DiHiggs Production and New Physics

Higgs Hunting 2015 Orsay

31.7.2015

ABORATOIR

New Physics (in DiHiggs)

Probe our current understanding of the fundamental laws of nature... Many hints and evidences for NP!

- Gravity
- Hierarchy Problem
- Neutrino Masses (See Saw)
- Grand Unification of Forces
- Flavor Structure
- Baryogenesis
- Dark Matter
- Trigger for Symmetry-Breaking Potential?
- Strong CP Problem
- Hints in Flavor/Precision Measurements?
- • •

How to get access to NP?

New Physics (in DiHiggs)

Probe our current understanding of the fundamental laws of nature... Many hints and evidences for NP!

- Gravity
- Hierarchy Problem
- Neutrino Masses (See Saw)
- Grand Unification of Forces
- Flavor Structure
- Baryogenesis
- Dark Matter
- Trigger for Symmetry-Breaking Potential?
- Strong CP Problem
- Hints in Flavor/Precision Measurements?
- ,
- Many links to Higgs Sector

The Higgs Sector...

... offers a unique window to NP Properties of the Higgs Boson? Scale of New Physics?

One of the biggest discoveries of mankind

The Higgs Potential

The Higgs Potential

The Higgs Potential

Very important test of SM/NP: Higgs potential - self couplings

$$V(h) = \frac{1}{2} m_h^2 h^2 + \lambda_{3h} v h^3 + \frac{\lambda_{4h}}{4} h^4 + \cdots$$
$$m_h \simeq 125 \text{ GeV established @LHC}$$

The Higgs Potential

Very important test of SM/NP: Higgs potential - self couplings

$$V(h) = \frac{1}{2}m_h^2 h^2 + \lambda_{3h}vh^3 + \frac{\lambda_{4h}}{4}h^4 + \cdots$$

 λ_{3h} accessible in <u>Higgs pair production</u>

The Higgs Potential

$$V(h) = \frac{1}{2}m_h^2 h^2 + \lambda_{3h}vh^3 + \frac{\lambda_{4h}}{4}h^4 + \cdots$$

$$\int_{g \text{ common } f} f + \frac{\lambda_{4h}}{4}h^4 + \cdots$$
Triple Higgs production:
$$\int_{g \text{ common } f} f + \frac{\lambda_{4h}}{4}h^4 + \cdots$$
Triple Higgs production:
$$\int_{g \text{ common } f} f + \frac{\lambda_{4h}}{4}h^4 + \cdots$$
Triple Higgs production:
$$\int_{g \text{ common } f} f + \frac{\lambda_{4h}}{4}h^4 + \cdots$$
Triple Higgs production:
$$\int_{g \text{ common } f} f + \frac{\lambda_{4h}}{4}h^4 + \cdots$$
Triple Higgs production:
$$\int_{g \text{ common } f} f + \frac{\lambda_{4h}}{4}h^4 + \cdots$$
Triple Higgs production:
$$\int_{g \text{ common } f} f + \frac{\lambda_{4h}}{4}h^4 + \cdots$$

 λ_{3h} accessible in <u>Higgs pair production</u>

Different Decay Channels

Expected Significance @ 600 fb⁻¹ (SM)

 $hh \rightarrow bb\gamma\gamma$ Baur, Plehn, Rainwater, hep-ph/0310056

(S/B=6/12)

 $hh \rightarrow b\bar{b}\tau^+\tau^-$ Dolan, Englert, Spannowsky, 1206.5001

 $\sim 4.5\sigma$

 $\leq 2\sigma$

(S/B=57/119)

Butterworth, Davison, Res drop Res free Rubin, Salam, 0802.2470

 $hh \to b\bar{b}W^+W^-$

 $\sim 3\sigma$

(S/B=12/8)

Papaefstathiou, Yang, Zurita, 1209.1489

Theorists' analyses!

