ATLAS Run 2 – Higgs Prospects

Jessica Levêque

LAPP Annecy-le-Vieux CNRS/IN2P3

on behalf of The ATLAS Collaboration

Outline

- ATLAS Upgrades during LS1
- ATLAS readiness
 - First physics results with Run 2 data
- Higgs Road Map for Run 2
 - Early searches
 - Prospects with 2015 dataset (Moriond 2016)
 - Hints for improvements on precision measurements (mass, cross-sections & couplings)

Note : Prospects with full Run 2 dataset (100 fb⁻¹) and beyond will be mostly covered in CMS talk

LHC Run 2 planning

• 5 to 10 fb⁻¹ expected at the end of 2015 (Moriond 2016)

→ Expected sensivity comparable to full Run 1 dataset (or better)

ATLAS Upgrades during LS1

Detector consolidation :

- Muon chamber completion and replacement (1.0 < $|\eta|$ < 1.3)
- Calorimeter electronics repair
- Improved inner detector readout to cope with 100 kHz L1 rate
- New Topological L1 trigger and Central Trigger Processor, restructured HLT
- New Insertable B-Layer
 - 4th pixel layer at 3.3 cm from the beam
 - Planar and 3D sensors (forward region)
 - Smaller pixels

ATLAS Prospects

- New beam pipe r =2.5 cm
- New software with improved reconstruction
 - Tau, b-tagging, MET...

13 TeV Data Summary in ATLAS

New Insertable B Layer

First hits in IBL with Cosmic data and minimum bias events

ATLAS Prospects

IBL alignement and IP resolution in Run 2 data (min bias)

- IBL alignement getting close to the simulation expected performance
- Up to 40% improvement on the impact parameters resolutions w.r.t Run 1

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2015-007/ https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2015-031/

ATLAS Prospects

Improved b-tagging performance in Run 2

- New IBL layer + offline b-tagging algorithm optimization
- Expect light jet rejection increase by a factor 4 and by 50 % for c-jet for the same efficiency as Run 1

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2015-022/

Improved performance of b-jet and tau triggers in Run 2

- New IBL layer + online online b-tagging optimization
- Expect light jet rejection increase by a factor 100 for the same efficiency as Run 1
- Increased τ trigger efficiency from 70 % to 90 %

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TauTriggerPublicResults https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BJetTriggerPublicResults

ATLAS Prospects

Cross-Sections @ 13 TeV

ATLAS Prospects

Higgs Road Map for Run 2

- With early 2015 dataset (5 to 10 fb⁻¹) :
 - High Priority for BSM Higgs Searches
 - High priority for ttH
- With full 2015 dataset (10 to 15 fb⁻¹) :
 - Higgs « rediscovery » in $\gamma\gamma$ and ZZ* channels
 - Mass and couplings measurements
 - Higgs Cross-section measurements in all channels
 - Combination with Run 1
- With Full run 2 dataset (100 fb-1)
 - Precision gain for SM Higgs measurements of 3.5 over Run 1

 \rightarrow at this point, the systematic uncertainties will be dominant for most of the measurements (covered in CMS talk)

Early BSM searches (5 to 10 fb^{-1})

- Heavy Neutral Higgs decaying to fermions
 - $H/A \rightarrow t\bar{t}, b\bar{b}, \tau\tau$
- Charged Higgs
 - $H^+ \rightarrow \tau v + jets$, tb
- Heavy Neutral Higgs
 - $H \rightarrow WW, ZZ, \gamma\gamma$
- Di-Higgs searches
 - $H \rightarrow hh \rightarrow \gamma \gamma b \overline{b}$

 → Many channels can reach the Run 1 sensitivity with only a few fb⁻¹ of 13 TeV data

$\mathsf{BSM} \mathsf{H} \to \mathsf{ZZ}^*$

- Run 1 searches from 200 GeV to 1 TeV
- Scale 8 TeV → 13 TeV
 - Bkg Z(W) + jets * 1.6 (1.7)
 - Bkg tt * 3.3
 - Bkg diboson * 2
 - Signal * 4
- Run 1 significance reached with ~5 fb⁻¹ of Run 2 data

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-20/

BSM H/h/A $\rightarrow \tau \tau$

- Run 1 searches from 100 GeV to 1 TeV
- Better significance at high mass and high tan β with 5 to 10 fb⁻¹ @13 TeV

