Applied Generic Programming to Accelerator Programming

Joel Falcou, lan Masliah

Marc Baboulin

PARSYS - LRI

03/30/2015

Who are we

Parsys Team

6 permanents researchers
8 PHDs

Spin-off company: NumScale

Research interests

Algorithms for Computer Vision, Linear Algebra (LAPACK)
High-Level parallel programming tools (Boost.SIMD, NT2)

Hardware Exploration

The Usability Challenges of HPC

(Single Core Era

Performance

A
@

\ (Multi-Core/SIMD Era

Performance

A

Sequential

I

\ (Heterogenous Era

Performance

Distributed

I

Sequential

I

>
Expressiveness
,

Lt
Expressiveness
),

Lt
Expressiveness
),

Designing tools for Scientific Computing

Challenges

Be non-disruptive
Domain driven optimizations
Provide intuitive API for the user

Support a wide architectural landscape

Be efficient

Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Provide intuitive API for the user
Support a wide architectural landscape

Be efficient

Our Approach

Design tools as C++ libraries (1)
Design these libraries as Domain Specific Embedded Language (DSEL) (2+3)
Use Parallel Skeletons as parallel components (4)

Use Generative Programming to deliver performance (5)

40f 17
]
—,,

Domain Specific Embedded Languages

What'’s an DSEL ?
DSL = Domain Specific Language

Declarative language, easy-to-use, fitting the domain

DSEL = DSL within a general purpose language

DSEL in practice

Relies on operator overload abuse
Carry semantic information around code fragment

Library like code is self-aware of optimizations

Exploiting DSEL

At the expression level: code generation for arbitrary hardware

At the function level: inter-procedural optimizations

50f 17
e —

Parallel DSEL in practice

Objectives

Apply DSEL generation techniques for different kind of hardware

Demonstrate low cost of abstractions

Demonstrate applicability of skeletons

Parallel DSEL in practice

Objectives

Apply DSEL generation techniques for different kind of hardware
Demonstrate low cost of abstractions

Demonstrate applicability of skeletons

Our contribution
BSP++ : Generic C++ BSP for shared/distributed memory
Quaff: DSEL for skeleton programming
Boost.SIMD: DSEL for portable SIMD programming
NT2: MatLAB like DSEL for scientific computing

6of 17
e —

Parallel DSEL in practice

Objectives

Apply DSEL generation techniques for different kind of hardware
Demonstrate low cost of abstractions

Demonstrate applicability of skeletons

Our contribution
BSP++ : Generic C++ BSP for shared/distributed memory
Quaff: DSEL for skeleton programming
Boost.SIMD: DSEL for portable SIMD programming
NT2: MatLAB like DSEL for scientific computing

6of 17
e —

NT?

A Scientific Computing Library

Provide a simple, MaTLAB-like interface for users
Provide high-performance computing entities and primitives

Easily extendable

Components

Use SIMD for in-core optimizations

Use recursive parallel skeletons

Code is made independant of architecture and runtime

Parallel Skeletons in a nutshell

Basic Principles [COLE 1989]

There are patterns in parallel applications
Those patterns can be generalized in Skeletons

Applications are assembled as combination of such patterns

Functionnal point of view

Skeletons are Higher-Order Functions
Skeletons support a compositionnal semantic
Applications become composition of state-less functions

Clear separation of concern between hard and soft

8of I7
e —

The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

How does it works

Take a .mfile, copy to a . cpp file

The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

How does it works

Take a .mfile, copy to a . cpp file

Add #include <nt2/nt2.hpp> and do cosmetic changes

The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

How does it works

Take a .mfile, copy to a . cpp file
Add #include <nt2/nt2.hpp> and do cosmetic changes

Compile the file and link with 1ibnt2.a

NT2 - From MATLAB ...

Al = 1:1000;
A2 = A1 + randn(size(A1));

X = Lu(AT*A1’);

rms = sqrt(sum(sqr(AT(:) - A2(:))) / numel(A1l));

10 of 17

NT2 - .. to C++

table<double> A1 = _(1.,1000.);
table<double> A2 = A1 + randn(size(A1));

table<double> X = lu(mtimes (A1, trans(Al));

double rms = sqrt(sum(sqr(A1(_) - A2(_))) / numel(Al));

Il of 17
e —

The Numerical Template Toolbox

Comparison to other libraries

z
5
L)

Feature Armadillo | Blaze | Eigen | MTL | uBlas
MartLAB-like API v
BLAS/LAPACK binding v
SSE2+ support v
AVX support v
AVX2 support

Xeon Phi support

v — —

SNENIENE

Altivec support
ARM support — —

NEN

Threading support — — — — =
CUDA support — — — — =
MAGMA binding — — — _ —

|
|
|
|
|
ANENENIENENIENENENENIENEN

12 of 17
e —

Semi-Normal Equation Solver

Context

QR-based solver with least squares method

Better behavior with regards to numerical precision
Target applications: simulation, oil industry, engineering
Challenge: Use mixed precision to improve performance

Challenge: No current GPU implementation

NT? Code

table<double> A,x,b;

// mixed_precision_ modify the semantic of the linear system A
x = linsolve(A, b, mixed_precision_);

130f17
]
—,,

Semi-Normal Equation Method
Performance - CPU

TTT
150 - 5
125 5
100 |- a
(%)
o
(@]
o 75f i
O]
50 i
25 - —=— NT2 B
—— Intel MKL
—— PLASMA
(s ULl I I I | il
SR TS
& System size® ,\9‘1‘

14 of 17

Semi-Normal Equation Method
Performance - GPU

500 r
450 |- N

400
350
300
250
200

GFLOPS

0LL I L L
NG @& S
\Q\{' \’\’\P \QBP System size \q;P Q-

150f 17
e —

Interaction with NVIDIA

Software level

Increase C++ support form NVCC
Library/Compiler interaction at compiler level with NVCC

Toward a bridging model of accelerators

Hardware level

Basic access to latest version of NVIDIA Hardware
Move toward mobility: access Tegra systems

Better software optimisations if we knew what’s going on in the GPU ;)

16 of 17
e —

Thanks for your attention

