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HI Expectation-Maximization Independent Component Analysis 
!

Extension of the Independent Component Analysis (ICA) from 2D 
CMB maps to 3D 21-cm signal  

!
Bayesian inference of power spectra and maps and separates 

foregrounds from signal based on the diversity of their power spectra !!
!!Measurement equation:
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is constant and independent of k, and thus the matrix
M is commonly called the “mixing matrix” with dimen-
sions of nk ⇥ n

c

. Each column of M only encodes the
frequency-dependence of each foreground component.
As the Fourier modes of the isotropic 21-cm signal

s(✓, ⌫) are expected to be mutually independent, express-
ing its temperature in the Fourier coordinates (u, ⌘) is
particularly useful. Obviously, by taking the 3D Fourier
transform along the frequency axis and two angular di-
rections, one has

s̃(u, ⌘) =

Z
s(✓, ⌫) e�2⇡i (⌫⌘+u·✓) d✓d⌫ , (5)

where ⌘ is the Fourier dual of the frequency variable ⌫.
Note that here we perform the “true” Fourier transform
of the sky temperature along the line-of-sight direction
that is perpendicular to the uv-plane, rather than a “de-
lay transform” that is the Fourier transform in frequency
of the spectrum measured by a single baseline varying
with frequency (i.e., u is also a function of ⌫ in Eq. 5)
and thus leads to the “mode-mixing” phenomena (see
Liu et al. (2014a) for details).
The foreground components can also be expressed in

terms of their 2D Fourier modes. For the j-th compo-
nent, one has

f̃
j

(u) =

Z
f
j

(✓) e�2⇡iu·✓ d✓ (j = 1, · · · , n
c

) (6)

According to the above equations, by performing the
angular Fourier transform on Eq. 4 and expressing 21-
cm signal in terms of its 3D Fourier modes, Eq. 4 can be
rewritten in Fourier space in the uv-plane as

x̃[⌫, u] =

nkX

⌘=1

F�1
k [⌫, ⌘]s̃[⌘, u] +

ncX

j=1

M
⌫j

f̃ [j, u] , (7)

where u is pixel position in the uv-plane and we have
introduced the operator (matrix) F�1

k , with its elements
given by Fourier coe�cients F�1

k [⌫, ⌘] (⌫ = 1, · · · , nk; ⌘ =
1, · · · , nk), to represent the 1-D inverse Fourier transform
converting ⌘-space to ⌫-space.
Using matrix multiplications, we can rewrite the linear

system above as the matrix equation:

X̃T = F�1

k S̃+MF̃ , (8)

where x̃[⌫, u] is the (u, ⌫)-th entry of the matrix X̃, s̃[⌘, u]
is the (⌘, u)-th entry of the matrix S̃, and f̃ [j, u] the
(j, u)-th entry of the matrix F̃. Applying a “vectoriza-
tion” operator (vec[·]) that converts the matrix into a
column vector by stacking the columns into a long col-
umn vector, one can express x̃? in Eq. 3 with X̃ by

x̃? = vec[X̃] = vec[(F�1

k S̃)T ] + vec[(MF̃)T ] (9)

Substituting Eq. 9 into 3, and using the identity
vec[AB] = (BT ⌦ I

m

)vec[A] for any matrices A
m⇥n

and
B

n⇥p

, where ⌦ denotes Kronecker product and I
m

is an
(m⇥m) identity matrix, yields

x̃? = (B⌦ I
n?)x , B =

�
F�1

k ,M
�

(10)

where x = (̃sT , f̃T )T with s̃ = vec[S̃T ], f̃ = vec[F̃T ],
I
n? is the n? ⇥ n? identity matrix, B is a partitioned

matrix with dimensions nk ⇥ (nk + n
c

). Explicitly, s̃ and
f̃ are vectors of length n?nk and n?nc

, respectively, by

stacking s̃[⌘] and f̃ [j] as s̃ =
�
s̃T [1], · · · , s̃T [nk]

�
T

and f̃ =
⇣
f̃T [1], · · · , f̃T [n

c

]
⌘
T

, where s̃[⌘] denotes an n?-element

vector collecting 21-cm signal at all the uv-pixels in ⌘
and f̃ [j] denotes an n

c

-element vector collecting all the
uv-pixels for the j-th foreground component.
By inserting Eq. 10 into Eq. 3, the measurement equa-

tion can be finally expressed as

y = Hx+ n , H = � (B⌦ I
n?) (11)