The Higgs Potential

Most stringent projected constraint on λ_{3h} alone @ LHC14

$\Delta \lambda_{3h} =$	(40 - 50)%	$@600{\rm fb}^{-1}$
$\Delta \lambda_{3h} =$	30%	$@3000{\rm fb}^{-1}$

FG, Papaefstathiou, Yang, Zurita 1301.3492; 1309.3805 Baur, Plehn, Rainwater, hep-ph/0211224, hep-ph/0310056 Dolan, Englert, Spannowski 1206.5001 Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira 1212.5581

New Physics in hh Production

Plehn, Spira, Zerwas, ph/9603205, Djouadi, Kilian, Muhlleitner, Zerwas, ph/9904287, Lafaye, Miller, Muhlleitner, Moretti, ph/0002238, Cao, Heng, Shang, Wan, Yang, 1301.6437, ... Higgs Hunting 2015 - 31.7.2015 • Composite Higgs

Gillioz, Grober, Grojean, Muhlleitner, Salvioni, 1206.7120, Contino, Grojean, Moretti, Piccinini, Rattazzi, 1002.1011, Grober, Muhlleitner, 1012.1562,

Contino, Ghezzi, Moretti, Panico, Piccinini, Wulzer, 1205.5444, 13

'Model Independent' Approach to NP

 If NP resides at high scale E>>M_{EW}, can be described by operators with dim[O] > 4, independently of the concrete theory that completes the SM!

Weinberg, Wilson, Callen, Coleman, Wess, Zumino, ...

 $\hbar = c = 1$

E [GeV]

 10^{19}

M_{PL}

Physics Beyond the SM

 If NP resides at high scale E>>M_{EW}, can be described by operators with dim[O] > 4, independently of the concrete theory that completes the SM!

SM as IR limit, *expected* to work perfectly well at low E – new fundamental theory takes over at large E

Higgs Hunting 2015 - 31.7.2015

Florian Goertz

E [GeV]

 10^{19}

 10^{15}

M_{PL}

EFT Approach to New Physics

• Full set of non-redundant operators (i.e., basis):

59 D=6 operators (2499 including full flavor structure)

[assuming B&L conservation]

Buchmuller, Wyler, NPB 268(1986)621–653
Grzadkowski, Iskrzynski, Misiak, Rosiek, 1008.4884

Alonso, Jenkins, Manohar, Trott, 1312.2014

	Λ°		φ° and $\varphi^{*}D^{2}$		$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_p d_r \varphi)$	-
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					ΙT
	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$)(.
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

 $Table \ 2:$ Dimension-six operators other than the four-fermion ones.

		$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$
		$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
		$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
)		$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
(r)		$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
.)		$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
)			$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
(n)			$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
					$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
	0	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -viol	ating	^
$\frac{3}{1}$		$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right]$	$^{T}Cu_{r}^{\beta}]$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$
)	!	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(q_{p}^{\alpha j}\right)\right]$	$^{T}Cq_{r}^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$
• yu	yu	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[\left(q_{p}^{\alpha}\right)\right]$	$^{j})^{T}Cq_{r}^{\beta}$	$[(q_s^{\gamma m})^T C l_t^n]$
$Q_{le}^{(1)}$) qu	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_{mn}$	$\left[(q_p^{\alpha j})^T\right]$	$\left[Cq_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$
$Q_{le}^{(3)}$) qu	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	Q_{duu}	$\varepsilon^{lphaeta\gamma}\left[(d_p^{lpha})^T ight]$	Cu_r^{β}	$\left[(u_s^{\gamma})^T C e_t\right]$
			u	I		

 $Table \ 3: \ {\sf Four-fermion \ operators}.$

 Constrain coefficients of these operators

[One way to go, given the lack of evidence in favor of concrete models]

For non-linear realization, see Grinstein, Trott 0704.1505 Contino, Grojean, Moretti, Piccinini, Rattazzi 1002.1011

Higgs Hunting 2015 - 31.7.2015

Higgs Boson EFT

• Neglecting operators strongly constrained from precision tests

See e.g.: Elias–Miro, Espinosa, Masso, Pomarol, 1308.1879; Pomarol, Riva, 1308.2803; Corbett, Eboli, Gonzalez–Fraile, Gonzalez–Garcia 1207.1344, 1211.4580, 1304.1151; Falkowski, Riva, Urbano, 1303.1812; Contino, Ghezzi, Grojean, Muhlleitner, Spira, 1303.3876; Dumont, Fichet, von Gersdorff 1304.3369; Trott 1409.7605; Falkowski, Riva, 1411.0669; Corbett, Eboli, Goncalves, Gonzalez–Fraile, Plehn, Rauch 1505.05516; HXSWG; …

