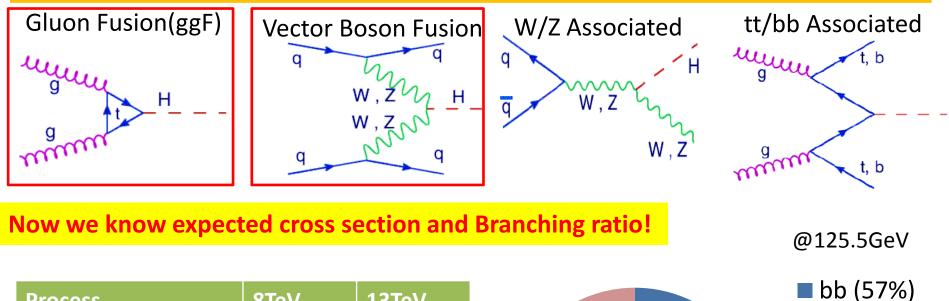

ATLAS Di-fermion Results

Koji Nakamura (KEK) on behalf of ATLAS Collaboration

30th July, 2015

Motivation

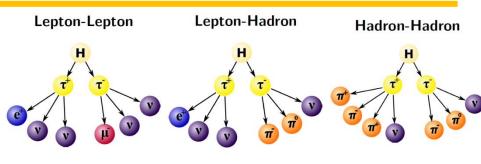


- Higgs boson has been observed
 by Bosonic decay channels (i.e.
 γγ,ZZ,WW)
 - Loop process in the production and decays indicated fermion (top) contribution indirectly.
- Observation of direct fermion couplings are quite important to complete the Higgs Mechanism.

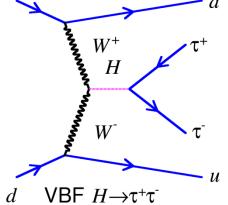
• Following channels are presented :

- $H \rightarrow \tau \tau$: highest sensitivity
- $H \rightarrow \mu\mu$: small branching ratio
- $VH \rightarrow bb$: huge backgrounds
- ttH \rightarrow bb : small production rate

Higgs production and decay @ LHC

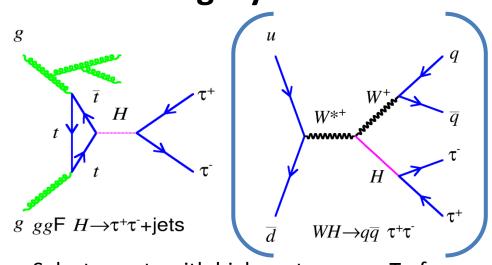

Process	8TeV	13TeV			■ DD (57%)
	σ [pb]	σ [pb]	ZZ		■ cc (2.9%)
Gluon Fusion	19.1	43.9			🔳 ττ(6.2%)
Vector Boson Fusion	1.57	3.73	ww	bb	■ μμ(0.02%)
W/Z Associated	1.11	2.25			■ γγ(0.23%) ■ WW (22%)
tt Associated	0.128	0.509	π		ZZ (2.8%)
	8TeV @125.5 GeV 13TeV @125 GeV		ŶŶ		 others

30th July, 2015


Higgs 2015

H→ττ analysis

- Analysis was optimized for each di-tau decay mode.
 - Different trigger, object selection and backgrounds.
 - Highest sensitivity channel is Lep-had.
- Categorize events to 2 category.



VBF category

- Find VBF jets with loose selection.
- Train BDT for VBF signal.

Boosted category

- Select events with high vector sum pT of tautau decay products.
- Not included non-boosted events.

30th July, 2015

BDT input variables

- Dominant backgrounds are Zττ+jets and Wjets, small S/B ratio.
- Trained BDT for each 3 channels and for VBF/Boosted separately. (total 6 categories)
 - 125GeV signal MC as the signal template.
- Missing Mass Calculator (MMC) is used for $m_{\tau\tau}$ reconstruction and it is also included as one of the most powerful variable for the training.