2.3. ICA assumption

The Independent Component Analysis (ICA) assump-
tion is that the data can be considered as a linear mix-
ture of a set of statistically mutually independent com-
ponents. The cosmological 21-cm signal is expected to
be well approximated by an isotropic Gaussian random
field and uncorrelated with foregrounds. If we also con-
sider that the di↵use foregrounds consist of several sta-
tistically Independent Components (ICs), each of them
also being an isotropic Gaussian random field with zero
mean, as defined in Eq. 10, the covariance matrix of x
then becomes a diagonal matrix, namely

C =
⌦
xx†↵ =

 ⌦
s̃s̃†
↵

0

0
D
f̃ f̃†
E
!

(12)

where unknown diagonal matrices of
⌦
s̃s̃†
↵
and

D
f̃ f̃†
E
are

considered to be estimated from the observed data and
determine the 3D power spectrum of the HI signal and
the angular power spectra of ICs, defined through

hs̃(u, ⌘)s̃⇤(u0, ⌘0)i=PHI(u, ⌘)�(u� u0)�(⌘ � ⌘0) (13)
D
f̃
i

(u0)f̃⇤
j

(u)
E
= �

ij

�(u� u0)Cj

f

(` = 2⇡|u|) (14)

where PHI(u, ⌘) denotes the 3D power spectrum of the
21-cm signal as a function of u and ⌘, and Cj

f

(`) de-
notes the angular power spectrum of the j-th foreground
component as a function of multipole ` and the relation
` = 2⇡|u| has been used in the flat-sky approximation.
Notice that physical sources such as the Galactic syn-
chrotron and free-free emissions have a non-zero cross-
correlation and their spatial distributions clearly appear
to be non-isotropic, though, as we will demonstrate, the
ICA assumption can be regarded as an e↵ective decom-
position of sources and does not appear to a↵ect our
ability to remove foregrounds.
We also assume that the instrument noise is an uncor-

related Gaussian distribution and can be obtained from
a reasonable noise model through

hñ(u, ⌫)ñ⇤(u0, ⌫0)i=P
N

(u, ⌫)�(u� u0)�(⌫ � ⌫0) (15)

Then the covariance matrix has the form of a known
block diagonal matrix, and each block is also diagonal,

N =
⌦
nn†↵ =

nkM

⌫=1

N
⌫

, (16)

where N
⌫

denotes the n? ⇥ n? covariance matrix of the
noise map in the uv-plane at the ⌫-th frequency.



In	  order	  to	  obtain	  the	  parameter	  θn+1	  =	  Mn+1,	  Cn+1	  at	  the	  
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In cosmology, however, the power spectrum is typically
represented in the (k?, kk) comoving coordinates. If the
observed frequency band is small enough (i.e., probing a
small range in redshifts) and in the flat-sky approxima-
tion, there is a linear mapping between these variables:

u =
k?Dc

(z)

2⇡
; ⌘ ⇡ c (1 + z)2

2⇡H0⌫21E(z)
kk, (17)

where E(z) ⌘
p

⌦
m

(1 + z)3 + ⌦⇤, ⌫21 is the rest fre-
quency of the 21-cm line, D

c

is the transverse comoving
distance, z is the redshift of the observation, H0 is the
Hubble parameter, c is the speed of light, and ⌦

m

and
⌦⇤ are the normalized matter and dark energy density,
respectively. The radial wavenumber k? and the angular
wavenumber kk are the components of the wavenumber
k perpendicular and parallel to the line-of-sight direc-
tion, respectively. Therefore inserting Eq. 17 into 13, we
obtain the relation of the power spectrum defined under
the di↵erent coordinates:

PHI(k?, kk) =
c (1 + z)2

H0⌫21E(z)
PHI(u, ⌘). (18)

The goal of our analysis is to identify and separate the
components from visibility data that contains mixtures
of foregrounds and signal. Using a Bayesian framework
proposed by Snoussi et al. (2002) for CMB data, we will
show that, without any assumption on priors, by per-
forming a semi-blind independent component analysis for
which only the noise covariance matrix N is well known,
the components can be successfully separated by jointly
estimating the covariance matrix C and the mixing ma-
trix M, and an accurate estimate for the power spectrum
of the HI signal can be obtained.
LIKELIHOOD.... In realistic observations, likelihood

function is hard to evaluate, so we discuss it in paper?
⌦
yy†↵ = HCH† +N (19)

In practice, minimization of the spectral mismatch is
achieved with the Expectation-Maximization (EM) algo-
rithm.

