XXIII[®]CONGRÈS GÉNÉRAL Société Française de Physique

Strasbourg **24-28 août 2015**

La hiérarchie de masse des neutrinos

Marcos DRACOS IPHC-IN2P3/CNRS Université de Strasbourg

Strasbourg, August 2015

Outline

- Neutrino Oscillation formalism
- Measurement of the last mixing angle θ_{13} and importance for mass hierarchy determination and CP Violation discovery
- Neutrino mass hierarchy
 - Present neutrino oscillation experiments
 - Future projects
- Conclusion

Strasbourg, August 2015

M. Dracos IPHC/CNRS-UNISTRA

3

How neutrinos propagate through vacuum?

For 3 neutrinos with a well defined mass and energy:

Schrödinger equation:

$$i\frac{d}{dt}\begin{pmatrix} V_1\\V_2\\V_3\end{pmatrix} = H\begin{pmatrix}V_1\\V_2\\V_3\end{pmatrix}$$

for the mass eigen states

$$\left| \boldsymbol{v}_{j}(t) \right\rangle = e^{-iHt/\hbar} \left| \boldsymbol{v}_{j}(0) \right\rangle$$

Solutions of Schrödinger equation

$$H = \begin{pmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & m_3^2 \end{pmatrix}$$

(H: Hamiltonian)

$$i\frac{d}{dt}\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = H_f \begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix}$$

for the flavour eigen states

with:
$$H_f = UHU^{\dagger}$$

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

unitary mixing matrix

Probability as a function of mixing angles

How neutrinos propagate through matter? (Mikheyev-Smirnov-Wolfenstein effect)

1

 $\langle \rangle$

6

$$\begin{vmatrix} \mathbf{v}_{j}(t) \rangle = e^{-iHt/\hbar} \begin{vmatrix} \mathbf{v}_{j}(0) \rangle \qquad i \frac{d}{dt} \begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = H_{j} \begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix}$$
only for electron neutrinos
$$\underbrace{\mathbf{w}_{e}}_{CC} \qquad \underbrace{\mathbf{w}_{e,\mu,\tau}}_{CC} \qquad \text{in "ordinary" matter}$$

$$H_{f} = UHU^{\dagger} = \frac{1}{2E} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^{2} & 0 \\ 0 & 0 & \Delta m_{31}^{2} \end{pmatrix} U^{\dagger} \rightarrow \frac{1}{2E} \left[U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^{2} & 0 \\ 0 & 0 & \Delta m_{31}^{2} \end{pmatrix} U^{\dagger} \rightarrow \frac{1}{2E} \left[U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^{2} & 0 \\ 0 & 0 & \Delta m_{31}^{2} \end{pmatrix} U^{\dagger} + \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right]$$
with: $a = 2EV_{cc} = 2\sqrt{2}EG_{F}N_{e} \approx 7.56 \times 10^{-5}eV^{2} \left(\frac{\rho}{g/cm^{3}}\right) \left(\frac{E}{GeV}\right) \qquad (\rho \sim 3 g/cm^{3} \text{ for earth crust})$
Strabourg, August 2015

Present measurements

Strasbourg, August 2015

Oscillation probability (neutrino beams)

$$P_{v_{\mu} \rightarrow v_{e}(\overline{v_{\mu}} \rightarrow \overline{v_{e}})} \simeq 4 s_{23}^{2} s_{13}^{2} \frac{1}{(1 - r_{A})^{2}} \sin^{2} \frac{(1 - r_{A})\Delta L}{2}$$
 "atmospheric"
+8 $J_{r} \frac{r_{\Delta}}{r_{A}(1 - r_{A})} \cos\left(\delta_{CP} - \frac{\Delta L}{2}\right) \sin\frac{r_{A}\Delta L}{2} \sin\frac{(1 - r_{A})\Delta L}{2}$ "interference"
+4 $c_{23}^{2} c_{12}^{2} s_{12}^{2} \left(\frac{r_{\Delta}}{r_{A}}\right)^{2} \sin^{2} \frac{r_{A}\Delta L}{2}$ "solar"

$$J_{r} = c_{12}s_{12}c_{23}s_{23}s_{13}, \Delta = \frac{\Delta m_{31}^{2}}{2E_{v}}, r_{A} = \frac{a}{\Delta m_{31}^{2}}, r_{\Delta} = \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}, a \neq 2\sqrt{2}G_{F}N_{e}E_{v}$$

