Run: 209109 Event: 76170653 2012-08-24 09:31:00 CEST

ATLAS diboson results

Eleni Mountricha [Brookhaven National Laboratory]

on behalf of the **ATLAS collaboration**

Higgs Hunting 2015 30 July - 1 August, 2015

Higgs to dibosons @ LHC • Cross sections calculated @NNLO with NNLL QCD & NLO EW for

- Higgs di-boson decays dominated by WW [BR (H -> WW) ~ 22%]
- Higgs width far smaller [~4 MeV] than experimental resolution

with NNLL QCD & NLO EW for main production mode [gluon fusion] high rate with lepton final states but not fully reconstructed

📙 Phys. Rev. D90, 112015 (2014)

$I \rightarrow \gamma \gamma$ selection

 Calorimeter pointing information

 $m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\,\alpha)}$

 Categories according: mass resolution,
 S/B and production modes sensitivity

Improvements in: event selection, event categorization but also in energy calibration brought 10% improvement in the expected signal strength uncertainty

30 July 2015

 $m_{H} = 125.98 \pm 0.42 \text{ (stat)} \pm 0.28 \text{ (syst)} \text{ GeV}$

Dominant systematic uncertainties: photon energy scale

30 July 2015

Eleni Mountricha

Dominant systematic uncertainties:

QCD scale, PDF and BR] and photon

theoretical [categories migration,

energy resolution

Phys. Rev. D 91, 012006 (2015) $H \longrightarrow ZZ^* \longrightarrow 41 \text{ selection}$

Categories
 according:
 lepton
 flavor
 and to
 production
 modes
 sensitivity

Improvements in event selection and categorization [use of multivariate discriminants and 2-dimensional fit] and in the electron ID and energy resolution brought a 15% improvement on the expected signal strength uncertainty and 8% on the expected statistical uncertainty of the mass

30 July 2015

Phys. Rev. D 92, 012006 (2015) $H \rightarrow WW^* \rightarrow VV selection$

Categories according: background composition [Njets $(0, 1, \ge 2)$, lepton flavor, m_{ll} and $p_{T, l2}$], production mode sensitivity

Improvements in event selection and categorization [signal acceptance, background estimation/modeling] brought a 50% gain on the expected significance and 30% improvement in the expected signal strength uncertainty 30 July 2015 Eleni Mountricha 7

 $m_{H} = 125.36 \pm 0.37 \text{ (stat)} \pm 0.18 \text{ (syst)} \text{ GeV}$

 Dominant systematic uncertainties: photon energy scale [material, calibration, nonlinearity and shower shapes]
 30 July 2015

 Lepton and photon energy scales under control

• $H \rightarrow WW^*$: $\sigma_{fid,0j}^{ggf} = 27.6 + 5.4 + 5.4 + 5.3}(stat.) + 4.1 + 3.9}(syst.) fb, 19.9 \pm 3.3 fb expected$ $<math>\sigma_{fid,1j}^{ggf} = 8.3 + 3.1 + 3.1 + 3.1 + 3.1}(syst.) fb, 7.3 \pm 1.8 fb expected$ 30 July 2015 Eleni Mountricha Phys. Rev. D 92, 012006 (2015) 10

• Very good agreement in the shapes

30 July 2015

 Strong limits arising from the inclusion of rate and jet kinematic information wrt limits set from the spin/CP analysis - talk by R.Polifka/L.Pedersen

30 July 2015

Eur. Phys. J. C (2015) 75:335 Higgs width measurements

- Direct measurement limited by experimental resolution [1-2 GeV] $\Gamma_{_{\rm H}} (H \rightarrow \gamma \gamma) < 5.0 \text{ GeV} @ 95\% \text{ CL},$ 4.2 GeV expected $\Gamma_{_{_{\rm H}}} (H \rightarrow ZZ^* \rightarrow 4l) < 2.6 \text{ GeV} @ 95\% \text{ CL},$ 3.5 GeV expected
- Indirect measurement from the off-shell production