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-31/

$H \rightarrow b\overline{b} \gamma\gamma$

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-29/

SM Higgs diboson with 2015 data : back-of the envelop estimates

- Going from 8 \rightarrow 13 TeV
 - Higgs signal increases by factor 2.3
 - Background typically increases by factor 1.9 (3.3 for tt)
 - Significance scales as S/\sqrt{B}
 - → Sensitivity gain : **1.6**
- Sensitivity scales with \sqrt{L}
 - √(25 fb⁻¹/ 10 fb⁻¹) = **1.6**
- Sensitivity for 10 fb⁻¹ @ 13 TeV corresponds to full Run 1 dataset (25 fb⁻¹ @ 7/8 TeV)

Combination of full Run 1 + 10 fb⁻¹ of Run 2 will increase the sensitivity by 40 % w.r.t Run 2 data alone

SM Higgs Diboson Fiducial/Differential cross-sections

Statistics dominated

 Early fiducial cross-sections might be measured with less than 10 fb⁻¹
 @13 TeV for γγ and ZZ channels

- Differential distributions
 - Expected to have similar precision with 10 fb⁻¹ @13 TeV data than published 8 TeV data

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-10/

SM Higgs Strength & Couplings

Xsec (pb)	ggF	VBF	WH	ZH	ttH	bbH
8 TeV	19.27	1.578	0.7046	0.4153	0.1293	0.2106
13 TeV	43.92	3.748	1.380	0.8696	0.5085	0.5116
Ratio	2.28	2.38	1.96	2.09	3.93	2.43

- Statistical uncertainty ~ 2.5 times larger than systematics
 - 10 fb⁻¹ @13 TeV to reach same precision as full Run 1 dataset
 - Except for ttH : +45 %
 - Statistics and systematics will become equivalent with the full Run 2 dataset (100 fb⁻¹)

Higgs Boson Mass

- Still statistically dominated with 2015 dataset. Assume same systematics as Run 1.
- $H \rightarrow \gamma \gamma$ extrapolation with Run 1 systematics :
 - 10 fb⁻¹ : stat 0.43 GeV, syst 0.27 GeV
 - Statistical and systematic uncertainties become equal with ~ 30 fb⁻¹
- H → ZZ* with 10 fb⁻¹ @13 TeV expected to match Run 1 precision
 - Small systematics, statistical uncertainty reduces with luminosity
 - Expect better precision in H \rightarrow ZZ than H $\rightarrow \gamma\gamma$ with ~50 fb⁻¹

SM Higgs to fermions with 2015 data

Run 1 legacy

• Observed H $\rightarrow \tau\tau$ (ggH and VBF)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-07/

• Limit on $H \rightarrow b\overline{b}$

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-23/

• Limit on H $\rightarrow \mu\mu$

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-07/

- Run 2 expectations
 - Update couplings measurements in $\tau\tau$, $b\overline{b}$, $\mu\mu$ with 10 fb⁻¹@13 TeV
 - Longer term : observation of VH, $t\bar{t}H$ with $H \rightarrow$ fermions
 - Improvement expected from b-tagging performance

SM Higgs couplings to fermions $H \rightarrow \tau \tau, b\overline{b}$

- Improvement in H $\rightarrow \tau \tau$ and bb channels :
 - Objet identification and detector upgrade
 - Increased selection efficiency from VBF topology and boosted Higgs
- Expect to be at least as good as Run 1 with 10 fb⁻¹ @13TeV, probably better

Summary & Conclusions

Very good restart of the ATLAS detector

- First physics results with ~80 pb⁻¹ show the readiness of the detector
- First tracking performance plots show that the new IBL pixel layer is operating properly
- More Run 2 results in Andreas Hoecker's talk @ EPS
 https://indico.cern.ch/event/356420/session/18/contribution/6

Higgs prospects in early Run 2 data

- Run 1 precision should be reached with ~10 fb⁻¹ of Run 2 data @13 TeV
- BSM Higgs could be observed with a bit less (5 to 10 pb⁻¹)
- Combination between Run 1 and Run 2 will bring significant improvement
- Nest step : improved precision measurements with the full Run 2 dataset (100 pb⁻¹). See CMS talk.