

CMS Diboson Results

Higgs Hunting 2015 30 July 2015

David Sperka University of Florida

On Behalf of the CMS Collaboration

Higgs at the LHC

- The CMS experiment has entered the precision measurement era for the properties of the 125 GeV Higgs Boson
- Diboson processes continue to play a key role:
 - \rightarrow Large branching fraction in case of WW
 - \rightarrow Excellent mass resolution in case of ZZ \rightarrow 4 ℓ , $\gamma\gamma$

H→WW: Overview

$H \rightarrow \gamma \gamma$: Overview

- Small Branching Fraction Eur. Phys. J. C (2014) 74:3076 \rightarrow 2.28 x 10⁻³ @ m_H=125.0 GeV
- Fully reconstructible decay with excellent mass resolution (1-2%)
- Large continuum background from QCD $\gamma\gamma$ and γ +jet \rightarrow Photon ID BDT used to reject jet fakes
- Many event categories targeting all production modes

More details in talk by Benoit Courbon: "Observation and properties of a Higgs Boson in the Two-Photon Decay Channel with CMS"

CMS Diboson Results, HH 2015

$H \rightarrow ZZ \rightarrow 4\ell$: Overview

PHYS. REV. D 89, 092007 (2014)

- Tiny Branching Fraction to 4ℓ ($\ell=e,\mu$) $\rightarrow 1.25 \times 10^{-4} @ m_{H}=125.0 \text{ GeV}$
- Fully reconstructible decay
 → Excellent mass resolution (~1-3%)
- Very small background from irreducible ZZ and reducible Z+X
- Background further reduced using matrix element likelihood discriminant

• 3D likelihood in 0/1 jet $[p_T(4l)]$ and dijet $[D_{jet}=$ linear discriminant using m(jj) and $|\Delta\eta(jj)|]$ categories

 $\mathscr{L}_{3D}^{\mu,0/1\text{-jet}}(m_{4\ell},\mathscr{D}_{\mathrm{bkg}}^{\mathrm{kin}},p_{\mathrm{T}}^{4\ell})$ $\mathscr{L}_{3D}^{\mu,\text{dijet}}(m_{4\ell},\mathscr{D}_{\text{bkg}}^{\text{kin}},\mathscr{D}_{\text{jet}})$

See talk by Ben Kreis for CMS Combination for couplings, spin/parity

CMS Diboson Results, HH 2015

Mass Measured with ~0.25% uncertainty

See talk by Tongguang Cheng for ATLAS+CMS mass combination

CMS Diboson Results, HH 2015

CMS Diboson Results, HH 2015

CMS Diboson Results, HH 2015 David Sperka, on behalf of the CMS Collaboration

$H \rightarrow \gamma \gamma$: Fiducial Cross Section

- Measured in fiducial phase space closely matching experimental acceptance
- Event categorization method updated:

 → Uses mass resolution estimator fully decorrelated from the mass
 → Improves sensitivity by 10% while maintaining a smooth background shape

Background subtraction and unfolding to particle level done simultaneously by minimizing a function \mathcal{F} which includes usual likelihood and detector response K_i

HIG-14-016

To be submitted to

arxiv and EPJC

 \rightarrow Correlation of nuisance parameters

 $\rightarrow K_i$ determined from simulation

$$\mathcal{F}(\mu) = -2\sum_{j} \log \mathcal{L}\left(K_{j}\mu N^{\text{gen}}|N_{j}^{\text{reco}}\right)$$
$$\mu = \text{Inclusive Fiducial signal strength}$$

j = Number of reconstruction level observables (= 3)

Inclusive
$$\sigma_{\text{fid.}}$$
 at $\sqrt{s} = 8 \text{ TeV}$
 $\sigma_{\text{fid.}} = 32^{+10}_{-10} \text{ fb}$
 $\sigma_{\text{fid.}}^{\text{SM}} = 31^{+4}_{-3} \text{ fb}$

CMS Diboson Results, HH 2015

CMS Diboson Results, HH 2015

CMS Diboson Results, HH 2015

$H \rightarrow 4\ell$: Differential Cross Section

NEW!