- for antimatter: $\delta_{CP} \rightarrow -\delta_{CP}$ and $a \rightarrow -a$
- fake matter/antimatter asymetry due to matter effect
- for NH: $\Delta m_{31}^2 \rightarrow |\Delta m_{31}^2|$
- for IH: $\Delta m_{31}^2 \rightarrow -|\Delta m_{31}^2|$

matter effect

- δ_{CP} dependence,
- sizable matter effect for long baselines

if $\theta_{13} \sim 0 \rightarrow$ oscillation probability not sensitive to $\delta_{CP} \rightarrow$ impossible to observe CP violation in the leptonic sector.

Strasbourg, August 2015

Why to measure MH?

- The oscillation parameter values (slightly or strongly) depend on the mass hierarchy and this avoids precision measurements and checks of the unitarity of the mixing matrix.
- This also significantly reduces the CPV discovery performance of future projects.
- Reject many theoretical models.

MH and cosmology

 $m_{cosmo} = m_1 + m_2 + m_3$

Strasbourg, August 2015

MH and direct neutrino mass measurements

Strasbourg, August 2015 Lightest neutrino mass in/eØracos IPHC/CNRS-UNISTRA

MH and neutrinoless Double Beta Decay

Strasbourg, August 2015

New proposals for neutrino beams to measure:

• θ_{13} (as low as possible)

 $\otimes B$

- neutrino mass hierarchy (sign of Δm_{13}^2)
- CP violation

(Super Beams, Beta Beams, Neutrino Factory...)

 $\pi \rightarrow \mu + \nu$

 $\pi \rightarrow \mu + \nu$

Project Comparison (unknown θ_{13})

Strasbourg, August 2015

The θ₁₃ **hunting** (meanwhile, reactor neutrinos)

disappearance of electron anti-neutrinos

Actually, we have almost neglected θ_{13} on this figure

For $\theta_{13} \sim 10^{\circ}$

Inverse β decay and reactor neutrino detection mod

- Nuclear reactors are a very intense electron anti-neutrino source (β decay of neutron rich fission fragments).
- Each fission release an energy of ~200 MeV and generates ~6 electron anti-neutrinos. For a typical commercial reactor (3 GW thermal energy):

 $3 \text{ GW} \approx 2 \times 10^{21} \text{ MeV/s} \rightarrow 6 \times 10^{20} \text{ v}_{e}/\text{s}$ M. Dracos IPHC/CNRS-UNISTRA Strasbourg, August 2015

10 E (MeV)

8

9

3

Reactor neutrino detectors

Outer Veto (plastic scintillator)

> Shielding (15 cm steel)

Inner Veto (liquid scintillator) 78 (8") PMTs

Strasbourg, August 2015

Target (r=1.2 m)

- acrylic vessel (8 mm)
- 8.3 tons Gd-scintillator

Gamma Catcher (e=0.55 m) • scintillator

Buffer (e=1.05 m)

- steel (3 mm)
- 80 tons "oil"
- 390 PMTs (10")

θ₁₃ is large!!!

reactor experiments discovery of the $1 \rightarrow 3$ oscillation

The door is now open for Mass Hierarchy measurement and CP Violation discovery

but, how steep is the slope?

Strasbourg, August 2015

Oscillation probability

(Long Baseline Experiments)

Oscillation probability (in matter)

be careful with ambiguities

Present accelerator neutrino oscillation facilities (long baseline)

L~732 km

NUMI beam and MINOS experiment (disappearance experiment, 2005-) < E_>>~4 GeV

CNGS beam and OPERA (ICARUS) experiment $(v_u \rightarrow v_\tau \text{ appearance experiment, 2008-2012})$ <E,>~17 GeV

Present accelerator neutrino oscillation facilities in the world

JPARC beam and T2K experiment

NOvA, same beam than MINOS, off-axis, $E_v \sim 2$ GeV, L=810 km.