0.05 50.03 50.03 0.01 0.0

Variable	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$\tau_{\rm had} \tau_{\rm had}$
$M^{MMC}_{ au au}$	•	٠	•
$\Delta R_{ au au}$	٠	٠	•
$ \eta_{j2} - \eta_{j1} $	●	•	•
$m_{j1,j2}$	•	٠	•
$\eta_{j1} \times \eta_{j2}$		●	•
$p_T^{ m Total}$		•	•
${\it E}_{T}^{\it miss}\phi$ centrality		•	•
${\it min}(\Delta\eta_{\ell 1\ell 2, jets})$	•		
$\ell 1 imes \ell 2 \; \eta$ centrality	•		
$\Delta \eta_{j3,j1j2}$	•		
m_T		•	
$\ell \; \eta$ centrality		•	
$ au_1 \; \eta \; {\sf centrality}$			•
$ au_2 \ \eta$ centrality			•

Boosted catego	ory	٨	MMC mass $m_{\tau\tau}$ [GeV]
Variable	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$
$M^{MMC}_{ au au}$	•	•	•
$E_T^{miss}\phi$ centrality	•	•	•
$\Delta R_{ au au}$		•	•
sum P _T		•	•
$P_T(au_1)/p_T(au_2)$		•	•
$m_{ au au,j1}$	•		
$m_{\ell 1,\ell 2}$	•		
$\Delta \phi_{\ell 1,\ell 2}$	•		
sphericity	•		
$p_T^{\ell 1}$	•		
$p_T^{j_1}$	•		
$E_T^{miss}/p_T^{\ell 2}$	•		
m _T		●	
$ au_{1x}$			•

30th July, 2015

VBF category

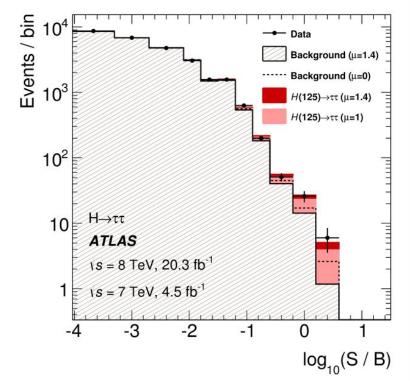
Higgs 2015

 τ_{2x}

H→ττ results

For mH=125GeV,

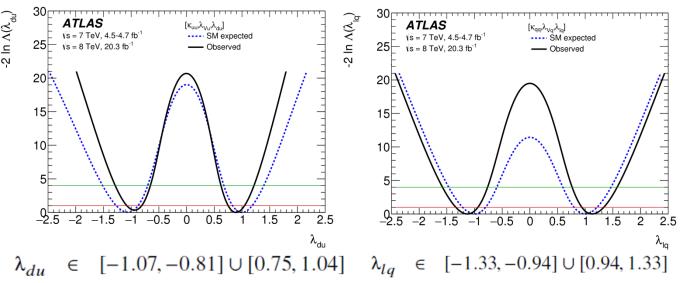
Evidence for H→ττ decay!

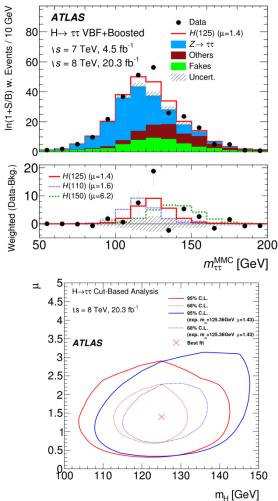

Sensitivity : 4.5σ (expected 3.4σ)

Assuming mH=125GeV :

 $\mu_{best} = 1.43 {+0.27 \atop -0.26} (stat.) {+0.32 \atop -0.25} (syst.) \pm 0.09 (theory)$

Impact of uncertainty sources


Source of Uncertainty	Uncertainty on μ
Signal region statistics (data)	$+0.27 \\ -0.26$
Jet energy scale	± 0.13
Tau energy scale	± 0.07
Tau identification	± 0.06
Background normalisation	± 0.12
Background estimate stat.	± 0.10
BR $(H \to \tau \tau)$	± 0.08
Parton shower/Underlying event	± 0.04
PDF	± 0.03
Total sys.	$+0.33 \\ -0.26$
Total	$+0.43 \\ -0.37$


