CMS Di-fermion Higgs Results

Pierluigi Bortignon

University of Florida

On behalf of the CMS collaboration

Higgs Hunting 2015 30 July - 01 August, Orsay, Paris

Overview

Higgs boson discovered with mass close to 125 GeV

- + for m_H=125 GeV many decay channels experimentally accessible
- + measurement of its properties critical to understand SM compatibility

CMS run1 legacy public results on Higgs decaying to fermions

$\mu = \sigma / \sigma_{SM}$	$b\overline{b}$	au au au	$\mu\mu/ee$
ggH	no public result	$\mu = 0.85^{+0.42}_{-0.38}$	set limit on $\sigma \cdot BR$
VBF	$\mu = 2.8^{+1.6}_{-1.4}$	$\mu = 0.95^{+0.43}_{-0.38}$	set limit on $\sigma \cdot BR$
VH	$\mu = 0.98^{+0.47}_{-0.44}$	$\mu = 0.87^{+1.0}_{-0.88}$	no public result
ttH	$\mu = 1.2^{+1.6}_{-1.5}$	$\mu = 1.33^{+6.1}_{-3.6}$	no public result

- Most sensitive channels
 - + $H \rightarrow \tau \tau$ (ggH and VBF)
 - + VH, $H \rightarrow bb$
- + Combining these channels: evidence of Higgs coupling to fermion

- + includes the main 4 production modes
- + event categorised in
 - + τ decay modes (e, μ , τ_h)
 - + number of jets
 - + boost of the Higgs candidate
- Signal extraction
 - + simultaneous fit of the Higgs mass of all categories
- + Results
 - + Evidence of H \rightarrow $\tau\tau$ with 3.2 σ
 - Signal strength and couplings compatible with SM

3

VH, $H \rightarrow bb$

- categorise in p_T(V): isolate signal enriched phase space
- signal extraction:
 - BDT to classify signal events using kinematic and experimental variables - specific per channel
 - simultaneous likelihood fit of BDT output

Fermion combination

Evidence of the Higgs couplings to down-type fermions

Channel	Significa	Best-fit μ	
$(m_{\rm H} = 125 {\rm GeV})$	Expected	Observed	
$VH \rightarrow b\overline{b}$	2.3	2.1	1.0 ± 0.5
$H \rightarrow \tau \tau$	3.7	3.2	0.78 ± 0.27
Combined	4.4	3.8	0.83±0.24

- + combine only VH \rightarrow bb and H $\rightarrow \tau\tau$
- $\rightarrow \rightarrow VH \rightarrow bb \ does \ not \ include \ ggZH$
- + significance driven by the $H \to \tau\tau$ evidence
- + combined best-fit μ = 0.83 \pm 0.24 compatible with SM

$H \rightarrow \mu\mu/ee$

- + High mass resolution 1.6 2.5 GeV FWHM @ 125 GeV
- + Analysis divided in categories based on
 - + Higgs mass resolution
 - + Production mechanism (ggH & VBF)
- Signal extraction
 - * parametric fit of the muon/electron invariant mass

Results @ 125 GeV - Limits @ 95% CL:

- + $\sigma x BR (H \rightarrow \mu\mu) < 3.4^{*}10^{-2}pb$
 - + $\sigma/\sigma_{\text{SM}}$ < 7.4 ($6.9 \; expected$)
- + σ x BR (H \rightarrow ee) < 3.8*10⁻²pb
- assuming SM production
 - + BR(H $\rightarrow \mu\mu$) < 0.0016
 - + BR(H → ee) < 0.0019

ttH, H \rightarrow bb - Matrix Element Method

- Selecting events with at least one lepton and 4 jets
- Events are categorised in number of jets number of leptons and b-tagged jets to isolate high S/B region
- + main irreducible background tt+bb
 - + large theory uncertainty
- Matrix Element Method for signal classification
 - uses theory information on kinematics of signal and background (tt+bb)
 - + suits well large combinatorics on Higgs candidate

ttH, H \rightarrow bb - Matrix Element Method

- signal extraction from fit of likelihood ratio using
 templates from signal and background
 MEM shows improvement compared to previous
 - result using BDT instead of MEM
 - + σ/σ_{SM} < 4.2 (expected 3.3) @95% CL
 - + best-fit $\mu = 1.2 \pm 1.6$

VBF/ggH, H \rightarrow bb

Fully hadronic search

- + Challenging trigger two different strategies
 - + b-tagging used at trigger level
 - + VBF tag: rapidity separation and invariant mass
- b-tagging and rapidity of the jets used to reduce combinatorics on Higgs candidate
- analysis strategy
 - MVA to tag the Higgs jets
 - + b-jet energy regression as in VHbb
 - + quark-gluon discriminator reduce background
- + extraction of the $\textbf{Z} \rightarrow \textbf{bb}$ peak signal
 - + signal significance: 3.6σ (3.3σ expected)
 - + best-fit $\mu_z = 1.10^{+0.44}$ -0.33

