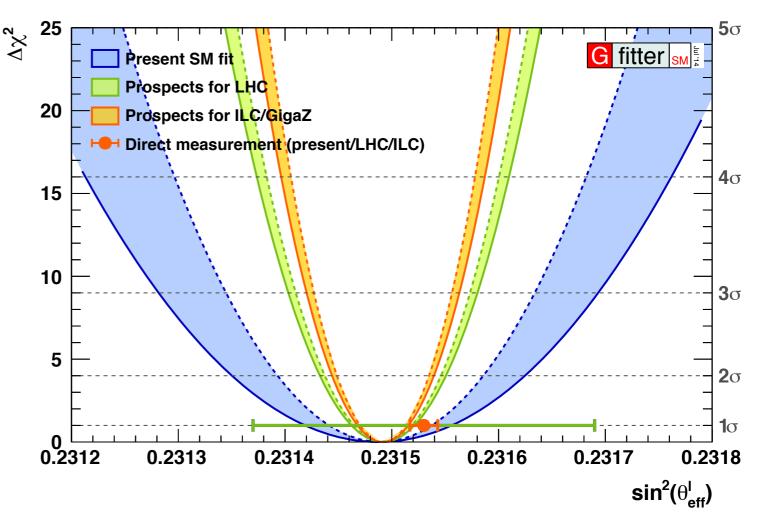
Present: Effective Weak Mixing Angle

- all measurements directly sensitive to sin²θ^leff removed from fit (asymmetries, partial widths)
 - good agreement with minimal input
- M_H measurement allows for precise constraint

• fit result for indirect determination of $\sin^2\theta_{eff}$:

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.231488 \pm 0.000024_{m_t} \pm 0.000016_{\delta_{\text{theo}}m_t} \pm 0.000015_{M_Z} \pm 0.000035_{\Delta \alpha_{\text{had}}} \\ \pm 0.000010_{\alpha_S} \pm 0.000001_{M_H} \pm 0.000047_{\delta_{\text{theo}}\sin^2 \theta_{\text{eff}}^{f}} \\ = 0.23149 \pm 0.00007_{\text{tot}}$$

more precise than determination from LEP/SLD (1.6×10⁻⁴)


Future: Effective Weak Mixing Angle

LHC-300 Scenario

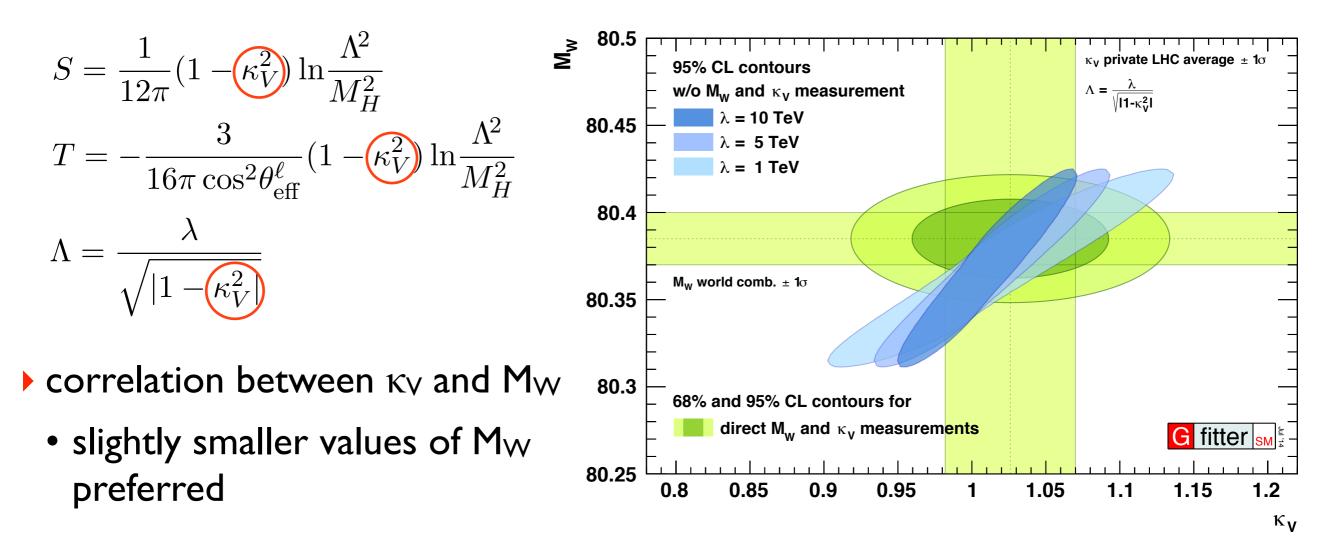
- Iarge improvement of indirect constraint
 - compromised by today's theoretical uncertainties