$$\begin{aligned} \mathcal{L} &= \mathcal{L}_{\rm SM} + \frac{c_H}{2\Lambda^2} (\partial^{\mu} |H|^2)^2 - \frac{c_6}{\Lambda^2} \lambda |H|^6 \\ &- \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \text{h.c.} \right) \\ &+ \frac{\alpha_s c_g}{4\pi\Lambda^2} |H|^2 G^a_{\mu\nu} G^{\mu\nu}_a + \frac{\alpha' c_\gamma}{4\pi\Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu} + \frac{i c_{WW}}{16\pi^2\Lambda^2} \mathcal{O}_{WW} \left(+ \mathcal{L}_{\rm CP} + \mathcal{L}_{\rm 4f} \right) \end{aligned}$$

Higgs Boson EFT

• Neglecting operators strongly constrained from precision tests

See e.g.: Elias–Miro, Espinosa, Masso, Pomarol, 1308.1879; Pomarol, Riva, 1308.2803; Corbett, Eboli, Gonzalez–Fraile, Gonzalez–Garcia 1207.1344, 1211.4580, 1304.1151; Falkowski, Riva, Urbano, 1303.1812; Contino, Ghezzi, Grojean, Muhlleitner, Spira, 1303.3876; Dumont, Fichet, von Gersdorff 1304.3369; Trott 1409.7605; Falkowski, Riva, 1411.0669; Corbett, Eboli, Goncalves, Gonzalez–Fraile, Plehn, Rauch 1505.05516; HXSWG; …

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\rm SM} + \frac{c_H}{2\Lambda^2} (\partial^{\mu} |H|^2)^2 - \frac{c_6}{\Lambda^2} \lambda |H|^6 \quad \text{Pure Higgs} \\ &- \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \text{h.c.} \right) \\ &+ \frac{\alpha_s c_g}{4\pi\Lambda^2} |H|^2 G_{\mu\nu}^a G_a^{\mu\nu} + \frac{\alpha' c_\gamma}{4\pi\Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu} \end{split}$$

Higgs Boson EFT

• Neglecting operators strongly constrained from precision tests

See e.g.: Elias-Miro, Espinosa, Masso, Pomarol, 1308.1879; Pomarol, Riva, 1308.2803; Corbett, Eboli, Gonzalez-Fraile, Gonzalez-Garcia 1207.1344, 1211.4580, 1304.1151; Falkowski, Riva, Urbano, 1303.1812; Contino, Ghezzi, Grojean, Muhlleitner, Spira, 1303.3876; Dumont, Fichet, von Gersdorff 1304.3369; Trott 1409.7605; Falkowski, Riva, 1411.0669; Corbett, Eboli, Goncalves, Gonzalez-Fraile, Plehn, Rauch 1505.05516; HXSWG; ...

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{c_H}{2\Lambda^2} (\partial^{\mu} |H|^2)^2 - \left[\frac{c_6}{\Lambda^2} \lambda |H|^6 \right]$$
$$- \left(\frac{c_t}{\Lambda^2} y_t |H|^2 \bar{Q}_L H^c t_R + \frac{c_b}{\Lambda^2} y_b |H|^2 \bar{Q}_L H b_R + \frac{c_\tau}{\Lambda^2} y_\tau |H|^2 \bar{L}_L H \tau_R + \text{h.c.} \right)$$
$$+ \frac{\alpha_s c_g}{4\pi\Lambda^2} |H|^2 G^a_{\mu\nu} G^{\mu\nu}_a + \frac{\alpha' c_\gamma}{4\pi\Lambda^2} |H|^2 B_{\mu\nu} B^{\mu\nu}$$

Basically unconstrainable from single-Higgs physics: C_6 \rightarrow enters Higgs potential \implies self couplings