2.4. The EM algorithm

Here we briefly summarize the Expectation-
Maximization (EM) algorithm for finding the best
fitted parameters from incomplete data. It is an
iterative algorithm to repeatedly solve a tractable
complete-data problem instead of solving a di�cult
incomplete-data problem. The EM algorithm has
been applied to estimate the CMB power spectrum
and reconstruct the CMB map from multi-frequency
microwave maps.
Following Snoussi et al. (2002), in our case, given the

data model in Eq. 11, y = Hx+ n, the mixing matrix
M and the covariance matrix C can be estimated by
maximizing the observed-data posterior p(y|✓), where
✓ = (C,M), and which can be obtained by marginalizing
the joint distribution p(y,x|✓) over the missing data x
as

p(y|✓) =
Z

p(y,x|✓)dx (20)

The key idea is that the EM algorithm does not maxi-
mize p(y|✓) directly; instead, it maximizes the so-called

EM-functional as follows:

Q(✓|✓n)=E [log p(y,x|✓)|y,✓n]

=

Z
log p(y,x|✓)p(x|y,✓n)dx , (21)

which is the expected value of the complete-data log-
likelihood with respect to the missing data x given the
observed data y and the current parameter estimates ✓n.
The evaluation of this expectation is called the Expecta-
tion (E)-step of the algorithm.
In our model, the prior distribution of the complex

Fourier modes x is assumed to be Gaussian with zero
mean,

p(x|C) / exp(�x†C�1x) , (22)

where C represents the covariance matrix of x and it is
expected to be a diagonal matrix as the Fourier modes
are assumed to be uncorrelated.
Within a Bayesian framework, the joint distri-

bution p(y,x|✓) can be expressed by p(y,x|✓) /
p(y|x,✓)p(x|C), yielding

log p(y,x|✓) = log p(y|x,✓) + log p(x|C) (23)

=�(y �Hx)†N�1(y �Hx)� log |C|� x†C�1x+ cst.

Using Bayesian rule, the conditional probability distri-
bution function p(x|y,✓n) for the signal given the data
is also the Gaussian,

p(x|y,✓n) / exp(�(x� x
wf

)†⌃�1(x� x
wf

)) , (24)

where

x
wf

= [H†N�1H+C�1]�1H†N�1y , (25)

⌃ = (H†N�1H+C�1)�1 , (26)

where x
wf

is the so-called Wiener-Filtered (WF)
map and ⌃ is the corresponding covariance. Ex-
plicitly, x

wf

can be equally divided into (nk +
n
c

) subvectors describing the 21-cm and ICs maps,
each of dimension n?, represented by x

wf

=⇣
(x̂s

1)
T , · · · , (x̂s

nk
)T , (x̂f

1 )
T , · · · , (x̂f

nc
)T

⌘
T

, where x̂s

i

de-

notes a subvector of x
wf

, corresponding to the WF map
of the 21-cm signal at frequency i, and similarly, the
subvector x̂f

j

corresponds to the WF map of the j-th
foreground component. The solution for x

wf

is the gen-
eral map-making problem in cosmology. This WF map
can be e�ciently computed by implementing a precon-
ditioned conjugate-gradient method that allows one to
iteratively reach the solution with a tractable computa-
tion time.
Using the above Eqs. 23 and 24, we integrate out x to

derive the expression of Eq. 21 given by

Q(✓|✓n)= cst.� log |N|� log |C|+Tr
h
C�1 bR†

xx

i

�Tr
h
N�1

⇣
bR

yy

�HbR†
yx

� bR
yx

H† +HbR
xx

H
⌘i

where

bR
yy

=yy† (27)

bR
yx

=yx†
wf

(28)

bR
xx

=⌃+ x
wf

x
wf

† (29)

5

In cosmology, however, the power spectrum is typically
represented in the (k?, kk) comoving coordinates. If the
observed frequency band is small enough (i.e., probing a
small range in redshifts) and in the flat-sky approxima-
tion, there is a linear mapping between these variables:

u =
k?Dc

(z)

2⇡
; ⌘ ⇡ c (1 + z)2

2⇡H0⌫21E(z)
kk, (17)

where E(z) ⌘
p

⌦
m

(1 + z)3 + ⌦⇤, ⌫21 is the rest fre-
quency of the 21-cm line, D

c

is the transverse comoving
distance, z is the redshift of the observation, H0 is the
Hubble parameter, c is the speed of light, and ⌦

m

and
⌦⇤ are the normalized matter and dark energy density,
respectively. The radial wavenumber k? and the angular
wavenumber kk are the components of the wavenumber
k perpendicular and parallel to the line-of-sight direc-
tion, respectively. Therefore inserting Eq. 17 into 13, we
obtain the relation of the power spectrum defined under
the di↵erent coordinates:

