L'accélération laser-plasma, une piste pour les futurs accélérateurs

Brigitte CROS

Laboratoire de Physique des Gaz et des Plasmas, UMR 8578

CNRS- Université Paris Sud - Orsay

Des outils de pointe pour la recherche en physique

De nouveaux concepts pour des accélérateurs plus compacts

- Les accélérateurs linéaires sont plus adaptés pour l'accélération d'électrons
 Leur taille croît avec l'énergie des électrons
- Le champ maximum des accélérateurs RF sous vide est limité par la tension de claquage aux parois ~50 MV/m
- Nouveaux concepts pour contourner cette limitation, concept ALP proposé en 1979 [Tajima & Dawson, PRL]

L'ALP est une voie prometteuse pour le développement d'accélérateurs compacts

L'échelle d'un collisionneur e-e+ au TeV est de l'ordre de 100 km pour un champ maximum <50MV/m avec la technologie actuelle Echelles cavités:

- L'accélération laser plasma produit des champs accélérateurs dans la gamme 1-100 GV/m:
- Les propriétés de l'ALP attirent l'attention d'une large communauté, depuis les premiers électrons au GeV en 2006

Plan de l'exposé

- Quelques caractéristiques de l'accélération laser plasma (ALP)
 - Principes de base
 - Performances actuelles des ALP
 - Vers l'accélération multi-étages
- Avancement dans le cadre du projet CILEX
 - Installation laser Apollon 10PW
 - Modélisation de l'accélérateur
 - Etudes sur l'injecteur et l'étage accélérateur
- Conclusion

Principe du sillage

Pour l'accélération laser plasma, on focalise un laser intense dans un plasma

Congrès SFP2015 Strasbourg, B. Cros, 27 août

Un champ accélérateur élevé est créé dans le sillage d'un laser intense

 Force Pondéromotrice ~ gradient d'énergie laser

B. Cros, JUAS 2012 7 Congrès SFP2015 Strasbourg, B. Cros, 27 août

Un champ accélérateur élevé est créé dans le sillage d'un laser intense

- Force Pondéromotrice ~ gradient d'énergie laser
- Structure accélératrice sinus: λ_p~10-100µm
- Champ accélérateur:
 - 1-100 GV/m
- Champ normalisé a₀~1, régime quasi-linéaire
- Il faut injecter des électrons produits par une source externe

Le régime non linéaire conduit à l'autoinjection d'électrons du plasma

$a_0 > 2$

- Compression et autofocalisation de l'impulsion
- Expulsion des électrons: création d'une bulle (ions)
- Electrons auto-injectés à l'arrière de la bulle par les champs accélérateurs et focalisants
- Electrons injectés modifient l'arrière de la bulle (beam loading)
- •Génération de rayonnement bêtatron

W. Lu PRSTAB, 10, 061301 (2007) Congrès SFP2015

Gain d'énergie optimisé sur la longueur de déphasage

Onde plasma relativiste:
vitesse de phase ~ vitesse groupe laser
~ c (1- n_e/n_c)^{1/2}

➡ Gain d'énergie
∆W = e E_p L_a

Facteur relativiste $\gamma_{\phi} \sim (n_c/n_e)^{1/2}$

	n _e	10 ¹⁷ cm ⁻³	10 ¹⁹ cm ⁻³
	γ_{ϕ}	100	10
	L _a	1 m	1 mm
С	ΔW_{max}	20 GeV	200 MeV

 L'augmentation du gain d'énergie passe par l'augmentation de la longueur d'interaction à basse densité, tout en gardant une intensité laser élevée a₀~1

Les résultats expérimentaux depuis 2004 suivent la loi d'échelle pour le gain d'énergie

Il faut diminuer la densité pour augmenter l'énergie

La diminution de la densité empêche l'auto-injection à très basse densité injection externe nécessaire^{B. Cros, 27 ao}¹/₂

Résumé de l'état de l'art de l'art de l'accélération laser plasma

- Les accélérateurs laser plasma sont des sources d'électrons et de rayonnement (THz, X, gamma)
 - Accélérateurs Compacts
 - 4.2 GeV, 9 cm, 300 TW laser
 - Paquets de courte durée(~10 fs)

- Gradients accélérateurs élevés ~100 GV/m démontrés
- Accord avec les modèles théoriques
- Propriétés des électrons dépendent beaucoup des mécanismes d'injection dans l'onde de plasma congres si P2015 Strasbourg, B

Le contrôle et l'efficacité sont les prochain défis des ALP

• Objectifs: contrôler les propriétés des faisceaux accélérés et augmenter leur énergie

- Optimiser les paramètres des faisceaux (largeur en énergie, emittance, fiabilité) dans la gamme 100MeV - 1GeV
- Contrôler le rayonnement émis
- Accroître l'énergie: études de faisabilité pour un accélérateur multi-étages (MUST_LPA)

Défis

- Fiabiliser et améliorer les performances des laser
- Augmenter la longueur d'accélération
- Injecter les électrons dans le plasma de façon précise et contrôlée

1ere étape de test: l'accélération multi-étages

Les lasers de puissance donnent accès à de nouveaux régimes de l'ALP

- Sources intenses d'électrons et de rayonnement et leur combinaison
 - Faisceau pour LEL de courte longueur d'onde
 - Production de positrons
 - Interaction Particules-photons, génération de rayonnement multi-MeV (gamma rays) 15 Strasbourg, B. Cros, 27 aoĝ