- Assumption: off-shell couplings at least as large as on-shell [sensitive to contributions from new physics] → limit on Higgs width
- Interference of off-shell signal with gluon-initiated ZZ background

30 July 2015

Probe possible presence of BSM terms in the HVV tensor structure of the spin-0 resonance

$$\begin{aligned} \mathcal{L}_{0}^{V} &= \{c_{a}\kappa_{SM}[\frac{1}{2}g_{HZZ}Z_{\mu}Z^{\mu}+g_{HWW}W_{\mu}^{+}W^{-}\mu] & \text{BSM CP-odd} \\ \text{SM coupling} & -\frac{1}{4}\frac{1}{\Lambda}[c_{\alpha}\kappa_{HZZ}Z_{\mu\nu}Z^{\mu\nu}+s_{\alpha}\kappa_{AZZ}Z_{\mu\nu}\tilde{Z}^{\mu\nu}] \\ & \frac{1}{4}\frac{1}{\Lambda}[c_{\alpha}\kappa_{HZZ}Z_{\mu\nu}Z^{\mu\nu}+s_{\alpha}\kappa_{AZZ}Z_{\mu\nu}\tilde{Z}^{\mu\nu}] \\ & \frac{1}{2}\frac{1}{\Lambda}[c_{\alpha}\kappa_{HWW}W_{\mu\nu}^{+}W^{-\mu\nu}+s_{\alpha}\kappa_{AWW}W_{\mu\nu}^{+}\tilde{Z}^{-\mu\nu}] \} \end{aligned}$$

30 July 2015

30 July 2015

Conclusions

• Higgs boson properties precision measurements era! $[m_{_{H}}, \sigma_{_{pp \rightarrow H}}, J^{P}, couplings]$

• Di-boson channels leading the precision!

More to come: Run II has just started!!

ATLAS results to follow: K. Nakamura - di-fermions M. R. Polifka - combinations J. L D. Di Valentino - HL-LHC L.E. Pedersen - spin/CP combination J.P Kinghorn-Taenzer - VH(WW*) P.H. Sales De Bruin - A ->Zh->Iltautau

O. Nackenhorst - ttH (bb)

30 July 2015

Eleni Mountricha

M. Beckingham - BSM

J. Leveque - RunII prospect

Run: 209109 Event: 76170653 2012-08-24 09:31:00 CEST

Backup

30 July 2015

LHC and ATLAS

Excellent ATLAS performance Data-taking efficiency: 93% Good quality data fraction used for analysis: 95.8% Challenge: harsh pile-up conditions [trigger, computing, reconstruction of physics objects]

 $Z \rightarrow \mu \mu$ event with 25 reconstructed vertices

30 July 2015

Hyy categories

mass measurement

Category	$n_{\rm sig}$	FWHM [GeV]	$\sigma_{\rm eff}$ [GeV]	b in $\pm \sigma_{eff90}$	s/b [%]	s/\sqrt{b}
Inclusive	402.	3.69	1.67	10670	3.39	3.50
Unconv. central low p_{Tt}	59.3	3.13	1.35	801	6.66	1.88
Unconv. central high p_{Tt}	7.1	2.81	1.21	26.0	24.6	1.26
Unconv. rest low p_{Tt}	96.2	3.49	1.53	2624	3.30	1.69
Unconv. rest high p_{Tt}	10.4	3.11	1.36	93.9	9.95	0.96
Unconv. transition	26.0	4.24	1.86	910	2.57	0.78
Conv. central low p_{Tt}	37.2	3.47	1.52	589	5.69	1.38
Conv. central high p_{Tt}	4.5	3.07	1.35	20.9	19.4	0.88
Conv. rest low p_{Tt}	107.2	4.23	1.88	3834	2.52	1.56
Conv. rest high p_{Tt}	11.9	3.71	1.64	144.2	7.44	0.89
Conv. transition	42.1	5.31	2.41	1977	1.92	0.85