- Several differential observables also studied with $H{\rightarrow}4\ell$
 - \rightarrow Similar measurement strategy as $H \rightarrow \gamma \gamma$
 - \rightarrow In agreement with SM predictions
 - → Still small model dependence

CMS Diboson Results, HH 2015

$H \rightarrow 4\ell$: Differential Cross Section

- **HIG-14-028**
- Jet related observables also studied in $H \rightarrow 4l$: \rightarrow N(jets), p_r(jet)
- More jets but softer $p_{\tau}(jet)$ than SM predictions
 - \rightarrow p=0.13 for N(jets) distribution

N(jets)

Conclusions

 Diboson processes extensively used to study properties of the 125 GeV Higgs Boson

- More recent CMS diboson results in other talks:
 - \rightarrow Combined CMS results (couplings, spin/parity): Ben Kreis
 - \rightarrow ATLAS+CMS Combination (mass): Tongguang Cheng
- Looking forward to Higgs physics at 13 TeV!

CMS Diboson Results, HH 2015

Additional Material

CMS Diboson Results, HH 2015

Original Width Analysis Phys. Lett. B 736 (2014) 64

Updated Width Results HIG-14-036

Submitted to arxiv and Phys. Rev. D

CMS Diboson Results, HH 2015 David Sperka, on behalf of the CMS Collaboration

CMS Diboson Results, HH 2015

H $\rightarrow\gamma\gamma$: Photon ID Efficiencies HIG-14-016 To be submitted to

H→4l: Inclusive Cross Sections HIG-14-028

Fiducial cross section $H \rightarrow 4\ell$ at 7 TeV				
Measured	$0.56^{+0.67}_{-0.44} (\text{stat.}) {}^{+0.21}_{-0.06} (\text{sys.}) {}^{+0.02}_{-0.02} (\text{model}) \text{fb}$			
$gg \rightarrow H(HRES) + XH$	$0.93^{+0.10}_{-0.11}$ fb			
Fiducial cross section $H \rightarrow 4\ell$ at 8 TeV				
Measured	$1.11^{+0.41}_{-0.35}$ (stat.) $^{+0.14}_{-0.10}$ (sys.) $^{+0.08}_{-0.02}$ (model) fb			
$gg \rightarrow H(HRES) + XH$	$1.15^{+0.12}_{-0.13}$ fb			
Ratio of fiducial cross sections of $H \rightarrow 4\ell$ at 7 and 8 TeV				
Measured	$0.51^{+0.71}_{-0.40} (\text{stat.}) {}^{+0.13}_{-0.05} (\text{sys.}) {}^{+0.00}_{-0.03} (\text{model})$			
$gg \rightarrow H(HRES) + XH$	$0.805\substack{+0.003\\-0.010}$			

Fiducial cross section $Z \rightarrow 4\ell$ at 8 TeV				
$(50 \text{ GeV} < m_{4\ell} < 105 \text{ GeV})$				
Measured	$4.81^{+0.69}_{-0.63}(\text{stat.})^{+0.18}_{-0.19}(\text{sys.})$ fb			
POWHEG	$4.56^{+0.19}_{-0.19}$ fb			
Ratio of fiducial cross sections of $H \rightarrow 4\ell$ and $Z \rightarrow 4\ell$ at 8 TeV				
$(50 \text{ GeV} < m_{4\ell} < 140 \text{ GeV})$				
Measured	$0.21^{+0.09}_{-0.07}(\text{stat.})^{+0.01}_{-0.01}(\text{sys.})$			
$gg \rightarrow H(HRES) + XH \text{ and } Z \rightarrow 4\ell \text{ (POWHEG)}$	$0.25\substack{+0.04 \\ -0.04}$			