VBF/ggH, H \rightarrow bb

$H \longrightarrow bb$ combination - VH/ttH/VBF

- + VBF, VH, and ttH with H \rightarrow bb have been combined
- + VH updated with ggZH inclusion in the signal model
 - + ggZH not negligible in high p_T region
 - + signal strength reduced to 0.89 ± 0.43 compared to old result

+ ttH using the BDT analysis results <-

$H \rightarrow b\overline{b}$	Best fit (68% CL)	Upper limits (95% CL)		Signal significance		-
 Channel	Observed	Observed	Expected	Observed	Expected	
VH	0.89 ± 0.43	1.68	0.85	2.08	2.52	● ←
ttH	0.7 ± 1.8	4.1	3.5	0.37	0.58	
VBF	$2.8^{+1.6}_{-1.4}$	5.5	2.5	2.20	0.83	
Combined	$1.03\substack{+0.44 \\ -0.42}$	1.77	0.78	2.56	2.70	_

- + main production mechanisms: ggH, VBF, VH
- + event categorised in
 - + τ decay modes (e, μ , τ_h)
 - + number of jets
 - + boost on the Higgs candidate
- + Higgs candidate mass reconstruction
 - + neutrinos in the τ decay degrade Higgs candidate

invariant mass resolution

numerical likelihood integration (SVFit) improves

mass resolution: final mass resolution is 10-20%

Higgs candidate mass distribution for different categories

- simulation describes very well data
- + different categories have different background composition

- Signal extraction
 - simultaneous fit of the Higgs candidate mass of

all categories

+ low purity categories help to constrain main

backgrounds ($Z \rightarrow \tau \tau$, tt+jets)

- + Results
 - + Evidence of H $\rightarrow \tau\tau$ with 3.2 σ
 - + Signal strength: 0.78 ± 0.27 compatible with SM

$H \rightarrow \tau \tau$ event categorisation

		0-jet	1-jet		2-jet	
				p _T ^π > 100 GeV	m _{jj} > 500 GeV Δη _{jj} > 3.5	$\begin{array}{l} p_{T}^{\tau\tau} > 100 \; GeV \\ m_{jj} > 700 \; GeV \\ \Delta\eta_{jj} > 4.0 \end{array}$
	$p_T^{Th} > 45 \text{ GeV}$	$high-p_T^{Th}$	$high-p_{T}^{\tau h}$	high-p _T ™ boosted	loose	tight VBE teg
μτ _h	baseline	$\text{low-}p_{T}^{\text{th}}$	low-p _T ^{τh}		VBF tag	(2012 only)
			1 1 1 1 1 1			
eτ _h	$p_T^{Th} > 45 \text{ GeV}$	$high-p_T^{Th}$	-high-p _T ^{τh} -	high-p _T ^{τh} boosted	loose	tight VBE tag
	baseline	$\text{low-}p_{T}^{\text{th}}$	low-p _T ^{τh}		VBF tag	(2012 only)
			$E_{\mathrm{T}}^{\mathrm{miss}}$ > 30 GeV			
eµ	p _T ^μ > 35 GeV	high-p _T ^µ	high-p _T µ		loose	tight VBF tag (2012 only)
	baseline	$low-p_T^{\mu}$	low-p _T ^µ		VBF tag	
			1 1 1 1 1 1			
ee, µµ	p _T ¹ > 35 GeV	high-p _T I	high-p _T ¹		2-jet	
	baseline	low-p _T ^I	low-p _T ^I			
τ _h τ _h (8 TeV only)	baseline		boosted	highly boosted	VBF	⁼ tag
			p _T ^π > 100 GeV	p _T ^π > 170 GeV	$\begin{array}{l} p_T^{\tau\tau} > 100 \; GeV \\ m_{jj} > 500 \; GeV \\ \Delta\eta_{jj} > 3.5 \end{array}$	

VH, $H \rightarrow bb$

- + most sensitive channel in $H \longrightarrow bb$ land
- + 5 channels according to vector boson decay
- + high p_T of the vector boson improves S/B
- b-jet energy regression improves H mass resolution
 - + final Higgs candidate mass resolution 10%

VHbb Additional plots

Weighed invariant mass distribution of the VHbb analysis

Additional material

Expected results from phase1

After 300 fb⁻¹ we expect to

- + have evidence of $H \rightarrow bb$ coupling
- + measure the H \rightarrow bb signal strength with an uncertainty smaller than 15%
- + measure the $H \rightarrow \tau\tau$ signal straight with an uncertainty smaller than 15%
- + being sensitive to the H $\rightarrow \mu\mu$ signal

CMS Projection

tHq, $H \rightarrow bb$

New results from CMS

- + SingleTop Higgs can probe sign of Yukawa top coupling
 - + ttH only sensitive to the square of y_t
- + Analysis done with $y_t=-1$ (~10 larger σ than $y_t=1$)
- Analysis strategy
 - + 4 categories : 4 (5) jets with 3(4) btag \oplus electrons and muons
 - + MVA for jet-quark assignement
 - + MVA for signal/background classification

- + 95% CL upper limit 7.57 (5.14 expected)
- + significance is 1.1 σ
 - + main systematics from Q² scale for ttbar production

