HIGGS HUNTING 2015 SEARCH FOR THE EXOTIC DECAY OF THE HIGGS BOSON IN THE LOW ET MONOPHOTON FINAL STATE @ CMS

RAFAEL TEIXEIRA DE LIMA ON BEHALF OF THE CMS COLLABORATION

July 31, 2015

Northeastern University

INTRODUCTION

With Low E_T monophoton (γ +MET), we can:

- Extend the reach of the usual monophoton searches for Dark Matter and other new phenomena > searches at colliders concentrated at high energy regime
- Look for SM Higgs decays to Z(vv) > heavy particles in the loop can enhance coupling (not sensitive to SM cross section)
- Look for BSM processes that induce exotic Higgs decays

SUSY HIGGS DECAY TO LOW E_{T} Monophoton

Supersymmetry provides a possible solution for the Electroweak instability and the hierarchy problems

Models with low scale SUSY breaking ($\sqrt{f} \sim \text{TeV}$), in the presence of gravity, provide a gravitino with M ~ 0, and allow the decay $h \to \tilde{\chi}_1^0 \tilde{G}$

BACKGROUNDS

Irreducible

SM Z(→νν)γ (estimated with simulation)

Partially Reducible

SM W(→νl)γ (estimated with simulation)

Mis-Identified Photons

- Jets faking photons:
 - QCD
 - (W/Z)+Jets
- Electrons faking photons:
 - W→ve
- Data driven estimation

Fake MET

γ+Jets (simulation + data driven normalization)

Non-Collision

- Beam halo
- Anomalous calorimeter signals
- Data driven estimation

ANALYSIS STRATEGY

Online selection

- Low E_T isolated photon + MET trigger
 - Possible due to CMS Data Parking program $\int \mathcal{L} = 7.3 \text{ fb}^{-1}$

Offline selection

- Require one good photon (ID +Isolation: 85% efficiency) with tight electron veto
 - $E_T > 45$ GeV, $E_T < 60$ GeV and within ECAL barrel
 - Extra shower shape cuts to mitigate anomalous signals
- Require PF MET > 40 GeV and M_T > 100 GeV
- Veto on leptons in the event
- Extra cuts to mitigate fake MET

FAKE MET MITIGATION

Largest portion of the background is due to MET arising from mismeasured jets >> different ways to mitigate this contribution

Missing H_T Minimization

Cut on the probability of missing H_T being created by effects of the energy resolution of jets (based on kinematic fit)

Jul 31, 2015

Higgs Hunting 2015

DATA DRIVEN ESTIMATIONS: FAKE PHOTONS

Jets Faking Photons

- High energy π⁰ (decaying to yy) can fragment from jets and be reconstructed as a single isolated y on ECAL > jets faking photons
- We estimate the contribution of jets faking photons in our signal, as a function of photon E_T, by comparing templates of jets that pass γ requirements and overall jets

Electrons Faking Photons

- Electrons can fail to leave enough hits on the pixel detector to create a pixel seed, thus failing the pixel seed veto > electrons faking photons
- We can estimate that contribution by looking at how often real electrons (from Z→ee) fail the veto
- (1 $-\epsilon_{\text{pixel seed veto}}$) = 2.31 ± 0.03%.

CONTROL REGIONS

We validate our background modeling with two control regions

- W(lv)γ: event selection with reverted lepton veto > enriched with W(lv)γ events, free of signal events
- γ+Jets: no fake MET mitigation cuts applied > dominated by γ+Jets even⁺

SUSY LIMITS

Limits on the exotic process $gg \to h \to \tilde{\chi}_1^0 \tilde{G}$ assuming Standard Model cross section for Higgs production

Limits on exotic branching ratio

We can also look at the Higgs being produced in association with a Z boson that decays into two leptons

SUMMARY

- We have performed a search for an exotic decay of the Higgs boson on the low E_T monophoton final state
- As a model independent search, this work extends the standard search for new physics in the monophoton final state to a new regime at the LHC
 - Very challenging regime due to triggering and large background
- Within our benchmark model, we have set limits on a SUSY decay of the Higgs boson into a neutralino and a gravitino on the gluon fusion and ZH production channels
- More information:
 - <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig14024TWiki</u>
 - <u>http://cms-results.web.cern.ch/cms-results/public-results/publications/</u> <u>HIG-14-025/index.html</u>

FULL EVENT SELECTION

Trigger

- Low E_T Photon+MET trigger on CMS Data Parking program
- Photon on the ECAL barrel ($|\eta| < 1.4$), $E_T > 30$ GeV, with calo based ID + isolation and MET > 25 GeV
- 7.3fb⁻¹ of integrated luminosity

Photon Selection

- At least one photon in the ECAL barrel passing:
 - $E_T > 45$ GeV and $E_T < 60$ GeV
 - ID+Isolation with 85% efficiency
 - Electron veto (no pixel seed in the photon cone)
 - Shower shape cuts (anomalous signals mitigation)

ns [Model-inde	pendent	SUSY benchmark model		
10	Selection requirements	$Z\gamma ightarrow u \overline{ u} \gamma$	γ +jet	$Z\gamma ightarrow u \overline{ u} \gamma$	γ +jet	$m_{\tilde{\chi}^0_1} = 120 \mathrm{GeV}$
	Number of jets < 2	0.909	0.769	-	-	-
	$\Delta \phi(\gamma, \text{jet}) < 2.5 \text{ radians}$	0.834	0.262	-	-	-
	Transverse mass > 100 GeV	-	-	0.867	0.292	0.829
	$H_{\rm T} < 100 { m GeV}$	-	-	0.785	0.188	0.804
	$\widetilde{E}_T^{\text{miss}} > 45 \text{ GeV}$	-	-	0.761	0.071	0.743
	$Prob(\chi^2) < 10^{-3}$	-	-	0.626	0.033	0.467
	$E_{\rm T}^{\rm miss}$ significance > 20	-	-	0.440	0.001	0.195
	$\alpha > 1.2$	-	-	0.390	0.001	0.165
	$E_{\mathrm{T}}^{\gamma} < 60 \mathrm{GeV}$	-	-	0.074	0.0002	0.106