30 July 2015

signal strength

Δω11

To further quantify the structure of the azimuthal angle between the two jets, an asymmetry is defined as

$$A_{\Delta\phi} = \frac{\sigma(|\Delta\phi| < \frac{\pi}{3}) - \sigma(\frac{\pi}{3} < |\Delta\phi| < \frac{2\pi}{3}) + \sigma(|\Delta\phi| > \frac{2\pi}{3})}{\sigma(|\Delta\phi| < \frac{\pi}{3}) + \sigma(\frac{\pi}{3} < |\Delta\phi| < \frac{2\pi}{3}) + \sigma(|\Delta\phi| > \frac{2\pi}{3})}$$

The measured asymmetry in data is $A\Delta \phi = 0.72 + 0.23 - 0.29$ (stat.) +0.01-0.02 (syst.)

2.5

2

3

 $|\Delta \phi|$ [rad]

This can be compared to the Standard Model prediction of ASM $\Delta \phi = 0.43 \pm 0.02$ which is constructed from the Minlo HJJ prediction for gluon fusion and the standard VBF, V H and ttH⁻ predictions

do_{fid} / d∣∆¢_{ii} [fb/rad]

data / prediction

10ŀ

8

6

ATLAS 12 – $H \rightarrow \gamma \gamma$, $\sqrt{s} = 8 \text{ TeV}$ $L \, dt = 20.3 \, fb^{-1}$ $N_{\text{iete}} \ge 2, \ p_{\pm}^{\text{jet}} > 30 \text{ GeV}$

data 📖 syst. unc.

 $(K_{aaF} = 1.10)$ $- \cdot XH = VBF + VH + t\bar{t}H$

0.5

 $gg \rightarrow H$ (MiNLO HJJ+PY8) + **X**H

1.5

HZZ categories

HZZ selection/categorization effect

Event: 76170653 2012-08-24 09:31:00 CEST http://atlas.ch

WW regions

(a) Signal region categories

(b) Control regions that are profiled (•) and nonprofiled (°)