30th July, 2015

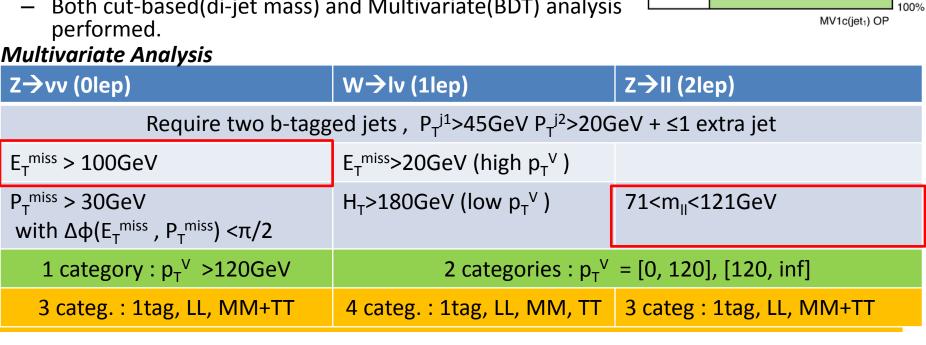
H→ττ results

- Checked Mass compatibility to 125GeV
- Strong Evidence for $H \rightarrow \tau \tau$ (4.5 σ)
 - First direct observation of fermion coupling
 - First observation of lepton coupling.
 - First observation of down type fermion coupling.
- Coupling ratio
 - Down/Up type Ratio : [-1.07,-0.81]U[0.75,1.04]
 - Lepton/Quark : [-1.33,0.94]U[0.94,1.33]

Mass compatibility to the observed Higss boson

30th July, 2015

$H \rightarrow \mu \mu$ and Lepton universality ?


@125.5GeV 🔳 bb (57%) $H \rightarrow \mu \mu$ decay is also searched. 🔳 cc (2.9%) Can prove 2nd generation lepton ZZ ττ(6.2%) Similar technique as $H \rightarrow \gamma \gamma$ analysis WW μμ(0.02%) bb Entries / 2.5 GeV 🔳 γγ(0.23%) ATLAS $Ldt = 20.3 \text{ fb}^{-1}$ 60 VBF ττ WW (22%) χ^2 /ndof = 18.6/19 vs = 8 TeV 50 ZZ (2.8%) Data 40 Background model Signal [125] × 50 5% CL limit on $\mu_{_{\rm S}}$ 30 $H \rightarrow \mu^+ \mu^-$ ATLAS 50 √s=7 TeV 4.5 fb⁻¹ 20 Observed CL vs=8 TeV 20.3 fb Expected CL 40 10 ± **1**σ $\pm 2\sigma$ 30 110 120 125 130 135 140 115 145 150 155 160 Exclusion limit @125GeV: $m_{u^+u^-}$ [GeV] 20 σ **7.0xSM** This correspond to the BR($H \rightarrow \mu\mu$)<0.2% So, BR($H \rightarrow \tau \tau$) >> BR($H \rightarrow \mu \mu$) 10 Higgs boson does not universally couple^{0[∟]} 120 125 130 135 145 140 m_H [GeV] to leptons

30th July, 2015

Higgs 2015

150

VH,H→bb

- Important channel to prove bottom Yukawa (Yb) coupling directly.
 - Largest branching ratio but small S/B ratio due to huge QCD b-jets and vector boson + b-jets background processes.
- Analysis Strategy
 - Use W/Z associated production
 - Leptonic W/Z decays : $Z \rightarrow vv(0 \text{lep})$, II(2 \text{lep}) W $\rightarrow Iv(1 \text{lep})$
 - Both cut-based(di-jet mass) and Multivariate(BDT) analysis

Multivariate Analysis

30th July, 2015

AV1c(jet₂) OP MM LL 0-tag 1-tag

80%

1-tag

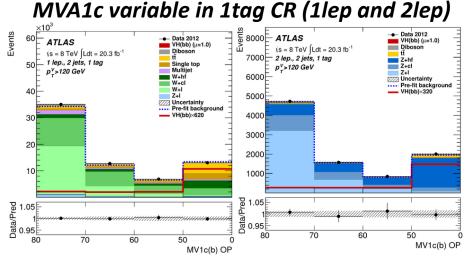
70%

50%

TT

0%

50%


70%

80%

100%

BDT input variables

- Trained BDT using 2-tag (TT+MM+LL) events for each 0/1/2lep, each 2/3jets and each p_T^V bin separately.
- Input variables are :