Leemans & Esarey, Physics Today, March 2009

Centre Interdisciplinaire Lumière Extrême

Laser Multi-PW APOLLON 10PW

Installation multi-faisceaux 1 PW + probe + ns

Zones expérimentales dédiées

Installations satellites UHI100, LASERIX

Programme multi-disciplinaire

Formation de scientifiques et d'ingénieurs

Accueil des utilisateurs

Vue d'ensemble de l'installation laser Apollon

short focal-length area

long focal-length area

- High intensity
- Gas targets, large volume
 - Electron acceleration
 - Radiation generation
- Electron/photon interaction

Apollon laser Hall

Uighost intong

- Highest intensity
 - Solid targets
- Ion acceleration
- Radiation generation

2 main beams at the PW level: 15J, 15fs 150J, 15fs

Une installation laser de pointe, construite par un consortium de recherche

Objectifs de l'ALP dans le cadre de CILEX

Développer un ALP à deux étages

Installation de test pour l'accélération d'électrons et prototype pour les études à venir sur l'accélération laser plasma multi-étages (MUST_LPA)

Etude des processus fondamentaux

- Validité des lois d'échelle pour l'accélération à ultrahaute intensité laser
- Production et accélération de positrons
- Génération de rayonnement (betatron, injection dans un onduleur, diffusion Compton et Thomson)

Une installation pour tester le couplage entre 2 étages laser plasma

- 1^{er} étage: fort gain, 2^e étage: contrôle et stabilité, couplage: montée en énergie par modules successifs
- Défis scientifiques et techniques: mécanismes d'accélération et de guidage, stabilité, synchronisation.

L'étage accélérateur est modélisé avec le code PIC réduit WAKE _EP

Capillary radius 154µm, electron density 10¹⁷cm⁻³, plasma wavelength 100µm e- injection (10pC, 10fs, 10µm, 50MeV)

Accélération multi- GeV dans un tube diélectrique sur la longueur de déphasage

Capillary radius 154µm, electron density 10¹⁷cm⁻³, plasma wavelength 100µm e- injection (10pC, 10fs, 10µm, 50MeV)

L'injection induite par ionisation permet d'augmenter la charge accélérée

Ionisation de couches internes au pic de l'intensité laser, pour des atomes de Z élevé (azote), présents en faible quantité dans un gaz d'hydrogène

- Seuil d'injection abaissé par rapport à l'auto-injection
- Moment transverse réduit
- Charge accélérée plus élevée
- Pas de modification du sillage

Pak et al. Phys. Rev. Lett. 104, 025003 (2010)

Des résultats prometteurs obtenus sur l'installation UHI100

Simulation 8<u>1e12</u> z = 0.75 mm z = 0.95 mmdN/dE (MeV⁻¹) 3 26 100 120 140 60 80 E(MeV) 0.3 Expérience 0.25 0.2 (DC / MeV) 0.15 0.1 0.05 80 100 120 140

 E_e (MeV)

- Etude de la source d'électrons
 - Schéma d'injection par ionisation
 - Simulations avec le code "PIC WARP
 - Experiences dans une cellule de gaz avec l'installation UHI100 (CEA Saclay) et au LLC (Lund)

L'excitation d'une onde plasma sur une grande distance mesurée par décalage spectral

Input: Imax = $6.1 \ 10^{17}$ W/cm², Rcap=75 µm, L= 71.8 mm,

Wavelength (nm)

Output laser Transmission = 0.9

Congrès SFP2015 Strasbourg, B. Cros, 27 août

- Champ accélérateur dans la gamme (1-10 GV/m) sur une distance de 8 cm
- Mesure par diagnostic optique en excellent accord avec les simulations

Wojda et al. Phys. Rev. E 80, 066403 (2009)

Andreev et al. New J. Phys. 12 (2010) 045024.

Les différents éléments vont être intégrés pour tester l'ALP à deux étages sur l'installation Apollon

Congrès SFP2015 Strasbourg, B. Cros, 27 août

Congrès SFP2015 Strasbourg, B. Cros, 27 août

Conclusion

- L'ALP produit des paquets d'électrons de courte durée jusqu'à des énergies de quelques GeV
- La montée en énergie passe par des étages multiples, à basse densité plasma
- L'ALP a un fort potentiel de développement lié à celui des systèmes laser
- Recherches très actives en France et au niveau international
- Au niveau Français, un programme ambitieux est en cours de développement sur le Plateau de Saclay

Contributions

CILEX: A. Specka¹, B. Cros², P. Monot³, T. Audet², A. Beck¹, M. Bougeard³, C. Bruni⁴, A-M. Cauchois¹, A. Chancé⁵, N. Delerue⁴, O. Delferrière⁵, F. Desforges², S. Dobosz Dufrénoy³, M. Grech⁶, J. Ju², P. Lee², A. Maitrallain³, J.R. Marquès⁶, Ph. Martin³, G. Maynard², P. Monot, A. Mosnier⁵, P. Mora⁷, B. S. Paradkar², J. Schwindling⁵, K. Ta Phuoc⁸, T. Vinatier⁴, P. Audebert⁶, F. Amiranoff⁶

- ¹ LLR, ² LPGP, ³ LIDyL, ⁴ LAL, ⁵ SACM, ⁶ LULI, ⁷CPhT, ⁸ LOA
- IHED (Russie): N.E. Andreev, M. Veysman
- LBNL (USA): J-L Vay, R. Lehe
- LLC (Suède): M. Hansson,, G. Genoud, F Wojda (also lpgp), M Burza, K Svensson, O Lundh, A Persson, C.G Wahlström

Remerciements

Congrès SFP2015 Strasbourg, B. Cros, 27 août