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Who are we

Parsys Team

6 permanents researchers
8 PHDs

Spin-off company: NumScale

Research interests

Algorithms for Computer Vision, Linear Algebra (LAPACK)
High-Level parallel programming tools (Boost.SIMD, NT2)

Hardware Exploration




The Usability Challenges of HPC
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Designing tools for Scientific Computing

Challenges

Be non-disruptive
Domain driven optimizations
Provide intuitive API for the user

Support a wide architectural landscape

Be efficient




Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Provide intuitive API for the user
Support a wide architectural landscape

Be efficient

Our Approach

Design tools as C++ libraries (1)
Design these libraries as Domain Specific Embedded Language (DSEL) (2+3)
Use Parallel Skeletons as parallel components (4)

Use Generative Programming to deliver performance (5)
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Domain Specific Embedded Languages

What'’s an DSEL ?
DSL = Domain Specific Language

Declarative language, easy-to-use, fitting the domain

DSEL = DSL within a general purpose language

DSEL in practice

Relies on operator overload abuse
Carry semantic information around code fragment

Library like code is self-aware of optimizations

Exploiting DSEL

At the expression level: code generation for arbitrary hardware

At the function level: inter-procedural optimizations
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Parallel DSEL in practice

Objectives

Apply DSEL generation techniques for different kind of hardware

Demonstrate low cost of abstractions

Demonstrate applicability of skeletons
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Objectives

Apply DSEL generation techniques for different kind of hardware
Demonstrate low cost of abstractions

Demonstrate applicability of skeletons

Our contribution
BSP++ : Generic C++ BSP for shared/distributed memory
Quaff: DSEL for skeleton programming
Boost.SIMD: DSEL for portable SIMD programming
NT2: MatLAB like DSEL for scientific computing
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NT?

A Scientific Computing Library

Provide a simple, MaTLAB-like interface for users
Provide high-performance computing entities and primitives

Easily extendable

Components

Use SIMD for in-core optimizations

Use recursive parallel skeletons

Code is made independant of architecture and runtime




Parallel Skeletons in a nutshell

Basic Principles [COLE 1989]

There are patterns in parallel applications
Those patterns can be generalized in Skeletons

Applications are assembled as combination of such patterns

Functionnal point of view

Skeletons are Higher-Order Functions
Skeletons support a compositionnal semantic
Applications become composition of state-less functions

Clear separation of concern between hard and soft
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The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB
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The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

How does it works

Take a .mfile, copy to a . cpp file
Add #include <nt2/nt2.hpp> and do cosmetic changes

Compile the file and link with 1ibnt2.a




NT2 - From MATLAB ...

Al = 1:1000;
A2 = A1 + randn(size(A1));

X = Lu(AT*A1’);

rms = sqrt( sum(sqr(AT(:) - A2(:))) / numel(A1l) );
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NT2 - .. to C++

table<double> A1 = _(1.,1000.);
table<double> A2 = A1 + randn(size(A1));

table<double> X = lu( mtimes (A1, trans(Al) );

double rms = sqrt( sum(sqr(A1(_) - A2(_))) / numel(Al) );
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The Numerical Template Toolbox

Comparison to other libraries

z
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Feature Armadillo | Blaze | Eigen | MTL | uBlas
MartLAB-like API v
BLAS/LAPACK binding v
SSE2+ support v
AVX support v
AVX2 support

Xeon Phi support

v — —
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Altivec support
ARM support — —

NEN

Threading support — — — — =
CUDA support — — — — =
MAGMA binding — — — _ —
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Semi-Normal Equation Solver

Context

QR-based solver with least squares method

Better behavior with regards to numerical precision
Target applications: simulation, oil industry, engineering
Challenge: Use mixed precision to improve performance

Challenge: No current GPU implementation

NT? Code

table<double> A,x,b;

// mixed_precision_ modify the semantic of the linear system A
x = linsolve(A, b, mixed_precision_);
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Semi-Normal Equation Method
Performance - CPU
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Semi-Normal Equation Method
Performance - GPU
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Interaction with NVIDIA

Software level

Increase C++ support form NVCC
Library/Compiler interaction at compiler level with NVCC

Toward a bridging model of accelerators

Hardware level

Basic access to latest version of NVIDIA Hardware
Move toward mobility: access Tegra systems

Better software optimisations if we knew what’s going on in the GPU ;)
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Thanks for your attention