Higgs Hunting 2015 - 31.7.2015

The Higgs Potential

 $\frac{c_6}{\Lambda^2}\lambda|H|^6$ enters Higgs potential \implies self couplings

$$V(H) = \mu^2 |H|^2 + \lambda |H|^4 + \frac{c_6}{\Lambda^2} \lambda |H|^6$$

 $H \to \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h \end{pmatrix}$

The Higgs Potential

 $\frac{c_6}{\Lambda^2}\lambda|H|^6$ enters Higgs potential \longrightarrow self couplings

$$V(h) = \frac{1}{2}m_h^2 h^2 + \lambda_{3h} v h^3 + \frac{\lambda_{4h}}{4} h^4 + \cdots$$

$$\lambda_{3h} = \frac{m_h^2}{2v^2} \left[1 + \frac{c_6 v^2}{\Lambda^2} \right]$$
$$\neq \lambda_{4h} = \frac{m_h^2}{2v^2} \left[1 + \frac{6c_6 v^2}{\Lambda^2} \right]$$

Higgs Hunting 2015 - 31.7.2015

The Higgs Potential

 C_6 accessible in <u>Higgs pair production</u>: $\lambda_{3h} = \lambda_{3h}(c_6)$

Challenge: Many more operators contribute to $gg \rightarrow hh$

 $gg \rightarrow hh$ in D=6 EFT

$$h \rightarrow \left(1 - \frac{c_H v^2}{2\Lambda^2}\right)h - \frac{c_H v}{2\Lambda^2}h^2 - \frac{c_H}{6\Lambda^2}h^3$$

Higgs Hunting 2015 - 31.7.2015

$gg \rightarrow hh$ Cross Section in D=6 EFT

Higgs Hunting 2015 - 31.7.2015

 $c_i \to c_i \Lambda^2 / v^2$

Higgs Decays in D=6 EFT

Mode	tree	1 loop QCD	1 loop
h ightarrow bb	c_H, c_b	c_H, c_b	c_H, c_b, c_t, c_6, c_W
$h \rightarrow \tau \tau$	c_H, c_{τ}	-	$c_H, c_{ au}, c_6, c_W$
$h ightarrow \gamma \gamma$	c_{γ} Loop + $1/\Lambda^2$	suppressed wrt SM	$c_H, c_b, c_t, c_\tau, c_W$
$h \rightarrow WW$	c_H, c_{HW}, c_W	-	$c_H, c_W, c_b, c_t, c_\tau, c_6$
$gg \rightarrow hh$	c_g	c_t, c_b	c_t,c_b,c_H,c_6
$gg \to h$	c_g	c_t,c_b,c_H	c_t,c_b,c_H
$gg \rightarrow n$	Cg	c_t, c_b, c_H	C_t, C_b, C_H

Bold coefficients included in FG, Papaefstathiou, Yang, Zurita, 1410.3471

Don't include suppressed (loop) operators in loop topologies

Focus on

$$hh \rightarrow b\bar{b}\tau^{+}\tau^{-}$$
 \longrightarrow 6 Parameters: $\{c_{6}, c_{H}, c_{t}, c_{b} = c_{\tau}, c_{g}, c_{\gamma}\}$
@LHC14
Unique accessibility in hh production!

 $\mathcal{O}_{W,B,HW,HB} \in \mathcal{O}_{WW}$

gg→hh Cross Section in EFT

• Effect of varying individual Wilson coefficients

MSTW2008nlo_nf4 PDF

Dashed: parameter-range excluded from current h data at the LHC
 → used HiggsBounds, HiggsSignals on cross sections calculated via eHDECAY

Bechtle et.al., 1311.0055, 1305.1933

Higgs Hunting 2015 - 31.7.2015

 $gg \rightarrow hh$ after cuts

 \rightarrow describe distributions, which determine efficiencies $\epsilon(c_i)$

 $gg \rightarrow hh$ after cuts

MC generator important for analysis \rightarrow describe distributions, which determine efficiencies $\epsilon(c_i)$

Higgs Hunting 2015 - 31.7.2015

- Consider $hh o b \bar{b} \tau^+ \tau^-$
- Marginalize over other directions within *projected* ranges

• Clear correlation visible: Enhanced hh cross section due to negative c_t can be compensated by reduction due to positive c_6

• Precise knowledge on 'top Yukawa' c_t helpful to improve the range for c_6

• On the other hand, could also obtain meaningful information on c_t in hh

Higgs Hunting 2015 - 31.7.2015

• Precise knowledge on 'top Yukawa' c_t helpful to improve the range for c_6

• On the other hand, could also obtain meaningful information on c_t in hh

Higgs Hunting 2015 - 31.7.2015

- Precise knowledge on 'top Yukawa' c_t helpful to improve the range for c_6
- \bullet On the other hand, could also obtain meaningful information on c_t in hh

