

$A \to Zh \to l l \tau \tau$

Pedro Sales de Bruin (University of Washington) on behalf of the ATLAS collaboration

• The $A \rightarrow Zh$ channel is relevant for many BSM Higgs scenarios, including 2 Higgs doublet models (2HDM). 2HDM are phenomenological models with an extension of the SM Higgs sector by an additional doublet leading to 5 Higgs bosons: h, H, A, H^{\pm}

• Branching ratio to Zh dominates for A mass below $t\bar{t}$ mass

UNIVERSITY of WASHINGTON

•ATLAS has published a Search for a CP-odd Higgs boson decaying to Zh in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector (<u>Physics Letters B 744 (2015) 163-183</u>)

. The paper included the $ll\tau\tau,~llbb$ and $\nu\nu bb$ final states. This talk will focus on the $ll\tau\tau$ channels

• The $ll\tau\tau$ analysis was split into three channels depending on the final state of the taus:

 $ll\tau_{lep}\tau_{lep}$ $ll\tau_{lep}\tau_{had}$ $ll\tau_{had}\tau_{had}$

 $\label{eq:common Selection} \begin{array}{l} \mbox{Single Lepton (and Dilepton for τ_{lep}\tau_{lep}$) Triggers} \\ \mbox{Two Same-Flavour, Opposite Sign (OS) Charge, Isolated Leptons (μ/e$)} \\ \mbox{80 GeV} < M_{II} < 100 GeV \\ \mbox{For τ_{had} τ_{had} and τ_{lep} τ_{had}} $: 75 < M_{τ} $MMC < 175 GeV \\ \mbox{For τ_{lep} τ_{lep}} $: 90 < $M_{\tau{lep}, \tau{lep}}$ $MMC < 190 GeV \\ \end{array}$

• Main background is diboson which is estimated from simulation.

• The LepLep channel is sub-divided into same flavor (SF) and different flavor (DF) regions (referring to leptons from Higgs decay)

LepLep

LepHad

• Main backgrounds were Z+Jets (reducible) and diboson (irreducible), with similar contributions

Irreducible backgrounds were estimated from simulation

- Reducible backgrounds (i.e. jets faking taus) were estimated using the a template method:
 - Use control region (B+C+D) to model background shape in signal region (A)
 - Scale background using normalization factor from Higgs mass sidebands (outside 75-175 GeV). $f_{scale} = \frac{A_{h-side}}{(B+C+D)_{h-side}}$

. Same method used in HadHad channel

A→Zh→llτ_{lep}τ_{had} Selection Exactly 1 additional μ/e Exactly 1 τ_{had} τ and μ/e have OS charge

HadHad

W UNIVERSITY of WASHINGTON

• Main background is Z+Jets.

• Small irreducible background also estimated using simulation

Reducible Z+Jets background uses same template method described earlier

A→Zh→ll τ_{had} τ_{had} Selection No additional µ/e 2 OS charge τ_{had} p_{T.Z} > min[(0.64m_A - 131), 125] GeV

Pedro de Bruin

Higgs Hunting 2015

Results and Interpretation

- No excess with respect to SM observed
- Upper limits on cross section times branching ratio set
- Results were interpreted in CPconserving 2HDM scenarios

The number of predicted and observed events for the $\ell\ell\tau\tau$ channels.

	Expected background	Data
$\ell\ell \tau_{had} \tau_{had}$	28 ± 6	29
$\ell\ell\tau_{\rm lep}\tau_{\rm had}$	17 ± 4	18
$\ell\ell\tau_{\rm lep}\tau_{\rm lep}$ (SF)	9.5 ± 0.6	10
$\ell\ell\tau_{\rm lep}\tau_{\rm lep}$ (DF)	7.2 ± 0.7	7

2HDM interpretation of limits

- Interpretation of the cross-section limits in the context of 2HDM type-I and type-II as a function of parameter $tan(\beta)$, m_A and $cos(\beta \alpha)$. Blue shaded area is due to constraints derived by considering $A \rightarrow \tau\tau$ mode of neutral MSSM Higgs to $\tau\tau$ search
- This search provided a nice complementarity to other BSM searches

W/

UNIVERSITY of WASHINGTON

Thanks!