ILC Scenario

 Indirect constraint and direct measurement comparable precision

Fit Results:

$$\delta \sin^2 \theta_{\text{eff}}^f = (\underline{1.7}_{M_W} \oplus \underline{1.2}_{M_Z} \oplus 0.1_{m_t} \oplus \underline{1.5}_{\Delta \alpha_{\text{had}}} \oplus 0.1_{\alpha_s}) \cdot 10^{-5}$$
$$\delta \sin^2 \theta_{\text{eff}}^f = (\underline{1.0}_{\text{theo}} \oplus \underline{2.0}_{\text{exp}}) \cdot 10^{-5} = (\underline{2.3}_{\text{tot}}) \cdot 10^{-5}$$

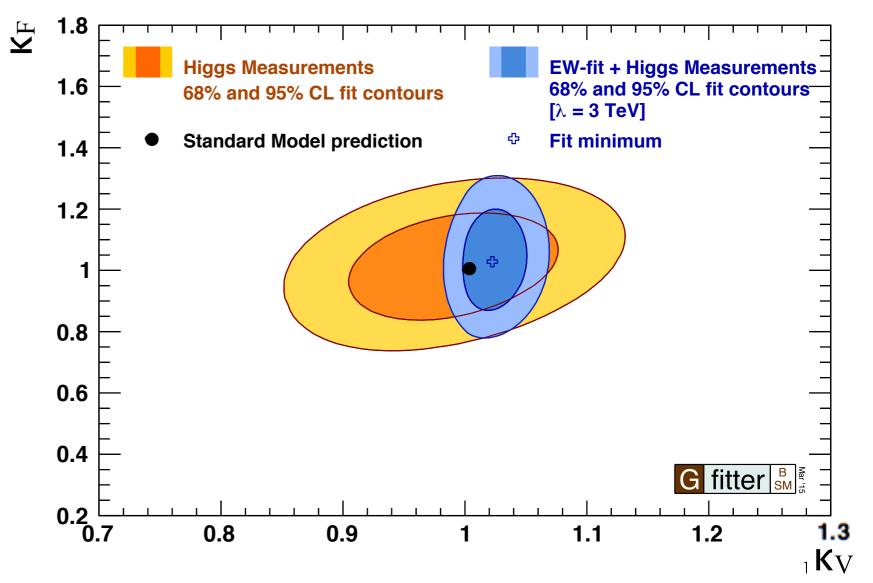

Measurement uncertainty for ILC: $1.3 \cdot 10^{-5}$

Coupling Constraints from EWPO

consider specific model in κ parametrisation:

- scaling of Higgs-vector boson (κ_V) and Z/W Z/W Z/W Z/WHiggs-fermion couplings (κ_F), with no invisible/undetectable widths
- main effect on EWPD due to modified Higgs coupling to gauge bosons (K_V)
 [Espinosa et al. arXiv:1202.3697, Falkowski et al. arXiv:1303.1812], etc