PHI(k?, kk) =
c (1 + z)2

H0⌫21E(z)
PHI(u, ⌘). (18)

The goal of our analysis is to identify and separate the
components from visibility data that contains mixtures
of foregrounds and signal. Using a Bayesian framework
proposed by Snoussi et al. (2002) for CMB data, we will
show that, without any assumption on priors, by per-
forming a semi-blind independent component analysis for
which only the noise covariance matrix N is well known,
the components can be successfully separated by jointly
estimating the covariance matrix C and the mixing ma-
trix M, and an accurate estimate for the power spectrum
of the HI signal can be obtained.
LIKELIHOOD.... In realistic observations, likelihood

function is hard to evaluate, so we discuss it in paper?
⌦
yy†↵ = HCH† +N (19)

In practice, minimization of the spectral mismatch is
achieved with the Expectation-Maximization (EM) algo-
rithm.

2.4. The EM algorithm

Here we briefly summarize the Expectation-
Maximization (EM) algorithm for finding the best
fitted parameters from incomplete data. It is an
iterative algorithm to repeatedly solve a tractable
complete-data problem instead of solving a di�cult
incomplete-data problem. The EM algorithm has
been applied to estimate the CMB power spectrum
and reconstruct the CMB map from multi-frequency
microwave maps.
Following Snoussi et al. (2002), in our case, given the

data model in Eq. 11, y = Hx+ n, the mixing matrix
M and the covariance matrix C can be estimated by
maximizing the observed-data posterior p(y|✓), where
✓ = (C,M), and which can be obtained by marginalizing
the joint distribution p(y,x|✓) over the missing data x
as

p(y|✓) =
Z

p(y,x|✓)dx (20)

The key idea is that the EM algorithm does not maxi-
mize p(y|✓) directly; instead, it maximizes the so-called

EM-functional as follows:

Q(✓|✓n)=E [log p(y,x|✓)|y,✓n]

=

Z
log p(y,x|✓)p(x|y,✓n)dx , (21)

which is the expected value of the complete-data log-
likelihood with respect to the missing data x given the
observed data y and the current parameter estimates ✓n.
The evaluation of this expectation is called the Expecta-
tion (E)-step of the algorithm.
In our model, the prior distribution of the complex

Fourier modes x is assumed to be Gaussian with zero
mean,

p(x|C) / exp(�x†C�1x) , (22)

where C represents the covariance matrix of x and it is
expected to be a diagonal matrix as the Fourier modes
are assumed to be uncorrelated.
Within a Bayesian framework, the joint distri-

bution p(y,x|✓) can be expressed by p(y,x|✓) /
p(y|x,✓)p(x|C), yielding

log p(y,x|✓) = log p(y|x,✓) + log p(x|C) (23)

=�(y �Hx)†N�1(y �Hx)� log |C|� x†C�1x+ cst.

Using Bayesian rule, the conditional probability distri-
bution function p(x|y,✓n) for the signal given the data
is also the Gaussian,

p(x|y,✓n) / exp(�(x� x
wf

)†⌃�1(x� x
wf

)) , (24)

where

x
wf

= [H†N�1H+C�1]�1H†N�1y , (25)

⌃ = (H†N�1H+C�1)�1 , (26)

where x
wf

is the so-called Wiener-Filtered (WF)
map and ⌃ is the corresponding covariance. Ex-
plicitly, x

wf

can be equally divided into (nk +
n
c

) subvectors describing the 21-cm and ICs maps,
each of dimension n?, represented by x

wf

=⇣
(x̂s

1)
T , · · · , (x̂s

nk
)T , (x̂f

1 )
T , · · · , (x̂f

nc
)T

⌘
T

, where x̂s

i

de-

notes a subvector of x
wf

, corresponding to the WF map
of the 21-cm signal at frequency i, and similarly, the
subvector x̂f

j

corresponds to the WF map of the j-th
foreground component. The solution for x

wf

is the gen-
eral map-making problem in cosmology. This WF map
can be e�ciently computed by implementing a precon-
ditioned conjugate-gradient method that allows one to
iteratively reach the solution with a tractable computa-
tion time.
Using the above Eqs. 23 and 24, we integrate out x to

derive the expression of Eq. 21 given by

Q(✓|✓n)= cst.� log |N|� log |C|+Tr
h
C�1 bR†

xx

i

�Tr
h
N�1

⇣
bR

yy

�HbR†
yx

� bR
yx

H† +HbR
xx

H
⌘i

where

bR
yy

=yy† (27)

bR
yx

=yx†
wf

(28)

bR
xx

=⌃+ x
wf

x
wf

† (29)