	SR cat	egory <i>i</i>	Fit var.	CR	Profiled?	Sample	Notable differences vs. SR
n_j , flavor	$\otimes m_{\ell\ell}$	$\otimes p_{\mathrm{T}}^{\ell 2} \otimes \ell_{\mathrm{T}}$	2	$n_j = 0$ WW		<i>eu</i>	$55 < m_{110} \land \phi_{110} < 2.6 \ n^{\ell_2} > 15$
$n_{j} = 0$ $e\mu$ $ee/\mu\mu$ $n_{j} = 1$ $e\mu$ $ee/\mu\mu$		$ \begin{array}{c} \otimes \left[10, 15, 20, \infty\right] \\ \otimes \left[10, \infty\right] \end{array} \otimes \left[40, \infty\right] \\ \otimes \left[10, 15, 20, \infty\right] \\ \otimes \left[10, \infty\right] \end{array} \otimes \left[40, \infty\right] \\ \end{array} $	$[e, \mu] = egin{array}{c} m_{ m T} & m_{ m $	$\begin{array}{c} WW\\ \text{Top}\\ Wj\\ jj\\ VV\\ \text{DY}, ee_j\\ \text{DY}, \tau\tau \end{array}$	• • • /μμ •	$e\mu \\ e\mu \\ Same \\ Same \\ e\mu \\ ee/\mu\mu \\ e\mu \end{pmatrix}$	$53 < m_{\ell\ell} < 110, \ \Delta \phi_{\ell\ell} < 2.0, \ p_{\rm T} > 13$ $n_j = 0$ after presel., $\Delta \phi_{\ell\ell} < 2.8$ One anti-identified ℓ Two anti-identified ℓ Same-charge ℓ (only used in $e\mu$) $f_{\rm recoil} > 0.1$ (only used in $ee/\mu\mu$) $m_{\ell\ell} < 80, \ \Delta \phi_{\ell\ell} > 2.8$
$n_j \ge 2 \operatorname{ggF}_{e\mu}$	$\otimes [10, 55]$	$\otimes [10,\infty]$	$m_{ m T}$	$n_j = 1$ WW Top	•	$e\mu$	$m_{\ell\ell} > 80, \ m_{\tau\tau} - m_Z > 25, \ p_T^{\ell^2} > 15$
$n_j \ge 2 \text{ VB}$ $e\mu$ $ee/\mu\mu$		$\otimes [10,\infty]$ $\otimes [10,\infty]$	$O_{ m BDT}$ $O_{ m BDT}$	Wj jj VV DY, ee_j	• • • •	$e\mu$ Same Same $e\mu$ $ee/\mu\mu$	$n_b = 1$ One anti-identified ℓ Two anti-identified ℓ Same-charge ℓ (only used in $e\mu$) $f_{\text{recoil}} > 0.1$ (only used in $ee/\mu\mu$)
	$n_j = 0$	selection $n_j = 1$ $n_j \ge 2$		$ \frac{D1, 77}{n_j \ge 2 \text{ ggl}} $ $ \frac{Top}{Wj} $ $ \begin{array}{c} Wj \\ jj \\ DY, \tau\tau \end{array} $	• • •	$e\mu$ Same Same $e\mu$	$m_{\ell\ell} < 80, \ m_{\tau\tau} > m_Z - 25$ $m_{\ell\ell} > 80$ One anti-identified ℓ Two anti-identified ℓ $m_{\ell\ell} < 70, \ \Delta \phi_{\ell\ell} > 2.8$
	/ \ <u>eμ</u> ce/μμ L	$e\mu \ ee/\mu\mu$ $ggF enriched$ $e\mu \ (8 \text{ TeV}) \ e\mu$ $F-enriched$ $VBF-e$	3F- ched $ee/\mu\mu$ cnriched	$n_{j} \geq 2 \text{ VH}$ Top Wj jj DY, ee_{j} $DY, \tau\tau$	3F • • • • • • • • • • • • • • • • • • •	Both Same Same $ee/\mu\mu$ Both	$\begin{array}{l} n_b = 1 \\ \text{One anti-identified } \ell \\ \text{Two anti-identified } \ell \\ E_{\text{T}}^{\text{miss}} < 45 \ (\text{only used in } ee/\mu\mu) \\ m_{\ell\ell} < 80, \ \ m_{\tau\tau} - m_Z \ < 25 \end{array}$