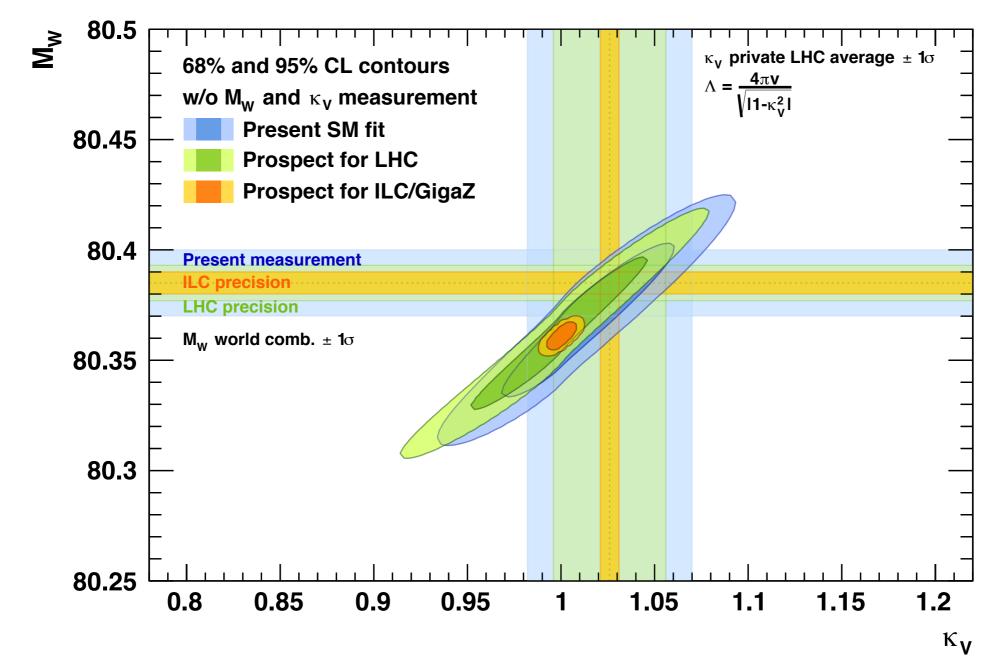
Kγ


Kγ

 $\sim\sim\sim\sim$

Higgs Coupling Results

Higgs coupling measurements: • K_V = 0.99 ± 0.08 • K_F = 1.01 ± 0.17


- Combined result:
 κ_V = 1.03 ± 0.02 (λ = 3 TeV)
- implies NP-scale of $\Lambda \ge 13$ TeV

- some dependency for K_V in central value [1.02-1.04] and error [0.02-0.03] on cut-off scale λ [1-10 TeV]
 - EW fit sofar more precise result for κ_V than current LHC experiments
 - EW fit has positive deviation of K_V from 1.0
 - many BSM models: $\kappa_V < 1$

Prospects of EW Fit

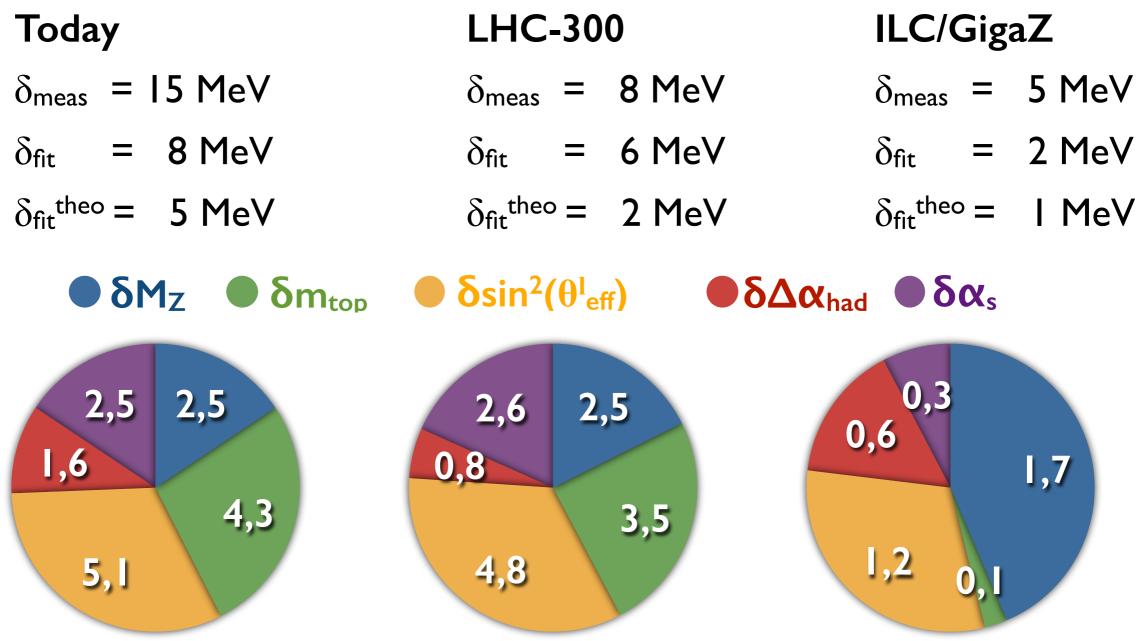
competitive results between EW fit and Higgs coupling measurements!