Higgs Hunting 2015 - 31.7.2015

Final Results

Expected 1σ constraints at the 14 TeV LHC, assuming $f_{th} = 30\%$

model	$L = 600 \text{ fb}^{-1}$	$L=3000~{\rm fb}^{-1}$
c ₆ -only	$c_6 \in (-0.5, 0.8)$	$c_6 \in (-0.4, 0.4)$
full (future)	$c_6 \in (-0.8, 0.9)$	$c_6 \in (-0.6, 0.6)$

FG, Papaefstathiou, Yang, Zurita, 1410.3471

• Use real p-values from *current* single Higgs measurements in marginalization:

full	$c_6\gtrsim -1.3$	$c_6\gtrsim -1.2$
full	$c_6 \gtrsim -1.3$	$c_6\gtrsim -1.2$

See also Azatov, Contino, Panico, Son, 1502.00539 (bbyy)

Presence of μ^2

- $\mu^2 |H|^2$: only relevant operator in SM
- Origin of hierarchy problem
- Have so far not tested if actually there!

$$V(H) = \lambda |H|^4$$

$$v = 0, \ m_h = 0$$

Presence of μ^2

- $\mu^2 |H|^2$: only relevant operator in SM
- Origin of hierarchy problem
- Have so far not tested if actually there!

$$V(H) = \lambda |H|^4 + \frac{c_6}{\Lambda^2} |H|^6$$

- Fully replace μ term by D=6 operator FG, 1504.00355
- λ <0, EWSB not triggered by negative μ^2 term
- $\mu^2=0$ really possible by adding D=6 op. in consistent EFT ??

Presence of μ^2

• Yes, due to the lightness of the Higgs Boson

$$\lambda = -\frac{m_h^2}{2v^2} \approx -0.13, \quad c_6 = \frac{2m_h^2}{3v^2} \frac{\Lambda^2}{v^2} \approx 2.8 \frac{\Lambda^2}{\text{TeV}^2}$$

SM one-loop CW \rightarrow small correction: FG, 1504.00355 Limits from EWPT \rightarrow see Grojean, Servant, Wells, hep-ph/0407019

Higgs Hunting 2015 - 31.7.2015

µ-less SM testable at LHC

$$c_6 = \frac{2m_h^2}{3v^2} \approx 2.8 \frac{\Lambda^2}{\text{TeV}^2} \quad \frac{\text{conventions of GPYZ, 1410.3471}}{\text{incl. CW shift}} \quad \boxed{c_6 \approx -1.2}$$

14TeV LHC, 10:

model	$L=600~{\rm fb}^{-1}$	$L=3000~{\rm fb^{-1}}$
c_6 -only	$c_6 \in (-0.5, 0.8)$	$c_6 \in (-0.4, 0.4)$
full (future)	$c_6 \in (-0.8, 0.9)$	$c_6 \in (-0.6, 0.6)$

• Use real p-values from *current* single Higgs measurements in marginalization:

full $c_6 \gtrsim -1.3$ $c_6 \gtrsim -1.2$	
--	--

Enhance Sensitivity: Consider Distributions

• Optimize Analysis to Kinematical Properties

Dall'Osso, Dorigo, FG, Gottardo, Oliveira, Tosi, , 1507.02245

• Cluster parameter space wrt expected distributions

Enhance Sensitivity: Consider Distributions

Higgs Hunting 2015 - 31.7.2015

- Higgs sector still contains many mysteries
- Analysis of hh production
 - \rightarrow unique insight on structure of (D=6) extension of SM!

The Higgs discovery is not the end, it is just the beginning.