WW

Objective		ggF-enriched		VBF-enriched
	$n_{j} = 0$	$n_j = 1$	$n_j \ge 2 \text{ ggF}$	$n_j \ge 2 \text{ VBF}$
Preselection All n_j	$p_{\rm T}^{\ell 1} > 22$ for the leading $p_{\rm T}^{\ell 2} > 10$ for the sublead Opposite-charge leptons $m_{\ell\ell} > 10$ for the $e\mu$ sam $m_{\ell\ell} > 12$ for the $e\mu$ sam $m_{\ell\ell} > 12$ for the $ee/\mu\mu$ s $ m_{\ell\ell} - m_Z > 15$ for the $p_{\rm T}^{\rm miss} > 20$ for $e\mu$ $E_{\rm T,rel}^{\rm miss} > 40$ for $ee/\mu\mu$	g lepton ℓ_1 ing lepton ℓ_2 ple sample $e ee/\mu\mu$ sample $p_{\rm T}^{\rm miss} > 20$ for $e\mu$ $E_{\rm T,rel}^{\rm miss} > 40$ for $ee/\mu\mu$	$p_{\rm T}^{\rm miss} > 20$ for $e\mu$	No MET requirement for $e\mu$
Reject backgrounds DY Misid. Top	$\begin{cases} p_{\rm T,rel}^{\rm miss(trk)} > 40 \text{ for } ee/\mu\mu \\ f_{\rm recoil} < 0.1 \text{ for } ee/\mu\mu \\ p_{\rm T}^{\ell\ell} > 30 \\ \Delta \phi_{\ell\ell,\rm MET} > \pi/2 \\ \hline n_j = 0 \\ \hline - \\ \end{cases}$	$p_{\mathrm{T,rel}}^{\mathrm{miss(trk)}} > 35 \text{ for } ee/\mu\mu$ $f_{\mathrm{recoil}} < 0.1 \text{ for } ee/\mu\mu$ $m_{\tau\tau} < m_Z - 25$ - $m_{\mathrm{T}}^{\ell} > 50 \text{ for } e\mu$ $n_b = 0$ -	$m_{\tau\tau} < m_Z - 25$ $m_b = 0$	$p_{\rm T}^{\rm miss} > 40 \text{ for } ee/\mu\mu$ $E_{\rm T}^{\rm miss} > 45 \text{ for } ee/\mu\mu$ $m_{\tau\tau} < m_Z - 25$ $-$ $n_b = 0$ $p_{\rm T}^{\rm sum} \text{ inputs to BDT}$ $\Sigma m_{\ell j} \text{ inputs to BDT}$
VBF topology	-	-	See Sec. IV D for rejection of VBF & VH $(W, Z \rightarrow jj)$, where $H \rightarrow WW^*$	$\begin{array}{l} m_{jj} \text{inputs to BDT} \\ \Delta y_{jj} \text{inputs to BDT} \\ \Sigma \ C_{\ell} \text{inputs to BDT} \\ C_{\ell 1} < 1 \ \text{and} \ C_{\ell 2} < 1 \\ C_{j3} > 1 \ \text{for} \ j_3 \ \text{with} \ p_{\mathrm{T}}^{j3} > 20 \\ O_{\mathrm{BDT}} \geq -0.48 \end{array}$
$H \to WW^* \to \ell \nu \ell \nu$ decay topology	$m_{\ell\ell} < 55$ $\Delta \phi_{\ell\ell} < 1.8$ No $m_{\rm T}$ requirement	$m_{\ell\ell} < 55$ $\Delta \phi_{\ell\ell} < 1.8$ No $m_{\rm T}$ requirement	$\overline{m_{\ell\ell}} < 55$ $\Delta \phi_{\ell\ell} < 1.8$ No $m_{\rm T}$ requirement	$ \begin{array}{cc} m_{\ell\ell} & { m inputs to \ BDT} \ \Delta \phi_{\ell\ell} & { m inputs to \ BDT} \ m_{ m T} & { m inputs to \ BDT} \end{array} $

30 July 2015

Eleni Mountricha

25

arXiv:1506.06641

VH production

2.5 significance

(0.90 expected)

		Observed signal strength μ							
Category	Exp. Z_0	Obs. Z_0	Obs. Z_0	μ	$\begin{array}{ccc} \mu & \text{Tot. err.} & \text{Syst. err.} \\ + & - & + & - \end{array}$. err. _	μ	
4ℓ	0.41	1.9		4.9	4.6	3.1	1.1	0.40	
2SFOS	0.19	0		-5.9	6.8	4.1	0.33	0.72	
1SFOS	0.36	2.5		9.6	8.1	5.4	2.1	0.64	
3ℓ	0.79	0.66		0.72	1.3	1.1	0.40	0.29	
1SFOS and 3SF	0.41	0		-2.9	2.7	2.1	1.2	0.92	
0SFOS	0.68	1.2		1.7	1.9	1.4	0.51	0.29	
2ℓ	0.59	2.1		3.7	1.9	1.5	1.1	1.1	
DFOS	0.54	1.2		2.2	2.0	1.9	1.0	1.1	
SS2jet	0.17	1.4		7.6	6.0	5.4	3.2	3.2	
SS1jet	0.27	2.3		8.4	4.3	3.8	2.3	2.0	-
			0 1 2	3				-10 -8 -6 -	4 -2 0 2 4 6 8 10 12 14 16