- precision of about 1%
- ILC/GigaZ offers fantastic possibilities to test the SM and constrain NP

Summary of Indirect Predictions

	Exper	imental i	input $[\pm 1\sigma_{exp}]$	Indirect de	etermination $[\pm$	$1\sigma_{\mathrm{exp}}, \pm 1\sigma_{\mathrm{theo}}]$
Parameter	Present	LHC	ILC/GigaZ	Present	LHC	ILC/GigaZ
M_H [GeV]	0.2	< 0.1	< 0.1	$^{+31}_{-26}, ^{+10}_{-8}$	$^{+20}_{-18}, {}^{+3.9}_{-3.2}$	$^{+6.8}_{-6.5}, {}^{+2.5}_{-2.4}$
$M_W~{ m [MeV]}$	15	8	5	6.0, 5.0	$5.2, \ 1.8$	$1.9, \ 1.3$
$M_Z~[{ m MeV}]$	2.1	2.1	2.1	11, 4	$7.0, \ 1.4$	$2.5, \ 1.0$
$m_t [{ m GeV}]$	0.8	0.6	0.1	$2.4, \ 0.6$	$1.5, \ 0.2$	$0.7, \ 0.2$
$\sin^2 \theta_{\mathrm{eff}}^{\ell} \ [10^{-5}]$	16	16	1.3	4.5, 4.9	2.8, 1.1	$2.0, \ 1.0$
$\Delta \alpha_{\rm had}^5(M_Z^2) \; [10^{-5}]$	10	4.7	4.7	42, 13	36, 6	$5.6, \ 3.0$
$R_l^0 [10^{-3}]$	25	25	4	-	_	_
$\alpha_{S}(M_{Z}^{2}) \ [10^{-4}]$	_	—	—	$40, \ 10$	$39,\ 7$	$6.4, \ 6.9$
$\overline{S _{U=0}}$	_	_	_	$0.094, \ 0.027$	0.086, 0.006	$0.017, \ 0.006$
$T _{U=0}$	_	_	_	0.083, 0.023	$0.064, \ 0.005$	$0.022, \ 0.005$
$\kappa_V \ (\lambda = 3 \mathrm{TeV})$	0.05	0.03	0.01	0.02	0.02	0.01

Summary of Indirect Predictions


	Experimental input $[\pm 1\sigma_{exp}]$		Indirect determination $[\pm 1\sigma_{exp}, \pm 1\sigma_{theo}]$			
Parameter	Present	LHC	ILC/GigaZ	Present	LHC	ILC/GigaZ
M_H [GeV]	0.2	< 0.1	< 0.1	$+31 +10 \\ -26, -8$	$^{+20}_{-18}, ^{+3.9}_{-3.2}$	$^{+6.8}_{-6.5}, {}^{+2.5}_{-2.4}$
M_W [MeV]	15	8	5	6.0, 5.0	5.2, 1.8	1.9, 1.3
$M_Z~[{ m MeV}]$	2.1	2.1	2.1	11, 4	$7.0, \ 1.4$	$2.5, \ 1.0$
$m_t [{ m GeV}]$	0.8	0.6	0.1	2.4, 0.6	(1.5, 0.2)	0.7, 0.2
$\sin^2 \theta_{\mathrm{eff}}^{\ell} \ [10^{-5}]$	16	16	1.3	4.5, 4.9	2.8, 1.1	2.0, 1.0
$\Delta \alpha_{\rm had}^5 (M_Z^2) \; [10^{-5}]$	10	4.7	4.7	42, 13	$36, \ 6$	$5.6, \ 3.0$
$R_l^0 [10^{-3}]$	25	25	4	: –	_	_
$\alpha_{S}(M_{Z}^{2}) \ [10^{-4}]$	—	_	_	40, 10	$39, \ 7$	$6.4, \ 6.9$
$S _{U=0}$	_	_	_	$0.094, \ 0.027$	0.086, 0.006	0.017, 0.006
$T _{U=0}$	—	_	_	0.083, 0.023	$0.064, \ 0.005$	0.022, 0.005
$\kappa_V \ (\lambda = 3 \mathrm{TeV})$	0.05	0.03	0.01	0.02	0.02	0.01