10

(a) Input total foregrounds (b) Recovered total foregrounds

(c) Input 21-cm signal (d) Recovered 21-cm signal (S/N=1) (e) Recovered 21-cm signal (S/N=5)

Fig. 5.— Same as Fig. 3, but for the total foregrounds and the 21-cm signal to clearly illustrate that a successful separation was achieved
by the HIEMICA-cleaning process. There is an overestimate of the 21-cm signal in the case of S/N=1 for the simulated data, which
probably is caused by a noise leakage into the estimated signal, and is an almost perfect recovery over all scales for S/N=5.

(a) S/N=1 (b) S/N=5

Fig. 6.— Dependence of the number of independent components on 21-cm signal recovery, for the data with S/N=1 (left) and 5 (right).
We show the spherically averaged three-dimensional power spectra of the simulated 21-cm signal(black), noise (black-dotted), reconstructed
21-cm signal for the HIEMICA algorithm run with the assumption of Nc = 2 (red-dotted), 3 (green-dashed) and 4 (blue long-dashed),
respectively. Vertical bars indicate the 1-� errors estimated from 10 realizations and horizontal bars the bin-width of �k = 0.0186. The
statistical uncertainties are typically smaller than the symbol sizes and mostly invisible.
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(a) Galactic synchrotron emission (b) Extragalactic point sources

(c) Galactic free-free emission (d) Extragalactic free-free emission

Fig. 2.— The simulated di↵use foreground components for a 30� ⇥ 30� patch of sky at ⌫ = 830MHz. We have subtracted the mean value
(i.e. DC mode) to reflect an interferometric observation.

(a) The first foreground component (b) The second foreground component

(c) The third foreground component (d) The fourth foreground component

Fig. 3.— Wiener-filtered maps of independent components (ICs) reconstructed by applying HIEMICA to the simulated data cube with
S/N=1 for the same sky patch and frequency as in Fig. 2. Notice that we do not expect the recovered maps to explicitly correspond to the
input maps since these ICs are assumed to be mutually independent while the true physical components may have correlations.
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(a) S/N=1 (b) S/N=5

Fig. 7.— Same as Fig. 6, but for comparison of 21-cm power spectrum recovery based on the PCA technique (magenta-dotted) and the
HIEMICA approach (gren long-dashed), for the data with S/N=1 (left) and S/N=5 (right). The spherically averaged three-dimensional
power spectra of the simulated 21-cm signal(black-solid), noise (black-dotted), HIEMICA-derived (assumed Nc=3) 21-cm signal and PCA-
derived residuals from projecting out the first three dominant eigen-components based on the frequency-frequency covariance of data.
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A. G., Ciardi, B., Jelić, V., Koopmans, L. V. E., Labropoulos, P.,
Mellema, G., O↵ringa, A., Pandey, V. N., Pawlik, A. H., Schaye,
J., Thomas, R. M., & Yatawatta, S. 2010, MNRAS, 405, 2492

Harker, G., Zaroubi, S., Bernardi, G., Brentjens, M. A., de Bruyn,
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(a) Input total foregrounds (b) Recovered total foregrounds

(c) Input 21-cm signal (d) Recovered 21-cm signal (S/N=1) (e) Recovered 21-cm signal (S/N=5)

Fig. 5.— Same as Fig. 3, but for the total foregrounds and the 21-cm signal to clearly illustrate that a successful separation was achieved
by the HIEMICA-cleaning process. There is an overestimate of the 21-cm signal in the case of S/N=1 for the simulated data, which
probably is caused by a noise leakage into the estimated signal, and is an almost perfect recovery over all scales for S/N=5.

(a) S/N=1 (b) S/N=5

Fig. 6.— Dependence of the number of independent components on 21-cm signal recovery, for the data with S/N=1 (left) and 5 (right).
We show the spherically averaged three-dimensional power spectra of the simulated 21-cm signal(black), noise (black-dotted), reconstructed
21-cm signal for the HIEMICA algorithm run with the assumption of Nc = 2 (red-dotted), 3 (green-dashed) and 4 (blue long-dashed),
respectively. Vertical bars indicate the 1-� errors estimated from 10 realizations and horizontal bars the bin-width of �k = 0.0186. The
statistical uncertainties are typically smaller than the symbol sizes and mostly invisible.


