Smith-Purcell radiation and reconstruction techniques

Khodnevych Vitalii Supervisor: Nicolas Delerue

25 March 2015

+ □ > < □ > < Ξ > < Ξ >

りへへ 1/17

- Smith-Purcell radiation
- Intro
- Simulation
- Results
- Stability of reconstruction
- DAQ for SP at Frascati

Smith-Purcell radiation

Smith-Purcell radiation is the radiation produced when a charged particle passes close to the surface of a metallic, periodic structure.

$$A = \frac{I}{n} \left(\frac{1}{\beta} - \cos(\Theta) \right)$$

3/17

Smith-Purcell radiation

$$\left(\frac{dI}{d\Omega}\right)_{N_e} \approx \left(\frac{dI}{d\Omega}\right)_1 N_e^2 \Big| \int_{-\infty}^{\infty} T e^{-i\omega t} dt \Big|^2$$

where N_e -is number of charged particles.

This research dedicated to study of the features of this recovery

Intro

To recover phase $\Theta(\omega)$ from amplitude $\rho(\omega)$ several techniques exist: Kramers-Kronig:

$$\Theta(\omega_0) = \frac{2\omega_0}{\pi} P \int_0^{+\infty} \frac{\ln(\rho(\omega))}{\omega_0^2 - \omega^2} d\omega$$

where ω is frequency. Hilbert:

$$\Theta(\omega_0) = -rac{1}{\pi} P \int_{-\infty}^{+\infty} rac{ln(
ho(\omega))}{\omega_0 - \omega} d\omega.$$

or

$$\mathcal{F}(H(u))(\omega) = (-i \operatorname{sgn}(\omega)) \cdot \mathcal{F}(u)(\omega)$$

where \mathcal{F} is Fourier transform.

- Profile generator (sum of 5 gaussians)
- Sampling: (Linear, Triple sine, Log)
- Restore of spectrum (interpolation (PCHIP) and extrapolations (Gaussian for LF and Ae^B for HF))
- Restore of phase (Hilbert, Kramers-Kronig)
- Restore of position and direction (based on minimum of χ^2)

うへで 7/17

3

- $\blacktriangleright \Delta_{FWXM} = \left| \frac{{}^{FWXM}_{\text{orig}} {}^{FWXM}_{\text{reco}}}{{}^{FWXM}_{\text{orig}}} \right|$
- At different hight of profile there is different quality of reconstruction
- Hilbert method works better and faster (0.02 s vs. 1m for KK)

A (1) > A (2) > A (2) >

Linearly sampled points give best reconstuction, but impossible due to space consideration

33 sampled points (current setup) is quite optimal

Stability of reconstruction

To ensure that the choice of the parameters σ_i and μ_i (from Profile generator) for the simulations does not bias significantly the results, their value has been varied as shown at figures left

4 T > 4 T > 4 T >

Stability of reconstruction

- Lorenzian are also well reconstructed
- For small noise value, impact of it in reconstruction is quite low.

DAQ for SP at Frascati

12/17

Thank You!

Simulation

< □ > < □ > < □ > < 三 > < 三 > < 三 > 三 の Q (~ 14/17

