
ICML 2015 AutoML Workshop

Improving reproducibility of data science experiments

Tatiana Likhomanenkoa,b,c antares@yandex-team.ru

Alexey Rogozhnikova,b axelr@yandex-team.ru

Alexander Baranova sashab1@yandex-team.ru

Egor Khairullina mikari@yandex-team.ru

Andrey Ustyuzhanina,b,c anaderi@yandex-team.ru
a Yandex Data Factory, Yandex School of Data Analysis, Moscow, Russia
b Higher School of Economics National Research University Moscow, Russia
c NRC ”Kurchatov Institute”, Moscow, Russia

Abstract
Data analysis in fundamental sciences nowadays is an essential process that pushes frontiers
of our knowledge and leads to new discoveries. At the same time we can see that complexity
of those analyses increases fast due to a) enormous volumes of datasets being analyzed,
b) variety of techniques and algorithms one have to check inside a single analysis, c) dis-
tributed nature of research teams that requires special communication media for knowledge
and information exchange between individual researchers. There is a lot of resemblance
between techniques and problems arising in the areas of industrial information retrieval and
particle physics. To address those problems we propose Reproducible Experiment Platform
(REP), a software infrastructure to support collaborative ecosystem for computational sci-
ence. It is a Python based solution for research teams that allows running computational
experiments on shared datasets, obtaining repeatable results, and consistent comparisons of
the obtained results. Several analysis using Key features of REP are illustrated on several
practical cases that were performed at LHCb experiment at CERN.
Keywords: machine learning, reproducibility, computation infrastructure, analysis preser-
vation

1. Introduction

This paper presents Reproducible Experiment Platform (REP), which is created to perform
a reproducible data analysis in a comfortable way. As Karl Popper said: ”Non-reproducible
single occurrences are of no significance to science”.

Being a significant part of a research, scientific analyses should be prepared in a repro-
ducible way. However, there are several reasons why many analyses prepared in recent years
have difficulties in reevaluation: keeping data, code and results together; independence on
development platform; availability of different algorithms; distributed research; repeatable
data preprocessing. The REP toolkit addresses these problems (will be discussed further)
and, moreover, enables researches to collaborate by sharing analysis code and results over
the Internet. This platform provides methods for preparing and processing data, ways to
use different machine learning techniques. Yet, we are hoping to have readable and, which
is important, checkable code using the platform.

c⃝ 2015 T. Likhomanenkoa,b,c, A. Rogozhnikova,b, A. Baranova, E. Khairullina & A. Ustyuzhanina,b,c.



Likhomanenkoa,b,c Rogozhnikova,b Baranova Khairullina Ustyuzhanina,b,c

Figure 1: REP infrastructure. IPython notebook is an analysis environment, in which users
work together. In the notebook we use different machine learning libraries (left)
for data analysis, parallel systems to speedup optimal model search (top), git to
store all code, data and results (right).

2. REP Infrastructure

What are the main points we expect from an analysis platform? Firstly, we need some
interactive environment for fast experiments with data. Secondly, resulting code should be
simple and reproducible. Thirdly, it is necessary to keep data, code and results together.
REP covers all three features.

Interactive Python Fernando Perez et al. (2007), or IPython notebook, is used as an
analysis environment (see Figure 1) in REP. For intellectual data analysis we use different
machine learning libraries, which are popular among data scientists. For this purpose
REP contains wrappers over algorithms from different machine learning libraries, which
provide scikit-learn interface F. Pedregosa et al. (2011). A typical analysis task, search
for optimal predictive model, can be speeded up using parallel computational system. In
Figure 1 they are presented as a GRID/cluster system. One of the parallel execution
systems is provided out-of-the-box by IPython (IPython cluster). Another significant part
of experiments is git S. Chacon, B. Straub (2014), version control system, which stores all
code, corresponding results, trained models and data.

One of the most significant problems for reproducibility is keeping track of versions of
all libraries used (and their numerous dependencies). This can be archived by using virtual
machine, where a scientist saves his analysis with all dependencies. However, a better option
exists today: one can use like a light-weight virtual machine, Docker container https:

//www.docker.com. The images of virtual machines can be combined together inside a

2



Reproducibility of data science

Docker to provide possibilities given by different containers. It has several other advantages,
among which incremental versioning of containers. This versioning implies that to change
version of container user doesn’t need to reload complete image, only some ‘update’ part is
downloaded. That is why we provide a Docker container with REP and all it dependencies.
Being a virtual machine, the REP container is expected to work after many years in exactly
the same way as it worked at the time of creation on variety of operating systems supporting
virtualization.

3. Machine Learning Pipelines

The main feature of REP is support for different machine learning libraries. Wrappers
over all libraries use scikit-learn classifier interface because of its popularity in data sci-
ence community and its convenience. Moreover, there are other advantages: support of
single interface makes it possible to use ensembling algorithms. For example, REP provides
TMVA A. Hoecker et al. (2007) wrapper in scikit-learn interface and ensembling algorithm
over any TMVA method can be constructed. One can construct scikit-learn AdaBoost over
TMVA rectangular cut method, or TMVA multilayer perceptron, or any another TMVA
method. This way of combining different methods is very typical for scikit-learn.