	μ = 3	.0 +1.3	- 1.1 (St	at) ^{+1.0}	
· · ·		•••••			•

	Signal significance Z_0					Observed signal strength μ													
Category	Exp. Z_0	Obs. Z_0	Obs. Z_0	μ	Tot.er +	rr. _	$^{\mathrm{Syst}}$ +	. err.						μ					
ggF	4.4	4.2		0.98	0.29 0.	.26	0.22	0.18	1	+-									-
VBF	2.6	3.2		1.28	$0.55 \ 0.$.47	0.32	0.25		-									
VH	0.93	2.5	—	3.0	1.6 1.	.3	0.95	0.65		-		1	_						_
WH only	0.77	1.4	—	2.1	1.9 1.	.6	1.2	0.79	-				-						
ZH only	0.30	2.0	—	5.1	4.3 3.	.1	1.9	0.89			-								
ggF+VBF+VH	5.9	6.5		1.16	0.24 0	.21	0.18	0.15		+									-
			0 1 2 3 4 5	6 7					0	1	2	3	4	5	6	7	8	9	 10

30 July 2015

mass uncertainties

12-08-24 09:31:00 CEST h

Systematic	Uncertainty on m_H [MeV]
LAr syst on material before presampler (barrel)	70
LAr syst on material after presampler (barrel)	20
LAr cell non-linearity (layer 2)	60
LAr cell non-linearity (layer 1)	30
LAr layer calibration (barrel)	50
Lateral shower shape (conv)	50
Lateral shower shape (unconv)	40
Presampler energy scale (barrel)	20
ID material model ($ \eta < 1.1$)	50
$H \rightarrow \gamma \gamma$ background model (unconv rest low p_{Tt})	40
$Z \rightarrow ee$ calibration	50
Primary vertex effect on mass scale	20
Muon momentum scale	10
Remaining systematic uncertainties	70
Total	180

30 July 2015

arXiv:1506.05669

Higgs spin/parity

- SM J^P = 0⁺ tested against alternative models [non-SM spin-0 and spin-2 with different choices of QCD couplings] using spin/CP sensitive variables
- Data favor the SM J^P = 0⁺ hypotheses in the individual channels and exclude all alternative hypotheses with their combination [R.Polifka's talk]

arXiv:1506.05669

CP mixing

 Probe possible presence of BSM terms in the HVV tensor structure of the spin-0 resonance

spin/CP individual results ALAS

2012-08-24 09:31:00 CEST http:

			$H \rightarrow c$	v~	
Tested Hypothesis	$p_{\exp,\mu=1}^{\text{alt}}$	$p_{\exp,\mu=\hat{\mu}}^{\mathrm{alt}}$	$p_{\rm obs}^{\rm SM}$	$ p_{ m obs}^{ m alt}$	Obs. CL_s (%)
$2^+(\kappa_q = \kappa_q)$	0.13	$7.5 \cdot 10^{-2}$	0.13	0.34	39
$2^+(\kappa_q = 0; p_{\rm T} < 300 GeV)$	$4.3 \cdot 10^{-4}$	$< 3.1 \cdot 10^{-5}$	0.16	$2.9 \cdot 10^{-4}$	$3.5 \cdot 10^{-2}$
$2^+(\kappa_q = 0; p_{\rm T} < 125 GeV)$	$9.4 \cdot 10^{-2}$	$5.6 \cdot 10^{-2}$	0.23	0.20	26
$2^+(\kappa_q = 2\kappa_q; p_{\rm T} < 300 GeV)$	$9.1 \cdot 10^{-4}$	$< 3.1 \cdot 10^{-5}$	0.16	$8.6 \cdot 10^{-4}$	0.10
$2^+(\kappa_q = 2\kappa_g; \ p_{\rm T} < 125 GeV)$	0.27	0.24	0.20	0.54	68
		$H \rightarrow$	WW^*	$\rightarrow e \nu \mu \nu$	
Tested Hypothesis	$p_{\exp,\mu=1}^{\text{alt}}$	$p_{\exp,\mu=\hat{\mu}}^{\mathrm{alt}}$	$p_{\rm obs}^{\rm SM}$	$p_{\rm obs}^{\rm alt}$	Obs. CL_s (%)
0_h^+	0.31	0.29	0.91	$2.7 \cdot 10^{-2}$	29
0-	$6.4 \cdot 10^{-2}$	$3.2 \cdot 10^{-2}$	0.65	$1.2 \cdot 10^{-2}$	3.5
$2^+(\kappa_q = \kappa_g)$	$6.4 \cdot 10^{-2}$	$3.3 \cdot 10^{-2}$	0.25	0.12	16
$2^+(\kappa_q = 0; p_{\rm T} < 300 GeV)$	$1.5 \cdot 10^{-2}$	$4.0 \cdot 10^{-3}$	0.55	$3.0 \cdot 10^{-3}$	0.6
$2^+(\kappa_q = 0; p_{\rm T} < 125 GeV)$	$5.6 \cdot 10^{-2}$	$2.9 \cdot 10^{-2}$	0.42	$4.4 \cdot 10^{-2}$	7.5
$2^+(\kappa_q = 2\kappa_q; p_{\rm T} < 300 GeV)$	$1.5 \cdot 10^{-2}$	$4.0 \cdot 10^{-3}$	0.52	$3.0 \cdot 10^{-3}$	0.7
$2^+(\kappa_q = 2\kappa_g; \ p_{\rm T} < 125GeV)$	$4.4 \cdot 10^{-2}$	$2.2 \cdot 10^{-2}$	0.69	$7.0 \cdot 10^{-3}$	2.2
		H ·	$\rightarrow ZZ^*$	$\rightarrow 4\ell$	
Tested Hypothesis	$p_{\exp,\mu=1}^{\text{alt}}$	$p_{\exp,\mu=\hat{\mu}}^{\text{alt}}$	$p_{\rm obs}^{\rm SM}$	$p_{\rm obs}^{\rm alt}$	Obs. CL_s (%)
0_h^+	$3.2 \cdot 10^{-2}$	$5.2 \cdot 10^{-3}$	0.80	$3.6 \cdot 10^{-4}$	0.18
0-	$8.0 \cdot 10^{-3}$	$3.6 \cdot 10^{-4}$	0.88	$1.2 \cdot 10^{-5}$	$1.0 \cdot 10^{-2}$
$2^+(\kappa_q = \kappa_q)$	$3.3\cdot10^{-2}$	$5.7 \cdot 10^{-4}$	0.91	$3.6 \cdot 10^{-5}$	$4.0 \cdot 10^{-2}$
$2^+(\kappa_q = 0; p_{\rm T} < 300 GeV)$	$3.9 \cdot 10^{-2}$	$9.0 \cdot 10^{-3}$	0.95	$2.7 \cdot 10^{-5}$	$5.4 \cdot 10^{-2}$
$2^+(\kappa_q = 0; p_{\rm T} < 125 GeV)$	$4.6 \cdot 10^{-2}$	$1.1 \cdot 10^{-2}$	0.93	$3.0 \cdot 10^{-5}$	$4.3 \cdot 10^{-2}$
$2^+(\kappa_q = 2\kappa_q; \ p_{\rm T} < 300 GeV)$	$4.6 \cdot 10^{-2}$	$1.1 \cdot 10^{-2}$	0.66	$3.3 \cdot 10^{-3}$	0.97
$2^+(\kappa_q = 2\kappa_g; \ p_{\rm T} < 125 GeV)$	$5.0\cdot10^{-2}$	$1.3 \cdot 10^{-2}$	0.88	$3.2 \cdot 10^{-4}$	0.27