BACKUP

Analysis details

- For the LepLep and LepHad final states, the Z lepton pair was assigned based on the OS lepton pair that had the reconstructed mass closest to the Z mass.
- For all 3 $ll\tau\tau$ channels, The resolution of the reconstructed A boson mass is further improved by using a mass difference variable:

 $m_A^{rec} = m_{ll\tau\tau} - m_{ll} - m_{\tau\tau} + m_Z + m_h$, where m_Z is the known mass of the Z, $m_h = 125$ GeV, m_{ll} is the invariant of the Z leptons, and $m_{ll\tau\tau}$ is the $ll\tau\tau$ invariant mass. The $m_{\tau\tau}$ mass is estimated with the Missing Mass Calculator (MMC).

- In the LepLep channel, events with at least one lepton which is a misidentified jet or from a heavy flavor quark decay amount to 35% (5%) for DF (SF) subchannels. These fake lepton events are mostly from Z+Jets production and are estimated using a control region where one or both Higgs leptons fail the isolation criteria.
- HadHad channels uses "Loose" taus. LepHad tau must pass "Medium".
- The LepHad channel also has a small (11%) contribution from SM Higgs production in association with a Z boson.

- For backgrounds with real $ll\tau\tau$ objects, the biggest source of systematic uncertainty for the LepLep, LepHad channels was the uncertainty on the theoretical cross sections used in the normalization, amounting to about 6.4% and 5%, respectively. In the HadHad channel the largest contribution comes from the τ_{had} identification and energy scale and amounts to 8.9%.
- The fake τ_{had}/l background systematic uncertainty for the $\tau\tau$ channels is dominated by the statistical uncertainty on data in control regions used for the background normalization. It amounts to 38% and 25% for the LepHad and HadHad, respectively. This is mostly due to low statistics in OS/passID region ("A" region) in Higgs sidebands where normalization scale is computed. For LepLep, the normalization uncertainty is 65% (25%) for the SF (DF) categories.

m_A distributions per channel

Higgs Hunting 2015

13

W $m_{\tau\tau}^{MMC}$ distributions per channel UNIVERSITY of WASHINGTON Events / 20 GeV Events / 20 GeV 10 ATLAS ATLAS Data 2012 Data 2012 14F ZZ^(*) 77^(*) vs = 8 TeV, 20.3 fb⁻¹ vs = 8 TeV, 20.3 fb⁻¹ 12 8 WW, WZ, VVV, tīZ WW, WZ, VVV, tĪZ 10F Fake-I background Fake-I background When Uncertainty And Uncertainty 8 $m_{4} = 340 \text{ GeV}$ $m_{A} = 340 \text{ GeV}$ 6 $A \rightarrow Zh \rightarrow II\tau_{Ien}\tau_{Ien}$ - same flavor $A \rightarrow Zh \rightarrow II\tau_{Iep}\tau_{Iep}$ - different flavor

2

0^L

50

100

150

200

250

Data 2012

ZZ^(*), SM Zh

*m*₄ = 340 GeV

250

 $A \to Zh \to Ih_{had} \tau_{had}$

300

350

m^{MMC}_{ττ} [GeV]

400

Fake-r/l background

300

350

m_h^{MMC} [GeV]

400

2

16⊢

14F

12

10F

8

6

0

Events / 20 GeV

50

ATLAS

50

100

150

100

150

200

250

300

350

mhMMC [GeV]

400

Higgs Hunting 2015

2HDM interpretation of limits

TA7

UNIVERSITY of WASHINGTON

Table 2

Predicted and observed number of events for the $\ell\ell bb$ and $\nu\nu bb$ final states shown after the profile likelihood fit to the data.

	(llbb)	vvbb
Z + jets	1443 ± 60	225 ± 11
W + jets	-	55 ± 8
Тор	317 ± 28	203 ± 15
Diboson	30 ± 5	10.8 ± 1.6
SM Zh, Wh	31.7 ± 1.8	22.5 ± 1.2
Multi-jet	20 ± 16	3.2 ± 3.1
Total background	1843 ± 34	521 ± 12
Data	1857	511

(b) $A \rightarrow Zh, h \rightarrow bb$

$h \rightarrow bb$ final distributions