Wrappers over machine learning libraries are basic elements to construct complicated
analysis scheme using ensembling algorithms or another hierarchical training models. Basic
REP building blocks are:

• estimators — wrapper over algorithms from variety of libraries matching fit/predict
interface, that build classification or regression models http://yandex.github.io/
rep/estimators.html

• metrics (including user-defined)

• factory for training and comparing several estimators (see http://yandex.github.

io/rep/metaml.html#module-rep.metaml.factory)

• grid search, supporting various optimization algorithms (at the moment there are
several algorithms: random sampling, Metropolis-like optimization, regression-based
optimization, annealing optimization, see http://yandex.github.io/rep/metaml.

html#module-rep.metaml.gridsearch).

At the moment there are wrappers over such libraries as: scikit-learn, XGBoost https:
//github.com/dmlc/xgboost, TMVA, theanets https://github.com/lmjohns3/theanets,
pybrain https://github.com/pybrain/pybrain, neurolab https://github.com/zueve/

neurolab. REP can incorporate service-based classifiers (e.g. Event Filter that is a web-
service for machine learning provided by Yandex, which is available only for CERN re-
searchers. Event Filter uses MatrixNet algorithm A. Gulin et al. (2011) developed at Yan-
dex).

By means of REP it is easy to construct ensembling and hierarchical models using basic
elements: scikit-learn AdaBoost ensemble algorithm, bagging, folding, etc. Any wrapper
can be base estimator for any of these hierarchical models. It is necessary to find the
best model among of all these configurations. For this purpose REP provides a set of grid

3



Likhomanenkoa,b,c Rogozhnikova,b Baranova Khairullina Ustyuzhanina,b,c

search-like algorithms, which takes any estimator and looks for the best estimator’s hyper
parameters by optimizing quality metric selected. The grid search can optimize parameters
for all hierarchical levels of complicated estimator (for instance, this allows tuning number
of stages in AdaBoost and parameters of base classifier used by AdaBoost). One more
task frequently arising is different models training and comparison of their performance.
Specially for these purposes REP contains a factory. To speed up training operations
parallel system (IPython cluster, threads) is available during factory and grid search fitting.
Examples of data analysis notebooks look like Figures 2, 3, 4.

4. Data and Analysis Preservation

One of the key REP component is the IPython keeper https://github.com/mikari/

ipykee, or IPykee, which provides comfortable semantic interface to create project and
keep tracks of notebooks code along with intermediate results: plots, estimators, data, an-
other objects. All analysis artifacts are saved to the git version control system repository.
Later anyone who can access to the repository can load project and reproduce experiment
or restore its results at any particular point in research. Also, by using nbdiff library, IPy-
kee gives possibility for visual comparison of two versions of one notebook with highilghted
differences.

5. Projects using REP

REP has been created as a tool to help in particular data-intensive research projects. Data
popularity analysis that combines data on LHCb experiment dataset access for ranking ex-
pected popularity of those datasets in the future (http://github.com/hushchyn-mikhail/
DataPopularity), uniforming (uBoost-like) algorithms A. Rogozhnikov et al. (2015) (http:
//github.com/anaderi/lhcb_trigger_ml), LHCb topological trigger optimization. Search
for τ → µµµ decays at LHCb, anomaly detection of LHC detector and project for search for
high-energy cosmic rays — Crayfis http://crayfis.io. Our experience shows that tools
are not sufficient for making research reproducible, it also required some discipline and good
will from team members to follow set of simple practices. With REP those practices just
become much easier to follow.

6. Conclusion

Reproducible Experiment Platform is the ongoing project. It provides the environment
to conduct reproducible data analysis in a convenient way. It combines different machine
learning libraries under uniform well-known interface, meta-algorithms, different parallel
cluster interfaces and tools to save and explore intermediate analysis results (code and
datasets) and states of analysis. REP was used in several research projects, which list is
growing. Source code of the toolkit is available at https://github.com/yandex/rep.

4



Reproducibility of data science

Figure 2: An example of using a factory for
training and comparing classifiers.

Figure 3: Case-study: part of LHCb topolog-
ical trigger optimization

Figure 4: An example of comparing models
and plotting results with REP.5



Likhomanenkoa,b,c Rogozhnikova,b Baranova Khairullina Ustyuzhanina,b,c

References

Fernando Perez, Brian E. Granger, IPython: A System for Interactive Scientific Comput-
ing, Computing in Science and Engineering, vol. 9, no. 3, pp. 21-29, May/June 2007,
doi:10.1109/MCSE.2007.53. URL: http://ipython.org

F. Pedregosa et al., Scikit-learn: Machine Learning in Python, 2011, JMLR 12, pp. 2825-
2830

S. Chacon, B. Straub, Pro Git, Apress, 2014

A. Hoecker et al., TMVA — Toolkit for Multivariate Data Analysis, 2007, PoS ACAT2007
[arXiv:physics/0703039]

A. Gulin, I. Kuralenok, and D. Pavlov, Winning the transfer learning track of Yahoo’s
Learning to Rank Challenge with YetiRank, JMLR: Workshop and Conference Proceed-
ings 14 (2011) 63

A. Rogozhnikov, A. Bukva, V. Gligorov, A. Ustyuzhanin, M. Williams, New approaches for
boosting to uniformity, 2015 JINST 10 T03002 [arXiv:1410.4140]

T. Likhomanenko, A. Rogozhnikov, A. Baranov, A. Ustyuzhanin, E. Khairullin, Repro-
ducible Experiment Platform, 2015 proceedings of CHEP2015 (to be published)

6