Present accelerator neutrino oscillation facilities in the world

if lucky, NOvA can reach more than 3σ significance (little contribution from T2K) Strasbourg, August 2015 M. Dracos IPHC/CNRS-UNISTRA

24

Future neutrino acceleration projects (approved or not)

25

Future neutrino acceleration projects

Future neutrino acceleration projects

Future neutrino non-acceleration projects (approved or not)

Using atmospheric neutrinos

neutrinos arrive from all directions

~2x more v_{μ} than v_{e}

Atmospheric neutrinos

Large Water Cherenkov detectors (neutrino mass hierarchy)

ICE Cube (south pole)

PRECISION ICECUBE NEXT GENERATION UPGRADE

2-12 GeV neutrinos

Mediterranean see

- good angular resolution
- good energy resolution

ORCA

KM3NeT Collaboration

115 strings each carrying 18 DOMs Strasbourg, August 2015

Future neutrino non-acceleration projects

Reactors are back...
(mass hierarchy)

$$P(\overline{v_e} \rightarrow \overline{v_e}) \approx 1 - \sin^2 2\theta_{12}c_{13}^4 \sin^2 \frac{\Delta m_{21}^2 L}{4E}$$

$$-\sin^2 2\theta_{13} \left[c_{12}^2 \sin^2 \frac{\Delta m_{31}^2 L}{4E} + s_{12}^2 \sin^2 \frac{\Delta m_{32}^2 L}{4E} \right]$$

$$P_{ee}(L/E) = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 (\Delta m_{21}^2 \cdot \frac{L}{4E})$$

$$= \sin^2 2\theta_{13} \sin^2 (\Delta m_{31}^2) \cdot \frac{L}{4E}$$

$$= \sin^2 2\theta_{13} \sin^2 (\Delta m_{31}^2) \cdot \frac{L}{4E}$$

$$= \sin^2 \theta_{12} \sin^2 2\theta_{13} \sin^2 (\Delta m_{21}^2 \cdot \frac{L}{4E}) \cdot \cos(2 \left| \Delta m_{31}^2 \right| \cdot \frac{L}{4E})$$
with:

$$\Delta m_{31}^2 = \begin{cases} m_3^2 - m_1^2 > 0 \text{ (NH)} \\ m_3^2 - m_1^2 < 0 \text{ (IH)} \end{cases}$$

$$= (2n-1)\pi/2 \Rightarrow \text{ max. sens.} = n\pi \Rightarrow \text{ non sensitivity}$$

Strasbourg, August 2015

Reactor neutrino spectrum

Reactor performance

30

25

20

5

Conditions:

- Go to the right distance
- Accumulate 100 kIBD (~6 years)
 - ~ 20 kt detector
- High energy resolution $\sim 3\%$ (at 1 MeV)
 - high PMT coverage (~80%)
 - high PMT Quantum Eff. (~35%)
 - high liquid transparency

significance: $3 - 4 \sigma$

PHYS. REV. D 88, 013008 (2013)

~52 km

6 years

E res = 3%

Ideal distribution

JUNO/RENO-50

Cores	YJ-C1	YJ-C2	YJ-C3	YJ-C4	YJ-C5	YJ-C6
Power (GW)	2.9	2.9	2.9	2.9	2.9	2.9
Baseline (km)	52.75	52.84	52.42	52.51	52.12	52.21
Cores	TS-C1	TS-C2	TS-C3	TS-C4	DYB	ΗZ
Power (GW)	4.6	4.6	4.6	4.6	17.4	17.4
Baseline (km)	52.76	52.63	52.32	52.20	215	265

- Rich physics program:
 - Reactor neutrinos
 - Mass Hierarchy
 - precision measurements of oscillation parameters
 - Supernovae neutrinos
 - Geoneutrinos
 - Solar neutrinos
 - Atmospheric neutrinos
 - Exotic searches

JUNO (55 institutes) (under construction)

data by 2020: 26.6 GW

Overburden ~ 700 m

Tour Guide 🕖 2013

JUNO external lab

Image © 2015 DigitalGlobe © 2015 AutoNavi

2015 Google

Comparisons and complementarities (big unknown: t_0) arXiv:1311.1822

- LS, antineutrinos
- LBL (high energy)
 - accelerator and atm. neutrinos
 - LAr, WC, ...