Variable	0-Lepton	1-Lepton	2-Lepton
p_{T}^{V}		×	×
$E_{\rm T}^{\rm miss}$	×	×	×
$p_{\mathrm{T}}^{b_1}$	×	×	×
$p_{\mathrm{T}}^{b_2}$	×	×	×
m_{bb}	×	×	×
$\Delta R(b_1, b_2)$	×	×	×
$ \Delta\eta(b_1,b_2) $	×		×
$\Delta \phi(V,bb)$	×	×	×
$ \Delta\eta(V,bb) $			×
H_{T}	×		
$\min[\Delta \phi(\ell, b)]$		×	
$m_{ m T}^W$		×	
$m_{\ell\ell}$			×
$MV1c(b_1)$	×	×	×
$MV1c(b_2)$	×	×	×
	Only in 3-jet events		
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×
m_{bbj}	×	×	×

30th July, 2015

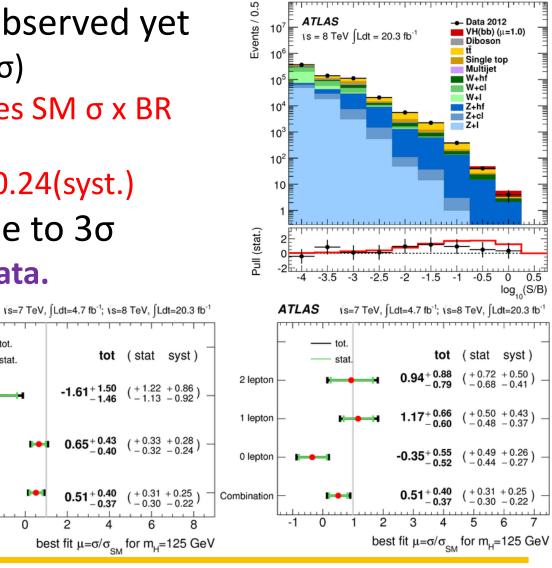
$VH,H \rightarrow bb$ results

- No significant excess observed yet
 - Significance : 1.4σ (2.5 σ)
 - -95% C.L. limit : 1.2 times SM σ x BR

ATLAS

7 TeV

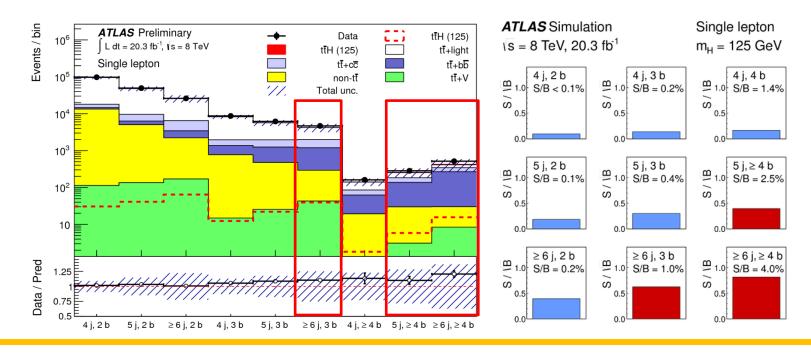
8 TeV


Combination

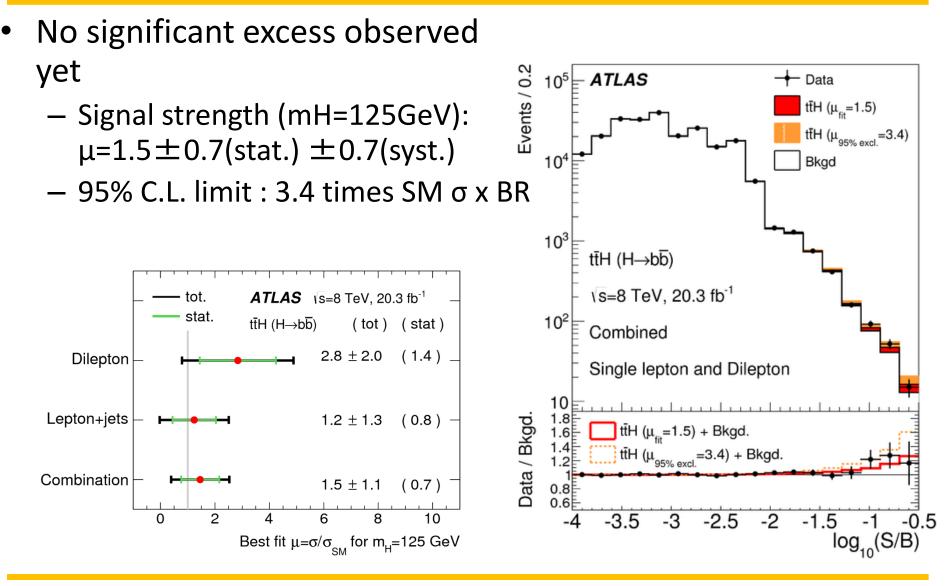
tot.

stat.