Analysis dependent selection efficiencies after good photon selection ($E_T(y) > 45$ GeV, $|\eta(y)| < 1.44$, ID+ISO) and MET > 40 GeV

Lepton Veto

 Veto electrons and muons that pass loose ID, PT > 10 GeV and outside of the photon cone (ΔR > 0.3)

MET Requirement

- Particle flow MET > 40
 GeV
- M_T > 100 GeV

FAKE PHOTONS (DATA DRIVEN)

Jets Faking Photons

- In a data control sample (MET < 40 GeV), check the ratio between $\sigma_{i_{\eta}i_{\eta}}$ templates of :
 - Objects passing photon ID (contribution of real photons subtracted) > jets faking photons in our signal
 - Objects that pass a loose photon ID+Isolation and failing at least one of the isolation requirements > jets control sample
- In our signal sample, we weigh the jets control sample by the measured ratio and use it as our jets faking photons estimation.
- Systematic uncertainty: 35%

Electrons Faking Photons

- In a data control sample requiring one electron, we use a Tag-and-Probe method to check the rate in which the probe electron is reconstructed as a photon due to the failing of the pixel seed veto on Z→ee events
- After requiring the tag electron, we construct samples with two different probes: (1) a reconstructed photon that passes the electron veto (electron failing to leave a pixel seed); (2) a reconstructed photon that failed the electron veto.
- The ratio between the yields of the invariant mass of tag and probes under the Z peak provides a factor to be used as normalization of a control sample identical to the signal sample, but with the electron veto reversed on the photon requirements. This normalization factor is related to the pixel seed veto fake rate (1 -ε_{pixel seed veto}).
- (1 - $\epsilon_{\text{pixel seed veto}}$) = 2.31 ± 0.03%. Systematic uncertainty on electron control sample of 6%.

BACKGROUND ESTIMATION SIMULATION BASED

γ+Jets

- Generated with MadGraph
- Data driven approach to the cross section scale factor in two event classes: 0-jet and ≥ 1-jet
- Obtained on a control sample with a reversed MET cut (< 40 GeV) and using a pre-scaled single photon trigger identical to the signal trigger but without MET requirement
- Correction factors: 0-jet 1.7, ≥ 1 -jet 1.1
- Systematic uncertainty: 16% on the number of events

SM W(→vl)γ/Z(→vv)γ

Simulated at LO with MadGraph > NLO cross-sections from MCFM

Systematics

Systematic uncertainties for SUSY benchmark (model independent in parenthesis) in percentage for the ggH analysis

Source	Signal	$\text{Jet} \rightarrow \gamma$	Electron $\rightarrow \gamma$	γ + jet	$Z \nu \nu \gamma$	$W\gamma$
PDF	10 (0)	-	-	-	4 (4)	4 (4)
Integrated luminosity	2.6 (2.6)	-	-	2.6 (2.6)	2.6 (2.6)	2.6 (2.6)
Photon efficiency	3 (3)	-	-	3 (3)	3 (3)	3 (3)
Photon energy scale ± 1 %	4 (0.5)	-	-	4 (0.5)	4 (0.5)	4 (0.5)
$E_{\rm T}^{\rm miss}$ energy scale	4 (2)	-	-	4 (2)	4 (2)	4 (2)
Jet energy scale	3 (2)	-	-	5 (5)	3 (2)	3 (2)
Pileup	1 (1)	-	-	1 (1)	1 (1)	1 (1)
$Z\nu\nu\gamma$ normalization	-	-	-	-	3 (3)	-
$\gamma+$ jet normalization	-	-	-	16 (16)	-	-
$W\gamma$ normalization	-	-	-	-	-	3 (3)
$Jet{\to\gamma}$	-	35 (35)	-	-	_	-
Electron $\rightarrow \gamma$	-	-	6 (6)	-	_	-

EVENT YIELDS

Process	Estimate			
γ + jets	179 ± 28			
${ m jet} ightarrow\gamma$	269 ± 94			
$\mathrm{e} ightarrow \gamma$	355 ± 28			
$W(ightarrow \ell u) + \gamma$	154 ± 15			
$Z(\rightarrow \nu \bar{\nu}) + \gamma$	182 ± 13			
Other	91 ± 10			
Total background	1232 ± 188			
Data	1296			
$M_{\tilde{\chi}_1^0} = 65 \text{ GeV}$	653.0 ± 77			
$M_{\tilde{\chi}_1^0} = 95 \text{ GeV}$	1158.1 ± 137			
$M_{\widetilde{\chi}_1^0} = 120 \text{ GeV}$	2935.0 ± 349			

Process	of Events
γ + jets	$(313 \pm 50) \times 10^3$
$ ext{jet} o \gamma$	$(906 \pm 317) \times 10^{2}$
$e \rightarrow \gamma$	$(1035 \pm 62) \times 10^{1}$
$W(\rightarrow \ell \nu) + \gamma$	2239 ± 111
$Z(\rightarrow \nu \bar{\nu}) + \gamma$	2050 ± 102
Other	1809 ± 91
Total background	$(420 \pm 82) \times 10^3$
Data	$442 imes 10^3$