Backup

 $rac{c_H}{2\Lambda^2} (\partial^\mu |H|^2)^2$ enters after canonical normalization of kinetics

$$V(h) = \frac{1}{2}m_h^2 h^2 + \lambda_{3h} v h^3 + \frac{\lambda_{4h}}{4} h^4 + \cdots$$

$$\lambda_{3h} = \frac{m_h^2}{2v^2} \left[1 + \frac{c_6 v^2}{\Lambda^2} - \frac{3c_H v^2}{2\Lambda^2} \right]$$
$$\neq \lambda_{4h} = \frac{m_h^2}{2v^2} \left[1 + \frac{6c_6 v^2}{\Lambda^2} - \frac{25c_H v^2}{3\Lambda^2} \right]$$

$$h \to \left(1 - \frac{c_H v^2}{2\Lambda^2}\right)h - \frac{c_H v}{2\Lambda^2}h^2 - \frac{c_H}{6\Lambda^2}h^3$$

removes also momentum-dependent interactions

Higgs Hunting 2015 - 31.7.2015

Backup: $99 \rightarrow hh$

$$EWSB \rightarrow Relevant Terms:$$

$$\mathcal{L}_{hh} = -\left[\frac{m_h^2}{2v} \left(1 - \frac{3}{2}c_H + c_6\right)h^3\right]$$

$$+ \left[\frac{\alpha_s c_g}{4\pi} \left(\frac{h}{v} + \frac{h^2}{2v^2}\right)G_{\mu\nu}^a G_{\mu\nu}^{\mu\nu}\right]$$

$$- \left[\frac{m_t}{v} \left(1 - \frac{c_H}{2} + c_t\right)\bar{t}_L t_R h + \text{h.c.}\right]$$

$$- \left[\frac{m_t}{v^2} \left(\frac{3c_t}{2} - \frac{c_H}{2}\right)\bar{t}_L t_R h^2 + \text{h.c.}\right]$$

$$c_i \to c_i \Lambda^2 / v^2 \quad h \to \left(1 - \frac{c_H v^2}{2\Lambda^2}\right) h - \frac{c_H v}{2\Lambda^2} h^2 - \frac{c_H}{6\Lambda^2} h^3$$

Higgs Hunting 2015 - 31.7.2015

Backup: HH Production: MCHM5

See also Contino, Ghezzi, Moretti, Panico, Piccinini, Wulzer, 1205.5444

• Important contribution:

Higgs Hunting 2015 - 31.7.2015

Backup: Explicit Analysis

• Focus on $hh \rightarrow b\overline{b}\tau^+\tau^-$ @LHC14

Dolan, Englert, Spannowsky, 1206.5001 Baglio, Djouadi, Grober, Muhlleitner, Quevillon; 1212.5581 Barr, Dolan, Englert, Spannowsky,, 1309.6318 Maierhoefer, Papaefstathiou, 1401.0007

 $hh \rightarrow bb\gamma\gamma$ Baur, Plehn, Rainwater, hep-ph/0310056

 $hh \rightarrow b\bar{b}\tau^+\tau^-$ Dolan, Englert, Spannowsky, 1206.5001

 $\sim 4.5\sigma$ (S/B=57/119)

Significance @ 600 fb^{-1} (SM)

 $\lesssim 2\sigma$ (S/B=6/12)

Real Butterworth, Davison, Real Real Art Mer Real Rubin, Salam, 0802.2470

 $hh \to b\bar{b}W^+W^-$

 $\sim 3\sigma$ (S/B=12/8)

Papaefstathiou, Yang, Zurita, 1209.1489

Theorists' analyses!

Backup: Analysis $hh \rightarrow b\bar{b}\tau^+\tau^-$

• Main backgrounds:

Generated with aMC@NLO (+ HERWIG++)

- $pp \to t\bar{t} \to b\bar{b}\tau^+\tau^- (+E_{\rm mis})$
- $pp \rightarrow ZZ \rightarrow b\bar{b}\tau^+\tau^-$

Frixione et. al.,, 1010.0568 Frederix et. al., 1104.5613 Alwall et. al., 1405.0301

• $pp \rightarrow hZ \rightarrow b\bar{b}\tau^+\tau^-$

Cuts:

- Two τ -tagged jets with $p_{\perp} > 20 \,\text{GeV}$
- one fat jet with R = 1.4 (CA), two hardest sub-jets b-tagged ($|\eta| < 2.5$)
- $m_{\tau^+\tau^-}, m_{\text{fat}} \in [m_h 25 \,\text{GeV}, m_h + 25 \,\text{GeV}]$
- $p_{\perp}^{\text{fat}}, p_{\perp}^{\tau\tau} > 100 \text{ GeV}, \ \Delta R(h,h) > 2.8, \ p_{\perp}^{hh} < 80 \text{ GeV}$

b, τ-tagging efficiencies: 70 %

see: Dolan, Englert, Spannowsky, 1206.5001; Maierhoefer, Papaefstathiou, 1401.0007