 $40^{\circ} < \theta_{23} < 50^{\circ}$ (for INO and PINGU)

 $3.0\%\sqrt{(1 \text{ MeV/E})} < \sigma_{\rm F} < 3.5\%\sqrt{(1 \text{ MeV/E})}$

Conclusions

- Reactor experiments allowed the θ_{13} measurement and opened now the door to:
 - neutrino Mass Hierarchy determination
 - observation of a possible CP violation in the lepton sector using conventional neutrino beams.
- Present projects (mainly NOvA) will give some indications on MH.
- Atmospheric neutrinos are very useful for MH (projects still to be approved)
- New Medium baseline large volume reactor experiments will very probably solve the Mass Hierarchy problem during the next 10 years:
 - High energy resolution is needed.
 - JUNO:
 - Under construction in China (data by 2020)
 - RENO-50:
 - In R&D phase in S. Korea.
- Accurate measurement of neutrino oscillation parameters.

Mass Hierarchy and Supernova explosions

Geo-neutrinos in JUNO

1.8-3.4MeV Reactor Neutrinos: 14±0.14/day Geo-neutrinos 2±0.5/day JUNO ~700/year Kamland 116/10 years Borexino 14.3/5 years

KamLAND: 30±7 TNU Borexino: 38.8±12.0 TNU JUNO: reach an uncertainty of 3 TNU large background from reactors Aim: 37 ±10% (stat.) ±10% (syst.)

(TNU ~ number of detected v/year/kt LS (IBD, 10^{32} p)

Strasbourg, August 2015

Double beta decay

PHYSICAL REVIEW D 73, 053005 (2006)

Asymmetry due to matter effects

High energy resolution

How to reach the required energy resolution?

- Photocathode coverage: 77% with 20" PMTs
- High PMT QE: ~35%
- Liquid scintillator attenuation length: ~30 m

R5912-100

35%

3.4 ns

3.5 kHz

1.5 ns

• High light yield with optimised fluors

R5912

25%

3 ns

1 kHz

5.5 ns

		WAVELENGTH (nm)	
	KamLAND	BOREXINO	JUNO
LS mass	1 kt	0.5 kt	20 kt
Energy Resolution	6% / √E	5%/ √ E	3% /√ E
Light yield	250 p.e./MeV	511 p.e./MeV	1200 p.e./MeV

MCP-PMT

25%

5 ns MILLING

2.2 kHz

3.5 ns

Strasbourg, August 2015

QE@410 nm

Rise time

Dark noise

TTS

First neutrino detection...

1956: Fred Reines and Clyde Cowan detect the first neutrino interactions near the nuclear reactor of Savannah River at the USA (11 m from the reactor and 12 m underground).

Nobel prize in 1995

Neutron scope

Strasbourg, August 2015

Strasbourg, August 2015

New Reactor Projects ready (2011)

Daya Bay Dou (China) (ble Chooz France)	(Sou	RENO (South Korea)			
Ling Ao Ling Ao NPP	bit		YongGwan	ear Detector g Nuclear Power Plant			
	Luminosity in 3 years (ton·GW·y)	Overburden near/far (mwe)	Expected sensitivity	Start of data taking			
Daya Bay	4200	270/950	<0.01	August 2011			
Double Chooz	210	80/300	0.02~0.03	April 2011			

RENO

90/440

740

August 2011

~0.02

Present results

(NuTel2015)

Energy resolution

The sensitivity will strongly depend on the energy resolution (E_m : mesured energy)

E_v [MeV]

Measured spectrum (without background):

M. Dracos IPHC/CNRS

Spectral analysis

Fourrier transform of the energy spectrum F(t): (t=L/E)

$$FCT(\omega) = \int_{t_{\min}}^{t_{\max}} F(t) \cos(\omega t) dt$$
$$FST(\omega) = \int_{t_{\min}}^{t_{\max}} F(t) \sin(\omega t) dt$$

Discriminant variables:

 $RL = \frac{RV - LV}{RV + LV} \quad \text{(for FCT)}$ $PV = \frac{P - V}{P + V} \quad \text{(for FST)}$ $RL > 0 \text{ and } PV > 0 \rightarrow \text{NH}$ $RL < 0 \text{ and } PV < 0 \rightarrow \text{IH}$ Statistical test of RL + PV M. Dracos IPHC/CNRS-UNIST