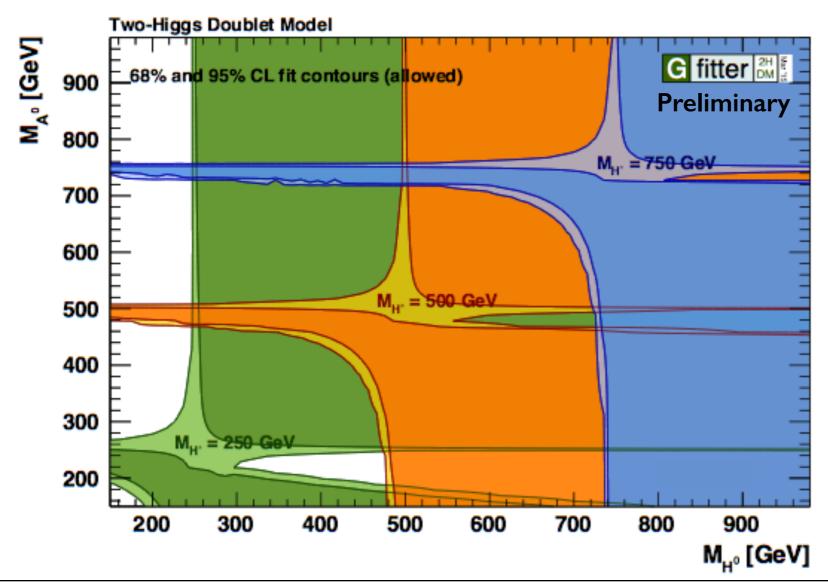
- Theory uncertainty needs to be reduced if we want to achieve the ultimate precision with the LHC!
- Future e⁺e⁻ collider: fantastic possibilities for consistency tests of the SM on loop level and NP constraints

Summary

Uncertainties on Mw

Impact of individual uncertainties on δM_W in fit (numbers in MeV)

Improved theoretical precision needed already for the LHC-300!

