

L'expérience ALICE au LHC : résultats et perspectives

Antoine Lardeux - CEA Saclay

XXIII^e congrès annuel de la Société Française de Physique

24/08/2015

ALICE \rightarrow étude des collisions d'ions lourds ultra-relativistes

↓ Déconfinement de la matière hadronique
→ Plasma de quarks et de gluons (PQG)

```
Propriétés ?
```

Transition de phase prédite par la lattice QCD à $T_{\rm C}$ = 160-170 MeV

Collisionneurs d'ions lourds

 $\begin{array}{ll} \text{SPS (CERN)} & \sqrt{s_{\text{NN}}} \approx 20 \text{ GeV} \\ \text{RHIC (BNL)} & \sqrt{s_{\text{NN}}} = 200 \text{ GeV} \\ \text{LHC (CERN)} & \sqrt{s_{\text{NN}}} = 2,76 \ / \ 5 \ \text{TeV} \end{array}$

Evolution d'une collisions d'ions lourds

- 1 Pré-équilibre : Processus durs (pQCD)
- 2 PQG (thermalisé ?)
- 3 Hadronisation
- 4 Gel chimique
- 5 Gel cinématique

ALICE

151 instituts1550 membres

ALICE en France

- 8 instituts,
- 53 physiciens,
- 10 <thésards>

Clermont-Ferrand, LPC, CNRS/IN2P3, Grenoble, LPSC, CNRS/IN2P3, Lyon/Villeurbanne, IPNL, CNRS/IN2P3, Lyon/Villeurbanne, CC-IN2P3, CNRS/IN2P3, Nantes, SUBATECH, EMN-UN-CNRS/IN2P3, Orsay, IPNO, CNRS/IN2P3, Saclay, CEA-IRFU Saclay, Strasbourg, IPHC, CNRS/IN2P3

ALICE emploie la plupart des techniques de détection de particules disponibles à travers 19 détecteurs.

<u>Couverture en pseudo-rapidité</u> $\eta < |0,9|$ et 2,5 < $\eta < 4$

Différents s	<u>systèmes</u>
	V

p-p	Utilisé comme référence (pas de PQG attendu)
p-Pb	Effets nucléaires froids (milieu nucléaire)
Pb-Pb	Effets nucléaires chauds (PQG)

	<u>système</u>	Energie (TeV)	Luminosité
2010	Pb-Pb	2,76	10 μb ⁻¹
2011	Pb-Pb	2,76	0,1 nb ⁻¹
2013	¦ p-Pb	5,02	30 nb ⁻¹

Des données p-p ont aussi été collectées à des énergies de 0,9 - 2,76 - 7 et 8 TeV

Maintenant : LHC run 2

- Augmentation de l'énergie et de la luminosité
- Améliorations / maintenance des détecteurs

→ p-p à 13 TeV et Pb-Pb à 5.02 TeVL = 1 nb⁻¹ attendue

ALICE identifie de nombreuses particules jusqu'à $p_T=0$

Modèle statistique : décrit les productions finales de hadrons en équilibre thermique avec peu de paramètres libres (V, T et μ_B).

→ Température de gel chimique ≈156 MeV ($\mu_B=0$)

$$R_{\rm AA} = \frac{N_{\rm PbPb}}{\langle N_{\rm coll} \rangle \ N_{\rm pp}}$$

Quantifie les effets nucléaires

- = 1 Pas d'effet de milieu
- <1 Suppression
- >1 Augmentation

Forte suppression en collisions centrales pour $p_T>4$ GeV/c

→ Perte d'énergie par collision, radiation

Le détecteur EMCAL permet d'étendre l'interval de mesure jusqu'à 40 GeV/*c* (en cours de publication). Pion neutre (2 quarks légers $u\bar{u}$, $d\bar{d}$) de haut p_T :

meson résultant de l'hadronisation d'un parton (quark, gluon) produit lors d'un processus dur

ALICE mesure aussi des particules plus lourdes comme : Les hadrons (D et B) avec un quark de saveur lourde (c, b)

Décroissance semi-leptonique (µ, e) dans l'état final

Suppression des saveurs lourdes à haut $p_{\rm T}$ dans les collisions centrales

→ Forte interaction des quarks lourds avec le milieu (perte d'énergie)

Les quarkonia (2 quarks lourds $Q\overline{Q}$) sont mesurés jusqu'à $p_T = 0$ Suppression par écrantage de couleur dans le milieu

Suppression des J/ ψ en collisions centrales ... mais plus faible qu'au RHIC Pas de dépendance en centralité pour $N_{part} > 70$

-> Production secondaire de J/ ψ via recombinaison statistique

G. Martinez Mardi 14:40

<u>Luminosité</u>

Physique des événements rares (grande statistique) à une energie 2 x plus grande

- Améliorer la précision des mesures
- Augmenter l'intervalle en $p_{\rm T}$
- Mesure des saveurs lourdes : $\psi(2S)$ et bottomonia

 $L = 1 \text{ nb}^{-1}$ attendue Pb-Pb à 5.02 TeV

10 x plus que le run 1

Perspectives

<u>Calorimétrie</u>

Installation complète de tous les modules Couverture de detection de 60 degrés dos à dos

- Augmentation de la statistique : acceptance, déclencheur
- Etude des corrélations à deux particules
- Physique des jets (fragmentation)

Ameliorations run 3 (2018)

<u>MFT</u>

- Nouveau détecteur
- Améliore le spectromètre à muons
- Etude de la physique du b
- Productions prompt et non-prompt
- Correlations

- Remplacé dans son ensemble
- Moins de matériel
- Meilleure resolution
- Plus rapide
- Plus proche de l'IP

Spectromètre à muons

Changement de l'électronique de lecture dans son intégralité pour suivre l'augmentation de la luminosité

Merci