Higgs Hunting 2015 - 31.7.2015

Backup: Analysis

- Start with model where only $c_6 \neq 0$ (unconstrained from single h) Vary only λ (as in previous studies)
 - $S(c_6)$ signal + B background events @ given L_{int}
 - $N(c_6) = S(c_6) + B$, $\delta N^2 = \delta S^2 + \delta B^2 + S^2 f_{\rm th}^2$

$$\delta N^2 = N + S^2 f_{\rm th}^2$$

30% ~ 10% (scale) + 10% (pdf + a_s) + 10% (m_t)

Backup: Analysis

• Start with model where only $c_6 \neq 0$ (unconstrained from single h) Vary only λ (as in previous studies)

$$\delta N^2 = N + S^2 f_{\rm th}^2$$

• Expected constraint on c_6 , assuming the SM to be true ($c_6=0$):

Compute how many standard deviations $\delta N(c_6)$ away a given $N(c_6)$, as predicted from theory, is from $N(c_6 = 0)$.

Backup: Analysis

 $c_6^{1\sigma}(600 \text{ fb}^{-1}) \in (-0.4, 0.5), \ c_6^{1\sigma}(3000 \text{ fb}^{-1}) \in (-0.3, 0.3), \ f_{\text{th}} = 0$ $c_6^{1\sigma}(600 \text{ fb}^{-1}) \in (-0.5, 0.8), \ c_6^{1\sigma}(3000 \text{ fb}^{-1}) \in (-0.4, 0.4), \ f_{\text{th}} = 0.3$

 $(c_6 > 0)$ -region more challenging as cross section reduced \rightarrow larger uncertainty

Backup: Full D=6 Theory

- Again assume SM ($c_i=0$) and calculate distance of predicted $N(c_6,..,c_b)$ from $N(c_6=0,..,c_b=0)$ in units of $\delta N(c_6,..,c_b)$
- Show results in 2D grids (c_6, c_i) , $i=H,g,\gamma,t,b$
- Marginalize over other directions with a Gaussian weight,
- given by projected errors on the coefficients from single h $(\sim 10\% @ (600-3000) \text{ fb}^{-1})$

in the future use real constraints (like p-values from HiggsBounds/Signals)

• Draw iso-contours corresponding to probability-drop of 1σ

Backup:

• Again compensation of effects from different operators possible \rightarrow range for c_6 depends significantly on other coefficients

Backup: $c_v - c_6$

• As expected: negligible dependence on c_{γ}

Higgs Hunting 2015 - 31.7.2015

Backup: $(c_b = c_{\tau})$ 60

• Reduced BR due $(c_b=c_\tau)<0$ to can be compensated by enhanced production cross section due to negative c_6 and vice versa

Backup: CH-C6

Higgs Hunting 2015 - 31.7.2015

Backup: CH-C6

 Marginalize over other directions with current p-values for coefficients from single-h measurements (using HiggsBounds/Signals)

Backup: CH-C6

- Precise knowledge of other Wilson coefficients necessary for reasonable bounds on c_6

Backup: Full Marginalization $\rightarrow c_6$

Backup: hh @LHC

• Other production channels $qq' \rightarrow hhqq', Vhh, t\bar{t}hh$ ~10-30 times smaller (neglect in the following)

See [e.g.] Baglio, Djouadi, Grober, Muhlleitner, Quevillon, Spira, 1212.5581, and refs. therein

Backup: hh @ LHC

• Most important mechanism: $gg \rightarrow hh$

Eboli, Marques, Novaes, Natale, PLB 197(1987)269 Glover, van der Bij, NPB 309(1988)282 Dawson, Dittmaier, Spira, PRD 58(1998)115012 Grigo, Hoff, Melnikov, Steinhauser, 1305.7340 de Florian, Mazzitelli, 1305.5206, 1309.6594 see also Maltoni, Vryonidou, Zaro, 1408.6542