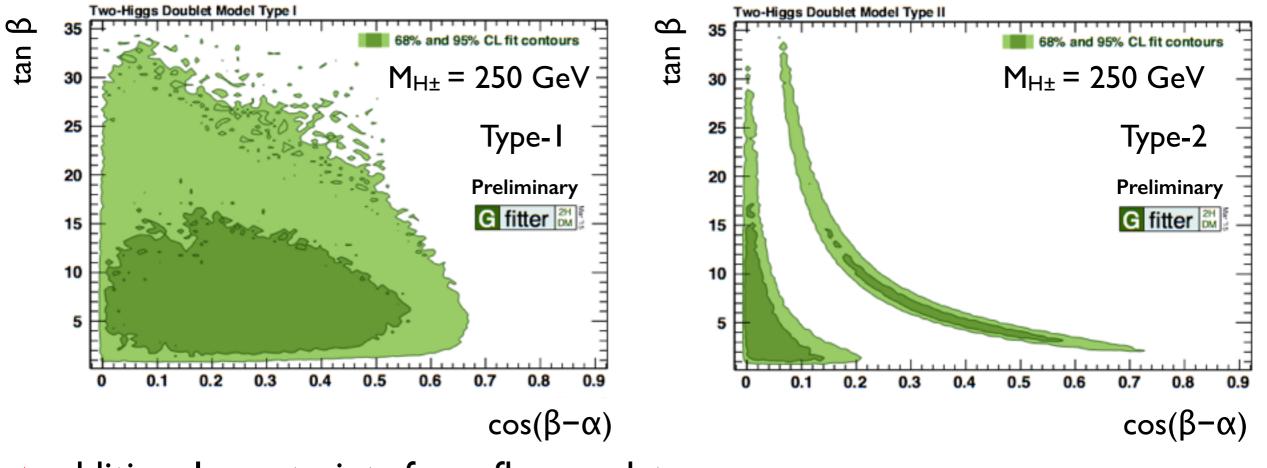


Additional Material

Two Higgs Doublet Models

- extend the scalar sector by another doublet
- studies of Z₂ Type-1 and Type-2 2HDMs
 - difference in the coupling to down-type quarks
 - Type-2 related to MSSM, but less constrained

(see talk by M. Beckingham)

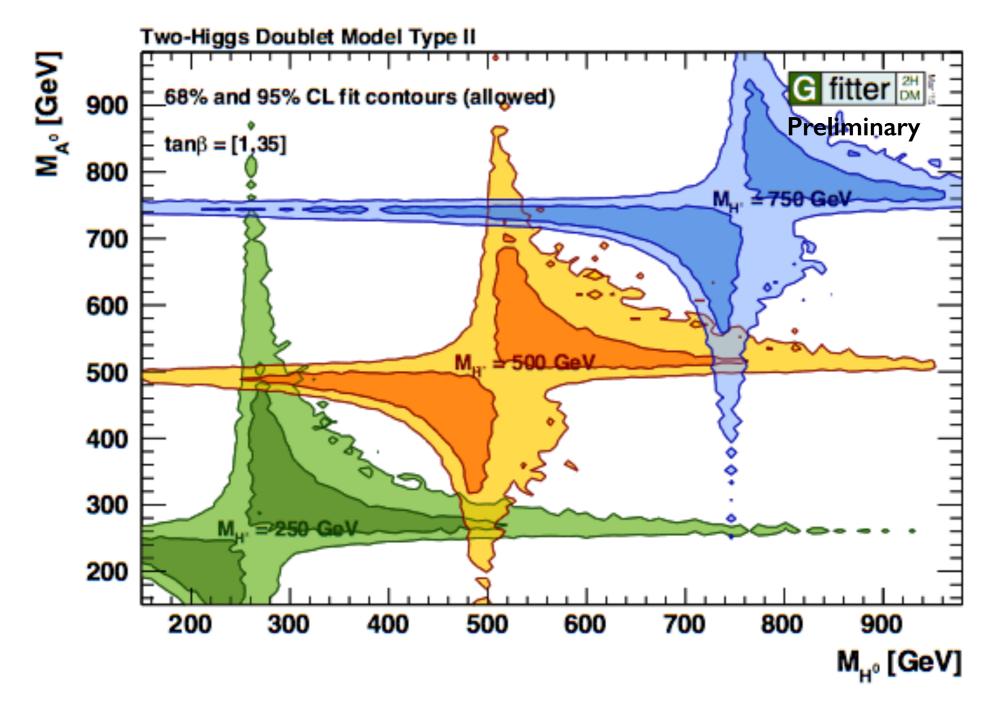

	Type I and Type II
Higgs	C_V
h	$\sin(eta-lpha)$
Н	$\cos(eta-lpha)$
A	0

- constraints derived from EWPD using S,T,U formalism
- lightest scalar M_h = 125.1 GeV
- weak constraints

 on masses, since
 tanβ and cos(β-α)
 are unconstrained

2HDM and H Coupling Measurements

- coupling measurements place important constraints on 2HDMs
- Predictions of BRs using 2HDMC [D. Eriksson et al., CPC 181, 189 (2010)]
- 7 additional, unconstraint parameters (4 masses, 2 angles, soft breaking scale): importance sampling with MultiNest [F. Feroz et al., arXiv:1306.2144]


additional constraints from flavour data

• $B \rightarrow X_s \gamma$: $\tan \beta > 1$

• $B_s \rightarrow \mu \mu$: constraints depending on M_H and $M_{H\pm}$

Global Fit to 2HDM of Type-2

for given M_{H±} tight constraints from H coupling measurements and EWPD
 expect improvement from direct searches at the LHC