δm²/eV²

JUNO (55 institutes)

(under construction)

NPP	Daya Bay	Huizhou	Lufeng	Yangjiang	angjiang			Taishan			
Status	Operational	Planned	Planned	Under const	nder construction			Under construction			
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	7.4 GW			18.4 GW			
Overburg (aiping, iang Men Guangdon	den ~ 700 m city, g Province	Jan Juangzhou Guang Zho Shongshar Zhongshar Zhujiang River Estur	U Dongguan CNS Shen Zhen	Previous site	candida Huizho	ite		China Jia Lufeng NPP	Beijing		
	Hong Kong by 2020: 26.6 GW					/					
Sug Hall	6 53 km	Mac	au do p	Cores	YJ-C1	YJ-C2	YJ-C3	YJ-C4	YJ-C5	YJ-C6	
53 kn	n	810	3	Power (GW)	2.9	2.9	2.9	2.9	2.9	2.9	
- 16	1000	Constant of the second		Baseline (km)	52.75	52.84	52.42	52.51	52.12	52.21	
mark -	Taisha	in		Cores	TS-C1	TS-C2	TS-C3	TS-C4	DYB	HZ	
Yan Yan	ngjiang			Power (GW)	4.6	4.6	4.6	4.6	17.4	17.4	
ND	D			Baseline (km)	52.76	52.63	52.32	52.20	215	265	

Strasbourg, August 2015

.

Performance

Strasbourg, August 2015

- Inputs
 - 100 kevents (6 years)
 - 3% @ 1 MeV energy resolution
 - 1% energy scale uncertainty
 - realistic backgrounds
 - Sensitivity
 - JUNO only
 - 50% chance to have 3 σ or higher
 - 2.3% chance to have 5 σ or higher
 - JUNO + 1% $\Delta m_{\mu\mu}^2$
 - 84% chance to have 3 σ or higher
 - 16% chance to have 5 σ or higher

Oscillation parameters

- First experiment to observe:
 - •simultaneously "solar" and "atmospheric" oscillations
 - •more than two cycles of neutrino oscillations
- Complementary to long baseline accelerator program
- Probing the unitarity of U_{PMNS} to the sub-percent level!

Current

~3%

~4%

~7%

 Δm_{21}^2

 Δm_{32}^2

 $\sin^2\theta_{12}$

RENO-50

- 18 kton liquid scintillator underground detector
- 15000 20" PMTs
- R&D funding (\$ 2M in 3 years, 2015~2017) given by the Samsung Science & Technology Foundation.
- A proposal has been submitted to obtain construction funding.
- 2015:
 - Group organization
 - Detector simulation & design
 - Geological survey
- 2016 ~ 2017 :
 - Civil engineering for tunnel excavation, Underground facility ready, Structure design,
 - PMT evaluation and order, Preparation for electronics, HV, DAQ & software tools, R&D for liquid scintillator and purification
- 2018 ~ 2020 : Detector construction
- 2021 ~: Data taking & analysis

RENO-50 physics

Determination of neutrino mass hierarchy

- 3 σ sensitivity from 5 years of data

•Precise measurement of θ_{12} , Δm_{21}^2 and Δm_{32}^2

$$\frac{\delta \sin^2 \theta_{12}}{\sin^2 \theta_{12}} < 1.0\% (1\sigma) \qquad \frac{\delta \Delta m^2_{21}}{\Delta m^2_{21}} < 1.0\% (1\sigma)$$

$$\frac{\delta \Delta m^{2}_{32}}{\Delta m^{2}_{32}} < 1.0\% (1\sigma)$$

Neutrino burst from a Supernova in our Galaxy

- ~5,600 events (@8 kpc)

Geo-neutrinos : ~ 1,000 geo-neutrinos for 5 years

- Study the heat generation mechanism inside the Earth

Solar neutrinos : with ultra low radioactivity

- MSW effect on neutrino oscillation and solar models

Detection of J-PARC beam (Hyper-K): ~200 events/year

Oscillation probability (negligible matter effect)

Present accelerator neutrino oscillation facilities in the world

Strasbourg, August 2015