CMS Diboson Results, HH 2015 David Sperka, on behalf of the CMS Collaboration

H→4l: Cross Section Inputs HIG-14-028

Signal process	$\mathcal{A}_{ ext{fid}}$	ϵ	$f_{ m nonfid}$	$(1+f_{\text{nonfid}})\epsilon$		
Individual Higgs boson production modes						
$gg \rightarrow H (POWHEG+JHUGEN)$	0.422 ± 0.001	0.647 ± 0.002	0.053 ± 0.001	0.681 ± 0.002		
VBF (powheg)	0.476 ± 0.003	0.652 ± 0.005	0.040 ± 0.002	0.678 ± 0.005		
WH (pythia)	0.342 ± 0.002	0.627 ± 0.003	0.072 ± 0.002	0.672 ± 0.003		
ZH (pythia)	0.348 ± 0.003	0.634 ± 0.004	0.072 ± 0.003	0.679 ± 0.005		
$t\bar{t}H$ (pythia)	0.250 ± 0.003	0.601 ± 0.008	0.139 ± 0.008	0.685 ± 0.010		
Some characteristic models of Higgs-like boson with exotic decays and properties						
$q\overline{q} \rightarrow H(J^{CP} = 1^{-}) (JHUGEN)$	0.238 ± 0.001	0.609 ± 0.002	0.054 ± 0.001	0.642 ± 0.002		
$q\overline{q} \rightarrow H(J^{CP} = 1^+) (JHUGEN)$	0.283 ± 0.001	0.619 ± 0.002	0.051 ± 0.001	0.651 ± 0.002		
$gg \rightarrow H \rightarrow Z\gamma^* $ (JHUGEN)	0.156 ± 0.001	0.622 ± 0.002	0.073 ± 0.001	0.667 ± 0.002		
$gg \rightarrow H \rightarrow \gamma^* \gamma^* $ (JHUGEN)	0.188 ± 0.001	0.629 ± 0.002	0.066 ± 0.001	0.671 ± 0.002		

$$N_{\text{obs}}^{\text{f},i}(m_{4\ell}) = N_{\text{fid}}^{\text{f},i}(m_{4\ell}) + N_{\text{nonfid}}^{\text{f},i}(m_{4\ell}) + N_{\text{honres}}^{\text{f},i}(m_{4\ell}) + N_{\text{bkg}}^{\text{f},i}(m_{4\ell})$$
$$= \epsilon_{i,j}^{\text{f}} \cdot \left(1 + f_{\text{nonfid}}^{\text{f},i}\right) \cdot \sigma_{\text{fid}}^{\text{f},j} \cdot \mathcal{L} \cdot \mathcal{P}_{\text{res}}(m_{4\ell})$$
$$+ N_{\text{nonres}}^{\text{f},i} \cdot \mathcal{P}_{\text{nonres}}(m_{4\ell}) + N_{\text{bkg}}^{\text{f},i} \cdot \mathcal{P}_{\text{bkg}}(m_{4\ell})$$

CMS Diboson Results, HH 2015

Photon Vertex Efficiency

Eur. Phys. J. C (2014) 74:3076

CMS Diboson Results, HH 2015

Photon ID Validation

Eur. Phys. J. C (2014) 74:3076

CMS Diboson Results, HH 2015

Photon Energy Scale/Resolution

Eur. Phys. J. C (2014) 74:3076

CMS Diboson Results, HH 2015

$H \rightarrow 4\ell$: Kinematics

H→WW: Mass and Couplings JHEP01 (2014) 096

FLORIDA

Phys. Lett. B 726 (2013) 587

 $H \rightarrow \gamma^* \gamma \rightarrow \mu^+ \mu^- \gamma$

tHq, H→γγ

$\sigma/\sigma_{Ct=-1} < 4.1$ (95% CL)

CMS Diboson Results, HH 2015

tHq, H→WW

Events

35

CMS Preliminary

μ[±]μ[±] channel

19.6 fb⁻¹ (8 TeV)

tHq (Ct = -1)

ttw. ttz. ttH

Data

Events

60

CMS Preliminary

 $e^{\pm}\mu^{\pm}$ channel

19.6 fb⁻¹ (8 TeV)

tHq (Ct = -1)

tīW, tīZ, tīH

- Data