 $\sigma(gg \to hh)_{\rm LO} \sim 17 \,{\rm fb}$ $\sigma(gg \to hh)_{\rm NLO} \sim 33 \,{\rm fb}$ $\sigma(gg \to hh)_{\rm NNLO} \sim 40 \,{\rm fb}$

Theoretical error (NNLO): $f_{th} \sim 10\%$ (scale) + 10\% (pdf+ α_s) + 10% (m_t^{-1})

LHC@14TeV m_h~125 GeV

Backup: hh @ LHC

• Most important mechanism: $gg \rightarrow hh$

Backup: Hbounds/Signals Ranges

$\operatorname{coefficient}$	μ_f	σ_{f}
c_H	-0.035	0.225
c_t	-0.04	0.17
Сь	0.0	0.18
c_{g}	-0.01	0.06
c_{γ}	-0.25	0.62

assuming gaussian distributions

Backup: Parameter-Space Scan

- Show results in 2D grids (c_6, c_i) , $i=H,g,\gamma,t,b$
- Marginalize over other directions, varying the coefficients in the 95% CL allowed regions, obtained from HiggsBounds/Signals (with a Gaussian weight)

$$p(c_i, c_6) = \frac{\bar{p}(c_i, c_6)}{\max(\bar{p}(c_i, c_6))}, \ \bar{p}(c_i, c_6) = \frac{\sum_{\{c_f\}} p(c_6, c_i, \{c_f\}) \times p_{\text{Gauss.}}(\{c_f\})}{\sum_{\{c_f\}} p_{\text{Gauss.}}(\{c_f\})}$$

$$p_{\text{Gauss.}}(\{c_f\}) = \prod_f \frac{1}{\sigma_f \sqrt{2\pi}} \exp\left\{-\frac{(c_f - \mu_f)^2}{2\sigma_f^2}\right\}$$

$$Projections: \qquad \underbrace{c_f \qquad \Delta c_f}_{c_f}$$

 Draw iso-contours corresponding to probability-drop of 1σ

ons:	c_f	Δc_f
fects)	c_g	$0.05 imes rac{1}{3}$
	c_H	0.05×2
	c_t, c_b, c_τ	0.05
	c_{γ}	$0.05\times\tfrac{47}{18}$

Backups: Couplings, Benchmarks, Test Statistics

$$\mathcal{L}_{h} = \partial_{\mu} h \partial^{\mu} h - \frac{1}{2} m_{h}^{2} h^{2} - \kappa_{\lambda} \lambda_{SM} v h^{3} - \frac{m_{t}}{v} (v + \kappa_{t} h + \frac{1}{v} c_{2} h h) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{s}}{\pi v} (c_{g} h - \frac{c_{2g}}{2v} h h) G^{\mu\nu} G_{\mu\nu},$$

	~~~~		2	g	29
1	1.0	1.0	0.0	0.0	0.0
2	7.5	2.5	-0.5	0.0	0.0
3	15.0	1.5	-3.0	-0.0816	0.3010
4	5.0	2.25	3.0	0.0	0.0
5	10.0	1.5	-1.0	-0.0956	0.1240
6	1.0	0.5	4.0	-1.0	-0.3780
7	2.4	1.25	2.0	-0.2560	-0.1480
8	7.5	2.0	0.5	0.0	0.0
9	10.0	2.25	2.0	-0.2130	-0.0893
10	15.0	0.5	1.0	-0.0743	-0.0668
11	-15.0	2.0	6.0	-0.1680	-0.5180
12	2.4	2.25	2.0	-0.0616	-0.1200
13	-15.0	1.25	6.0	-0.0467	-0.5150

$$p\left(n_{i,1}, n_{i,2} \mid \mu_i = \frac{n_{i,1} + n_{i,2}}{2}\right) = e^{-2\mu_i} \frac{\mu_i^{-n_{i,1} - n_{i,2}}}{n_{i,1}! n_{i,2}!}$$

$$TS = log(L)_{12} = log \sum_{i=1}^{N_{bin}^{tot}} \left[-2\mu_i - (n_{i,1} + n_{i,2})log\mu_i - log(n_{i,1}!) - log(n_{i,2}!)\right]$$