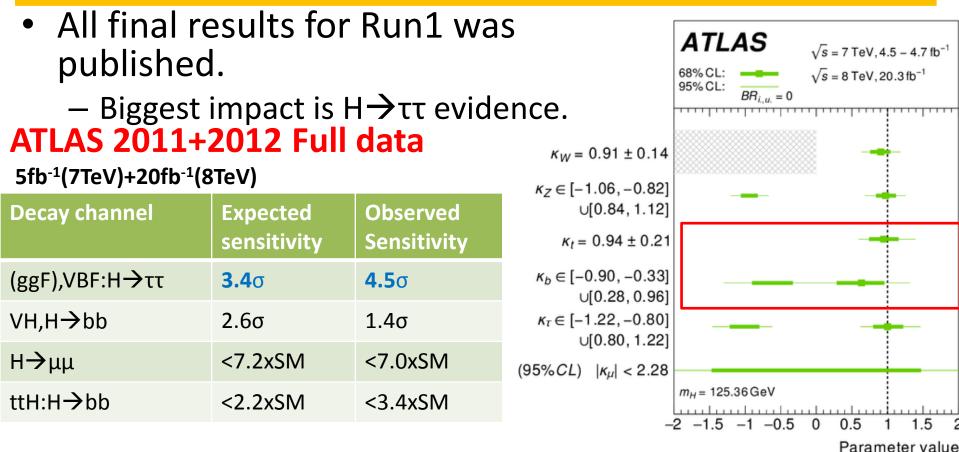
-2


- Signal strength : $\mu = 0.51 \pm 0.31(\text{stat.}) \pm 0.24(\text{syst.})$
- Sensitivity is quite close to 3σ - Will see early 13TeV data.

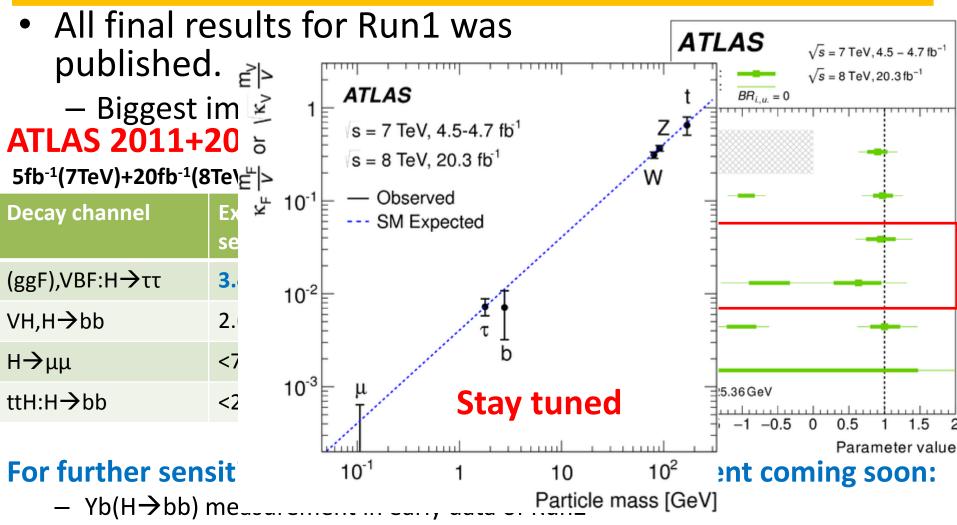
30th July, 2015


ttH,H→bb channel

- Complicated final state (1lep+6j, 2lep+4j) and huge ttbar+X background as hard to identify the objects from top or Higgs.
- Sprit the jet-bin and n-b-tagged jet categories and use MVA analysis to maximize sensitivity.
 - 6j3b, 6j4b, 5j4b channels are signal rich regions.


30th July, 2015

ttH,H→bb results


30th July, 2015

Conclusion

- For further sensitivity of fermion coupling measurement coming soon:
 - Yb($H \rightarrow$ bb) measurement in early data of Run2
 - Direct Yt (ttH) measurement in Run2 data

Conclusion

Direct Yt (ttH) measurement in Run2 data

Backup